
Empirical Security and Privacy Analysis of Mobile Symptom Checking
Apps on Google Play

I. Wayan Budi Sentana1 a, Muhammad Ikram1 b, Mohamed Ali Kaafar1 c

and Shlomo Berkovsky2 d

1Department of Computing, Macquarie University, 4 Research Park Drive, Macquarie Park, NSW, Australia
2Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University,

75 Talavera Rd, North Ryde, NSW, Australia
{

Keywords: Android Apps, Privacy, Security, Static Analysis, Dynamic Fingerprinting.

Abstract: Smartphone technology has drastically improved over the past decade. These improvements have seen the
creation of specialized health applications, which offer consumers a range of health-related activities such as
tracking and checking symptoms of health conditions or diseases through their smartphones. We term these
applications as Symptom Checking apps or simply SymptomCheckers. Due to the sensitive nature of the private
data they collect, store and manage, leakage of user information could result in significant consequences. In
this paper, we use a combination of techniques from both static and dynamic analysis to detect, trace and cat-
egorize security and privacy issues in 36 popular SymptomCheckers on Google Play. Our analyses reveal that
SymptomCheckers request a significantly higher number of sensitive permissions and embed a higher number
of third-party tracking libraries for targeted advertisements and analytics exploiting the privileged access of the
SymptomCheckers in which they exist, as a mean of collecting and sharing critically sensitive data about the
user and their device. We find that these are sharing the data that they collect through unencrypted plain text
to the third-party advertisers and, in some cases, to malicious domains. The results reveal that the exploitation
of SymptomCheckers is present in popular apps, still readily available on Google Play.

1 INTRODUCTION

Smartphone users are increasingly using their smart-
phones for health-related activities. The majority of
smartphones now have the ability to passively collect
health data as users progress through their day (Trifan
et al., 2019). The result of this passive logging has
been the creation of specialized health-related mobile
applications (SymptomCheckers) which track, man-
age and store the health data of users. The logging
capabilities of SymptomCheckers go beyond passive
tracking, as users can self-monitor their activities and
manually record their personal data. A wide variety of
categories are offered including; exercise and fitness
tracker, sleep patterns and quality, cardiology and vas-
cular health, mental and emotional health, and blood
sugar levels for diabetes (Smahel et al., 2019).

Leveraging upon previous work (Ikram et al.,

a https://orcid.org/0000-0003-3559-5123
b https://orcid.org/0000-0003-0336-0602
c https://orcid.org/0000-0003-2714-0276
d https://orcid.org/0000-0003-2638-4121

2016), this paper presents the first characterization
study of SymptomCheckers with a focus on security
and privacy offered by these apps. In particular, we
perform static and dynamic analysis to analyze the
Android permissions, the presence of malicious code
as well as third-party tracking libraries, and inves-
tigate the (un)encrypted traffic for content and end-
points of the exfiltrated sensitive data.

We collect and extract from a corpus of more than
1.7 million Android apps, 36 SymptomChecker for
which the name or the description suggest they en-
able to either track or check health-related activities
of users. We then manually check that the apps actu-
ally fall into the category of SymptomChecker (§ 2.1).
We use a set of tools to decompile the SymptomChek-
ers and analyze the source code of each of the mobile
SymptomChekers. We then inspect the apps to reveal
the presence of third-party tracking libraries and sen-
sitive permissions for critical resources on users’ mo-
bile devices. We summarize our analysis as follow:

• 13.8% (5) of SymptomCheckers’ use a vulnerable
encryption scheme (i.e., SHA1+RSA) for signing

Sentana, I., Ikram, M., Kaafar, M. and Berkovsky, S.
Empirical Security and Privacy Analysis of Mobile Symptom Checking Apps on Google Play.
DOI: 10.5220/0010520106650673
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 665-673
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

665

certificates and security purposes.
• 44.4% (16), 58.3% (21), and 63.86% (23) of

SymptomCheckers provide Exported Activities,
Exported Services and Exported Broadcast Re-
ceiver, respectively, which can be exploited by
a malicious app. We found that 10.81% (4) of
SymptomCheckers contain malware code embed-
ded in their source codes.

