ACKNOWLEDGEMENTS 
This  study was  supported  by the  National Research 
Project  "Advances  in  rockfall  quantitative  risk 
analysis  (QRA)  incorporating  developments  in 
geomatics  (GeoRisk)”  funded  by  the  Spanish 
Ministry of Economy and Competitiveness, and co-
funded  by  the  Agencia  Estatal  de  Investigación 
(AEI) on  the  framework  of  the  State  Plan  of 
Scientific-Technical  Research  and  Innovation  with 
reference  code  PID2019-103974RB-I00/AEI/ 
10.13039/501100011033.  
REFERENCES 
Barbarella,  M.,  Fiani,  M.,  &  Lugli,  A.  (2015).  Landslide 
Monitoring  Using  Multitemporal  Terrestrial  Laser 
Scanning  for  Ground  Displacement  Analysis. 
Geomatics, Natural Hazards and Risk 6(5–7):398–418.  
Becker,  C.,  Häni,  N.,  Rosinskaya,  E.,  D’Angelo,  E.,  & 
Strecha.,  C.  (2017).  Classification  of  aerial 
photogrammetric 3D point clouds. ISPRS Annals of the 
Photogrammetry, Remote Sensing and Spatial 
Information Sciences 4(1W1):3–10. 
Brodu,  N.,  &  Lague,  D.  (n.d.).  3D Terrestrial lidar data 
classification of complex natural scenes using a multi-
scale dimensionality criterion : applications in 
geomorphology . 
Dolan, A. M., &  Thompson, R. M. (2014). Integration of 
drones  into  domestic  airspace:  Selected  legal  issues. 
Domestic Drones: Elements and Considerations for the 
U.S., 1–41. 
Eisenbeiβ,  H.,  Lambers,  K.,  &  Sauerbier,  M.  (2005). 
Photogrammetric recording of the archaeological site of 
Pinchango  Alto (Palpa,  Peru)  using  a  mini  helicopter 
(UAV). In A. Figueiredo (Ed.), Annual Conference on 
Computer Applications and Quantitative Methods in 
Archaeology CAA  (Issue  March  2005,  pp.  21–24). 
http://www.photogrammetry.ethz.ch/general/persons/k
arsten/paper/eisenbeiss_et_al_2007.pdf 
Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., 
Loye, A., Metzger, R., & Pedrazzini, A. (2012). Use of 
LIDAR in landslide investigations: A review. Natural 
Hazards, 61(1),  5–28.  https://doi.org/10.1007/s11069-
010-9634-2 
Kamps,  M.  T.,  Bouten,  W.,  &  Seijmonsbergen,  A.  C. 
(2017).  LiDAR  and  orthophoto  synergy  to  optimize 
object-based  landscape  change:  Analysis  of  an  active 
landslide.  Remote Sensing,  9(8). 
https://doi.org/10.3390/rs9080805 
Loesdau, M., Chabrier, S., & Gabillon, A. (2014). Hue and 
Saturation in the RGB Color Space BT - Image and 
Signal  Processing.  Springer International Publishing 
Switzerland 2014, 203–212. 
Niethammer, U., James, M. R., Rothmund, S., Travelletti, 
J., & Joswig, M. (2012). UAV-based remote sensing of 
the  Super-Sauze  landslide:  Evaluation  and  results. 
Engineering Geology,  128,  2–11. 
https://doi.org/10.1016/j.enggeo.2011.03.012 
Núñez-Andrés, M. A., Buill, F., Hürlimann, M., & Abancó, 
C.  (2019).  Multi-temporal  analysis  of  morphologic 
changes  applying  geomatic  techniques.  70  years  of 
torrential activity in the Rebaixader catchment (Central 
pyrenees).  Geomatics, Natural Hazards and Risk, 
10(1),  314–335. 
https://doi.org/10.1080/19475705.2018.1523235 
Ponti,  M.P.  (2013).  Segmentation  of  Low-Cost  Remote 
Sensing  Images  Combining  Vegetation  Indices  and 
Mean  Shift.  IEEE Geoscience and Remote Sensing 
Letters 10(1):67–70.Varnes, DJ. 1978. “Transportation 
Research  Board  Special  Report:  Slope  Movement 
Types  and  Processes.”  Pp.  11–33  in  Landslides, 
analysis and control., edited  by  K.  R. ( Schuster RL. 
Washington D.C: National Academy of Sciences. 
Roncella, R., Forlani, G., Fornari, M., & Diotri, F. (2014). 
Landslide  monitoring  by  fixed-base  terrestrial  stereo-
photogrammetry,  ISPRS  Ann.  Photogramm.  Remote 
Sens.  Spatial  Inf.  Sci.,  II-5,  297–304, 
https://doi.org/10.5194/isprsannals-II-5-297-2014, 
2014. 
Richards,  J.  A.  (2013).  Remote sensing digital image 
analysis: An introduction.  (Vol.  9783642300622,  pp. 
1–494).  Springer-Verlag  Berlin  Heidelberg. 
https://doi.org/10.1007/978-3-642-30062-2  
Stöcker,  C.,  Bennett,  R.,  Nex, F., Gerke, M., & 
Zevenbergen, J. (2017). Review of the current state of 
UAV  regulations.  Remote Sensing,  9(5),  33–35. 
https://doi.org/10.3390/rs9050459 
Travelletti,  J.,  Delacourt,  C.,  Allemand,  P.,  Malet,  J.  P., 
Schmittbuhl,  J.,  Toussaint,  R.,  &  Bastard,  M.  (2012). 
Correlation  of  multi-temporal  ground-based  optical 
images for landslide monitoring: Application, potential 
and limitations. ISPRS Journal of Photogrammetry and 
Remote Sensing,  70,  39–55. 
https://doi.org/10.1016/j.isprsjprs.2012.03.007 
Tziavou, O., Pytharouli, S., & Souter, J. (2018). Unmanned 
Aerial  Vehicle  (UAV)  based  mapping  in  engineering 
geological  surveys:  Considerations  for  optimum 
results. Engineering Geology, 232(June 2017), 12–21. 
https://doi.org/10.1016/j.enggeo.2017.11.004 
Varnes, D. (1978). Transportation Research Board Special 
Report: slope movement types and processes. In K. R. 
( Schuster RL (Ed.), Landslides, analysis and control. 
(pp. 11–33). National Academy of Sciences. 
Xue,  J.,  &  Su,  B.  (2017).  Significant  remote  sensing 
vegetation  indices:  A  review  of  developments  and 
applications.  Journal of Sensors,  2017. 
https://doi.org/10.1155/2017/1353691 
Yadav, M., Lohani, B., Singh, A.K., & Husain., A. (2016). 
“Identification  of  Pole-like  Structures  from  Mobile 
Lidar  Data  of  Complex  Road  Environment.” 
International Journal of Remote Sensing 37(20):4748–
77.