• To avoid source code analysis 89% (32) of Symp-
tomChekers rely upon different types of anti-
analytics or obfuscation techniques.

• 22.2% (8) of SymptomChekers embed at least five
different third-party tracking and advertisement
libraries sharing sensitive user information such
as location with third-party analytics and adver-
tisers.

• 5% of the traffic generated by SymptomCheck-
ers’ use insecure HTTP protocol for transmitting
users’ sensitive data in plaintext which can be in-
tercepted and modified by malicious in-path prox-
ies.

2 DATA COLLECTION AND
ANALYSIS METHODOLOGY

In this Section, we present our data collection and
analysis methodology.

2.1 Data Collection Methodology

Given that the Google Play store does not contain
“Symptom Checking” apps’ category, we devise a
search methodology to find SymptomCheckers on
Google Play. First, we use several keywords in-
cluding “symptom”, “SymptomChecker”, and “health
checker” in the description of 1.7 million Android
applications collected in (Ikram and Kaafar, 2017).
We obtain 353 apps that match those keywords. We
manually check the descriptions of 353 apps to en-
sure our SymptomCheckers apps are real Symptom-
Checker. We removed apps containing symptom
trackers, health dictionaries or apps that are used to
store only user-health history. We also discard the
apps used for the learning process by medical students
or the apps used to assist health practitioners. Over-
all we found 36 apps that met our search criteria and
manual inspection.

We use gplaycli (matlink, 2018) to download 36
apps and collect textual information including apps
unique identifier, category and price, regional avail-
ability, description, number of installs, developer in-
formation, user reviews, and apps rating. 32 (88.8%)

Table 1: Top 5 Free SymptomCheckers sort by number of
installs. The lower part of the table summarises the average
statics of SymptomCheckers.

Apps ID # of Installs Rating
1 com.webmd.android 10,000,000+ 4.44
2 com.ada.app 5,000,000+ 4.74
3 md.your 1,000,000+ 4.1
4 com.mayoclinic.patient 1,000,000+ 3.9
5 com.programming. 500,000+ 4.52

progressive.diagnoseapp
Average Statistics:

Avg. # of Install 50,000+
Avg. # of Ratings 3.27

out of 36 SymptomCheckers have a single APK and
4(11.1%) apps have multiple APK to support different
models and versions of the Android operating system
(OS).

Table 1 shows the top 5 SymptomCheckers apps
sort by number of install and average ratings. Among
the 36 apps, 83.3% (30) apps have at least 1,000 de-
vices. We found that WebMD (com.webmd.android)
is the most popular app with at least 10 Million in-
stalls. The average rating, number of raters, and num-
ber of reviews are respectively 3.27, 10646.81, and
4341.35, showing the popularity of SymptomCheck-
ers among users. We also found that ADA Symptom
Checker (com.ada.app) is highly rated by 290,484 of
users with average rating of 4.74.

2.2 Analysis Methodology

To have a wider perspective of the existing Symptom-
Checkers security, we perform comprehensive static
(or source code) and dynamic (or runtime network
traffic) analysis to inspect apps’ source code and in-
vestigate the apps’ behavior during the runtime, re-
spectively. We also conduct user review analysis to
determine the user perception of the analyzed Symp-
tomCheckers.
Static Analysis. An APK is a mobile app pack-
age file format supported by the Android OS for dis-
tribution and installation. APK encloses all of the
program’s codes and it supports resources including
.dex files, resources, assets, certificates, and mani-
fest file, which are considered as the important objects
in this SymptomCheckers static analysis. Since the
APK distributed in byte-code format, we conduct pre-
processing by leveraging APKTool (Apktool, 2020)
to decompile the APK into Smali format and get all
those files that will be useful in the following further
analysis:

1. Certificate Signing Mechanism. Android OS re-
quires all APKs to be digitally signed with a cer-

SECRYPT 2021 - 18th International Conference on Security and Cryptography

666

tificate before it is uploaded to Google Play Store
or installed on a device. Application signing sim-
plifies developers to identify the app’s author and
to update their application without administering
complicated permissions and interface. This pro-
cess also becomes an insurance policy for devel-
opers in terms of apps’ integrity and the account-
ability of their apps’ behavior thus preventing ad-
versaries from inserting malware into legitimate
apps by modifying and repackaging apps on the
apps market (SSL, 2020).
To evaluate the certificate signing mechanism
adopted by the SymptomCheckers, we extract the
CERT.RSA file among all the files generated during
the apps de-compilation via APKTool. We cus-
tomize a script leveraging Keytool (Oracle, 2020)
to obtain encryption and hashing mechanisms as
well as the length of the public key of certificates.

2. Apps’s Requested Permissions. The permission
system is a core security architecture in the An-
droid OS. All applications request permissions
to access sensitive data, system features, com-
ponents, or other sensitive resources in the op-
erating system are managed by these systems.
Once granted, apps may collaborate with a po-
tentially malicious application to perform various
attacks such as permission escalation (Melamed,
2020). In this study, we first parse Manifest.xml
of SymptomCheckers to determine the requested
permissions and to analyze any potentially dan-
gerous permissions. We then observe whether all
the available list permissions are used by the func-
tions in the respective SymptomCheckers. There-
fore, we map the API calls or methods of each app
with the permission requests in the Manifest using
AXPLORER (Backes et al., 2016). As a result, all
permission lists in the SymptomCheckers are re-
quested at least once in the API calls or methods.

3. Exported Component Analysis. Android apps
consist of several components: Activity, Service,
Content Provider, and Broadcast Receiver. These
components collaborate with each other to im-
plement and provide apps’ functionalities. Com-
monly, a function in an app will be triggered by
the user via the activity. The Android platform
allows these components to be accessed and trig-
gered from other applications by setting the ex-
ported status equal to True. However, this ex-
ported component is also a surface attack for mal-
ware to exploit an app. Melamed et al., (Melamed,
2020) demonstrates how these exported compo-
nents can manipulate apps’ components to com-
promise apps for malicious activities (CWE-926,
2020). To identify the presence of an exported

component in the SymptomCheckers, we use the
Android Drozer(F-Secure-Labs, 2020) to analyze
the Manifest file for each app. Drozer–a com-
monly used penetration testing tool–uses several
checks to exploit vulnerabilities in mobile apps.

4. Malware Detection. To detect the presence of
malicious codes in the SymptomCheckers, we
scan APKs using VirusTotal (VirusTotal, 2020).
VirusTotal is a multitude of malware scanning
tools that provide a comprehensive result by ag-
gregating more than 70 anti-virus engine and
URL/domain blacklisting services. The tools have
been widely used to identify the emergence of ma-
licious apps, executable files, application software
as well as domains. To automate the scanning pro-
cess, we take advantage of the API provided by
VirusTotal, and create a script to upload all sam-
ples to the VirusTotal repository.

5. Obfuscations Detection. Obfuscation technique
refers to any means of evading, obscuring, or dis-
rupting the analysis process by parties other than
application developers. These techniques have
both positive and negative sides. On the one hand,
this technique is useful to hardening the apps and
protecting the source code against analyzing and
reproducing. On the other hand, this technique
can be used by malware developers to evade basic
analysis layers of application distribution services
such as Google Play (Chau and Jung, 2019). Re-
search in (He et al., 2020) found that 52% of its
malware samples leverage this technique to evade
the analysis tools.
To detect such behavior in the SymptomCheck-
ers, we use APKID(RedNaga, 2016) to analyze
the .dex files obtained in decompiled APK. AP-
KID returns at least one compiler name for each
APK. If the apps leveraging any anti-analysis
technique, the APKID will return several labels
that we grouped as a manipulator, anti-virtual ma-
chine (vm), anti-debug, anti-disassembly, and ob-
fuscator.

6. Trackers Analysis. The existence of third-party
libraries and trackers on android apps has raised
privacy and security concernsThese third-party li-
braries can exchange information and infer user
personal information based on demographic data
and user behavior harvested during user interac-
tion with the apps. To reveal the existence of
these libraries, we analyze the decompiled APK
and comprehensively search sub-directories in de-
compiled APKs. These unique directories names
correspond to the libraries embedded by apps’ de-
velopers in the source codes. We rely on our list

Empirical Security and Privacy Analysis of Mobile Symptom Checking Apps on Google Play

667

of libraries to the previous research conducted in
(Ikram and Kaafar, 2017) to filter and obtain the
third-parties in SymptomChecking apps.

Dynamic Analysis. We conduct runtime network be-
havior (also called dynamic analysis) to measure the
security and privacy of SymptomCheckers apps dur-
ing the runtime by capturing the traffic transmitted by
Apps to the Internet. To avoid the obfuscation (i.e.,
Anti-Virtual Machine) techniques, often used by cer-
tain apps, we use a dedicated Android device and
channeling the connection via MITMProxy (mitm-
proxy, 2020) to the WiFi access point. Since all the
SymptomCheckers developed in SDK version 25 or
above, we create a script to add self-signed security
certificate exemption to read the traffic transmitted in
HTTPS protocol.

Given that the number of SymptomCheckers is
small, once the apps installed on the device, we nav-
igate the apps manually and observe all activities on
the apps while MITMProxy intercepts the transmis-
sion between each app to the internet. We then con-
vert the intercepted traffic to HTTP/S Archive (.har)
file to simplify traffic analysis of each Symptom-
Checkers. We extract the secure communication line
and privacy factors by observing the potential of pri-
vacy leaks. From the security factor, we analyzed the
percentage of the encrypted HTTPS protocol adop-
tion on the SymptomCheckers’ communication lines.
For this purpose, we extract intercepted unique URLs
and identify the type of transmission protocol used.
User-review Analysis. A user review analysis was
performed to capture the users’ perceptions of Symp-
tomCheckers. In this analysis, we have fetched
Google Play store reviews (N = 76,817) of 30 apps.
App reviews were categorized as positive (with 3, 4,
or 5 stars ratings) and negative (with 1 or 2 stars rat-
ings). We focus on the 1 or 2 stars with average rat-
ings ≤ 2 to investigate the concerns around the app
functionality, security, and privacy conduct. We ob-
tained the complete list of reviews from the app’s
home page on the Google Play store. Leveraging on
previous work (Ikram and Kaafar, 2017), we used an
automated keywords-based search method and em-
ployed manual classification of the users’ text to clas-
sify them into various types of complaints. First, we
created dictionaries of keywords1, as listed in Table 5,
belonging to different complaints’ categories to filter
reviews and then performed manual validation of the
resultant complaints categories. The co-authors were
involved in manual validation. Based on this man-
ual observation, each author re-classified each users’

1For instance, keyword ‘force close’ mapped to
‘bugs’ under app’s ‘usability’ category and ‘personal
data’ mapped to ‘privacy’ for the ‘Privacy’ category.

Table 2: Summary of Certificate Signing Analysis; Top :
Certificate signing mechanism ; Bottom: Public Key length
present in Digital certificate.

Signature Algo. # of Apps, N=36 (%)
SHA256 + RSA 31 (86.1%)
SHA1 + RSA (weak) 5 (13.8%)
Key Length (bits) # of Apps, N=36 (%))
4096 15 (41.6%)
2048 21 (58.3%)

comment into only one of the 12 classes of complaint
categories.

3 ANALYSIS

We explore the vulnerability of SymptomCheckers by
identifying security gaps, suspicious behavior, level
of communication security and user perspective. The
results of the analysis present several aspects includ-
ing; The strength of the encryption algorithm, ex-
ploitation of attack surface, intrusive permission, sus-
picious malware and anti-analysis appearance, adop-
tion of secure communication protocol, and user-
related security aspects.

3.1 Certificate Signing Mechanisms

We found 31 (86.1%) of the analyzed Symp-
tomCheckers use vulnerable and weak encryption
schemes such as SHA256 and RSA for signing and
security purposes. While the remaining 5 (13.8%)
apps were signed using a combination of SHA1 and
RSA encryption mechanism thus potentially expos-
ing legitimate SymtomCheckers to modification and
repackaging by malicious developers (SSL, 2020).

We also include the length of the public key as part
of the security measurement in the SymptomCheck-
ers certificate signing scheme. We are referring to
the minimum standard public key length of 2048 bits
published by (CSRC, 2016). As shown in Table 2, all
SymptomCheckers have met minimum security stan-
dards of public key length, where 21 (58.3%) apps use
a public key with a length of 2048 bits and 15 (41.6%)
apps leverage 4096 bits.

3.2 Permission Analysis

Figure 1 depicts the number and types of different per-
missions requested by SymptomCheckers. We found
that 55% of SymptomCheckers request at most 10
permissions while 39% of the SymptomCheckers ac-
quire resources protected by ‘Dangerous’ permission.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

668

Out of a total of 427 permission requests, 73 % (312)
permissions are categorized as dangerous, 20 % (84)
were categorized as normal, and 8 % (33) permissions
were categorized as signatures. The number of dan-
gerous permissions is requested by 33 of the 36 apps
on the SymptomCheckers list.

From a total of 79 unique type permissions,
INTERNET is the most requested permission by 32
different apps while WRITE EXTERNAL STORAGE and
WAKE LOCK are requested by 22 and 19 Symptom-
Checkers, respectively.

0 10 20 30 40 50
of Permissions

0.2

0.4

0.6

0.8

1.0

EC
DF Dangerous

Normal
Signature
All

Figure 1: Empirical cumulative distribution function
(ECDF) of permissions requested by SymptomCheckers.

3.3 Exported Component Analysis

We found 44.4 % (16), 58.3 % (21) and 63.86 %
(23) of the analyzed SymptomCheckers apps contain
exported activities, exported services and exported
broadcast receivers, respectively. None of Symptom-
Checkers apps containing exported content provider.
In total there are 74 Exported Activities, 42 Exported
Services, 78 Exported Broadcast Receivers and none
Exported Content Provider.

We group the apps based on the number of ex-
ported components in each app as shown in Table 3.
We found that 11 (30.5 %) apps have exported com-
ponents while 21 (58.3 %) apps have exported ser-
vices, and 18 (50 %) apps have exported broadcast
receivers, in the range of 1 to 5 respectively. In ad-
dition, there are 9 (25 %) apps that have exported
components in the range of 6 to 10. We also no-
tice massive exported activities by WebMD with 12
activities, indicating that there are 12 surface attacks
that can be exploited by malicious activities in this
app. Upon scanning SymptomCheckers using Virus-
Total, we find 4 (10.81%) apps have malware codes
in their source codes according to Virustotal. For in-
stace, WebMD consists of 66 activities, 10 Services,
11 Broadcast Receivers, and 6 Content Providers.

Table 3: Summary of exported components; here Act = ex-
ported activities ; Ser = exported services; Rec = exported
broadcast receivers; Pro = exported content Providers; A =
number of apps ; C = number of exported components.

Range Act Ser Rec Pro
A C A C A C A C

>10 1 12 0 0 0 0 0 0
6-10 4 36 0 0 5 30 0 0
1-5 11 26 21 42 18 46 0 0
0 20 0 15 0 13 2 36 0

3.4 Obfuscation Analysis

Ma
nip

ula
to

r

An
ti_

VM

An
ti_

De
bu

g

An
ti_

Di
sa

ss
em

bly

Ob
fu

sc
at

or

0

5

10

15

20

25

30

of

 E
xi

st
an

ce
8

32

18

3 2

Figure 2: Anti-Analysis techniques adopted by Symptom-
Checkers. 89% SymptomCheckers apps leveraging anti-
VM technique to detect emulated environment.

We found that 89% of the analyzed SymtomCheckers
use at least one of the following obfuscation (or anti-
analysis) techniques in their source codes.

• Manipulator. Each SymptomChecker’s APK
consists of Dalvix Executable (.dex) files con-
verted from Java.class using (originally) dx com-
piler. We marked the apps containing the manip-
ulator if the .dex files were created using other
than dx compiler. As shown in figure 2, we
found that 8 (22%) SymptomCheckers leverage
dexmerge compiler to protect their source codes.

• Anti Virtual Machine. This technique is used to
detect whether the apps are running on the em-
ulator or real devices. The emulator detection
aims to increase the difficulty level of apps run-
ning on emulators which impedes certain reverse-
engineering tools and techniques.
We found 32 SymptomCheckers use anti-virtual
machine techniques to check the emulator pres-
ence based on various indicators in build.prop and
Telephony Manager.

• Anti Debug. There are two levels of debug-
ging as well as anti-debugging protocol in An-
droid (OWASP, 2020). First, the debugging can

Empirical Security and Privacy Analysis of Mobile Symptom Checking Apps on Google Play

669

be conducted at the Java level using Java Debug
Wire Protocol (JDWP) which is used as a commu-
nication protocol between debugger and Java Vir-
tual Machine. Second, we can conduct debugging
at the native layer level by using ptrace in Linux
system call. This anti-debugging level check is
also known as a traditional anti-debugging pro-
cess. We found 18 (50%) SymptomCheckers tai-
lor anti-debug techniques to avoid source code
analysis tools. All of those apps detect debug-
gable state by activated isDebuggerConnected()
routine in android.os.Debug class, which is part
of JDWP anti-debugging level technique.

• Anti Disassembly. A common technique to pro-
tect the byte-code in Android is to create the
important code segment in C or C++ using Na-
tive Development Kit (NDK)(SIMFORM, 2015).
NDK provides platform libraries to manage na-
tive activities and access physical device compo-
nents(Developer, 2020). NDK uses CMake as
a native library compiler that creates a different
byte-code structure compared to the code written
in Java or Kotlin. Hence, it impedes common An-
droid tools such as APKTool or Smali to disas-
semble the byte-code.
We found 3 (8%) SymptomCheckers use anti-
disassembly techniques, including AITibot , App-
stronout and Mayo Clinic. Analysis of those apps
returns the value of “illegal class name”, indicat-
ing the decompiler result violating the standard
structure of Java or Kotlin.

• Obfuscator. Code obfuscation is the process of
modifying code into meaningless phrases by re-
naming or encrypting the file names, methods,
or strings without reducing the code functional-
ity. The aim is to protect the executable file from
being analyzed or being reversed by an unautho-
rized party. Proguard and Dexguard are two most
common tools utilized in Android programming
obfuscation.
We found 2 (6%) SymptomCheckers deploying
obfuscators. Analysis results on Healthily return
‘unreadable field names’ and ‘unreadable method
names’ indicating that a certain number of field
names and method names in that app were re-
named or encrypted. However, APKID failed to
identify the tools used to conduct obfuscation.
While analysis on Mayo Clinic identifies the apps
adopting Dexguard to conduct the obfuscation.

Table 4: Top 5 Third Party Libraries in SymptomCheckers.

No Third Party Libraries Count
1 Google Firebase Analytics 16
2 Google AdMob 14
3 Google CrashLytics 11
4 Google Analytics 10
5 Facebook Login 9

Table 5: Summary of Traffic Analysis. 19% traffic directed
to third-party domains and 1% of the traffic relying on un-
encrypted HTTP protocol.

Unique URL HTTP HTTPS
First-party 1283 (81%) 69(4%) 1214 (77%)
Third-party 301 (19%) 5 (1%) 296 (19%)
Total 1584 (100%) 74 (5%) 1510 (95%)

3.5 Third-party Ads and Tracking
Analysis

The results of the tracking library analysis show
that 69% (25) SymptomCheckers adopt at least one
tracker while 22% (8) of the analyzed apps leverage
more than 5 tracking libraries in their code. For in-
stance, com.caidr.apk, with 100,000+ installations
and 4.1 average ratings, has the highest number (10)
of tracking and advertisement libraries. The app con-
sists of 26 activities where almost 50% of the activ-
ities are proposed to handle third-party libraries in-
cluding trackers.

We also analyze the type of third-party libraries.
We found that Google Analytics, Google Tag Man-
ager, Google Admob, Google Firebase Analytic, and
Google CraschLytic, and the Facebook group con-
sisting of Facebook Ads, Facebook are the most in-
tegrated third-party libraries by SymptomCheckers.
Table 4 shows the Top 5 third-party libraries used
in SymptomCheckers. Although each library collects
limited information, when all these libraries exchange
information, it raises concerns about privacy viola-
tions because these third-party libraries can infer per-
sonal information based on the behavior and demo-
graphic data exchanges (Seneviratne et al., 2015).

3.6 Traffic Analysis

Overall, we obtained 1,584 unique URLs from the
traffic of the analyzed SymptomCheckers. We found
that 74 (5%) communications are done via HTTP pro-
tocol while 3 SymptomCheckers communicate 50%
of their traffic un-encrypted using HTTP while 95%
of the SymptomCheckers use HTTPS for secure com-
munication.

To observe potential privacy leaks, we consider
the existence of third-party libraries adopted by each

SECRYPT 2021 - 18th International Conference on Security and Cryptography

670

Table 6: Analysis of users’ perception of SymptomCheckers analyzed through user reviews categories and keywords.

Complaint Category #Comp (%) # Apps (%) Case-insensitive, Searched Keywords
Usability
Bugs 429(20.64) 12(41) force close; crash; bug; freeze; glitch; froze; stuck; stick; error;

disconnect; not work; not working
Battery 74(3.56) 9(31) battery; cpu; processor; processing; ram ; memory
Mobile Data 87(4.19) 10(34) mobile data; gb; mb; background data;
Mal-behaviour
Scam 28(1.35) 6(21) scam; credit card; bad business; bad app
Adult 23(1.11) 6(21) porn; adult; adult ad
Offensive/Hate 2(0.10) 2(7) hate; offensive; sexist; LGBT; trolling; racism; offensive; is-

lamophobia; vile word; minorities; hate speech; shit storm
Privacy
Privacy 53(2.55) 7(24) privacy; private; personal details; personal info; personal data
Ads 1280(61.60) 24(83) ads; ad; advertisement; advertising; intrusive; annoying ad;

popup; inappropriate; video ads; in-app ads
Trackers 43(2.07) 10(34) tracker; track; tracking
Security
Security 12(0.58) 4(14) security; tls; certificate; attack
Malware 5(0.24) 3(10) malware; trojan; adware; phishing; suspicious; malicious; spy-

ware
Intrusive Permissions 42(2.02) 6(21) permission

SymptomCheckers. Hence, we refer to Section 3.5 to
create a list of third-party libraries and compare it to
the intercepted unique URLs. We then categorize the
corresponding URLs as traffic that directed to third-
party domains and the rest is traffic that directed to
domains provided by the app developer (first-party)
or domains that are used to support apps functional-
ity. The percentage of traffic leading to a third-party
domain is an indicator of a possible privacy leak.

We found 81% of the SymptomCheckers’ traffic is
destined towards the first-party domain or apps sup-
porting domain. However, out of 1,584 total traffic
intercepted, there are 301 (19 %) unique URLs that
point to third-party domains. Moreover, 8 (22%) apps
had traffic leading to a third-party with more than
50% of the total traffic. This indicates that the app
uses more than 50% of its functionality for third-party
libraries.

We provide a summary of traffic analysis in Table
5. Of 1,584 intercepted unique URLs, there are 1,510
(95%) traffic transmitted over the encrypted HTTPS
protocol line and 74 (5%) traffic transmitted via the
un-encrypted HTTP protocol. In addition, of the total
Unique URLs, there are 1,283 (81%) URLs pointing
to first-party or supporting domains and 301 (19%)
URLs pointing to third-party domains. In more detail,
69 (4%) of traffic to the first-party domain is trans-
mitted via the un-encrypted HTTP and 1,214 (77%)
of traffic to the first-party domain is transmitted via
the encrypted HTTP. While, 5 (1%) and 296 (19%)
unique URLs were directed to the third-party domain
via HTTP and HTTPS, respectively.

3.7 User Perception Analysis

We obtain N = 4,807 negative (1 or 2 stars) reviews
to analyze the users’ perception of app usability, ma-
licious behavior (or mal-behavior), privacy, and se-
curity. Users often complained about apps’ usability
(see Table 6) where bugs, battery and mobile data is-
sues caused frustration. We found that 429 (20.64%)
complaints were made for 12 (41%) apps where users
raised their concerns and requested to fix the usability
issues to improve the user experience. While some
might find the app useful but an apparent usability
issue may hinder the useful experience. Some users
stated that “great app is very useful; however I have
gotten a lot of ‘force close’ messages please fix”,
“would not load pictures and kept freezing” or “had
to uninstall as they kept crashing every time you open
the app”.

Apps’ mal-behavior had captured minor users’ at-
tention where such apps were listed as scams and
raised concerns about presenting adult or offensive
content. The user stated as “No way to verify that this
is a legitimate app. No clear connection to the NHS.
Looks like a scam to steal personal information”.

Notably, under the privacy category users
mainly complained about in-app advertisements 1280
(61.60%) for 24 (83%) reviewed apps.Users elab-
orated “don’t want seeing this app advertisement
through my phone”, “I need to answer your questions
and all I see is advertisement...” or “... I cannot find
anything not my blood type not my last appointment
everything is advertisement...”. Comparatively user
reviews suggest little understanding of apps privacy

Empirical Security and Privacy Analysis of Mobile Symptom Checking Apps on Google Play

671

and tracking behaviour. However, some users stated
“privacy policy is bad”, “sharing personal data is not
cool“ or “removed the app after finding out that it
shared private health data with third-parties”.

Similar to privacy users’ perception of apps secu-
rity was also limited. There were minor complaints
made for app security, presence of malware and app
requiring intrusive permissions as shown in Table 6.
Users mentioned their concerns for specific apps as
“security risk, asks for personal details that would fa-
cilitate identity theft. if in doubt be cautious” or “spy-
ware, why does it need my device serial number; my
location; read SD card; to record audio when I get up
and go to sleep; all combined with full internet ac-
cess?”.

Overall, only bugs (20.64%) in 12 apps and ads
(61.60%) present in 24 apps captured the most users’
attention where other privacy and security issues were
mainly neglected.

4 CONCLUSION

The increasing number of mobile SymptomCheckers
available on apps’ markets such as Google Play and
the growing number of complaints raised by users in-
dicate serious security and privacy as well as usabil-
ity issues thus necessitate the urge to analyze this un-
explored eco-system. The average mobile user rates
SymptomCheckers positively even when 10% have
malware presence. According to our study, 3% of
negative reviews are related to (or concerned with)
the security and privacy issues of SymptomCheckers.
Our app review analysis suggests an alarming situa-
tion as users show minimal interest or awareness of
SymptomCheckers privacy and security.

The results found in this paper reveal that the ex-
ploitation of SymptomCheckers is present in popular
apps, still readily available on Google Play and we
believe that our work could be extended to study the
qualitative analysis such as users satisfaction and ef-
fectiveness of SymptomCheckers.

ACKNOWLEDGEMENTS

The first Author is a Scholarship Awardee of the
Indonesian Endowment Fund for Education (LPDP)
of the Republic of Indonesia, with the LPDP ID
20193221014024. This research is partially funded
by the Optus Macquarie University Cyber Security
Hub.

REFERENCES

Apktool (2020). A tool for reverse engineering 3rd party,
closed, binary android apps. https://ibotpeaches.
github.io/Apktool/.

Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D.,
and Weisgerber, S. (2016). On demystifying the an-
droid application framework: Re-visiting android per-
mission specification analysis. In USENIX Sec.

Chau, N. and Jung, S. (2019). An entropy-based solution
for identifying android packers. IEEE Access.

CSRC (2016). Recommendation for key management,
part 1: General (revision 3), computer security re-
source center. https://csrc.nist.gov/publications/detail/
sp/800-57-part-1/rev-3/archive/2012-07-10.

CWE-926 (2020). Cwe-926: Improper export of android
application components. https://cwe.mitre.org/data/
definitions/926.html. Accessed: 18/12/2020.

Developer, A. (2020). The android ndk: toolset
that lets you implement parts of your app in na-
tive code, using languages such as c and c++.
https://developer.android.com/ndk.

F-Secure-Labs (2020). Drozer: Comprehensive secu-
rity and attack framework for android. https://labs.
f-secure.com/tools/drozer/. Accessed: 18/12/2020.

He, R., Wang, H., Xia, P., Wang, L., Li, Y., Wu, L., Zhou,
Y., Luo, X., Guo, Y., and Xu, G. (2020). Beyond the
virus: A first look at coronavirus-themed mobile mal-
ware.

Ikram, M. and Kaafar, M. A. (2017). A first look at mobile
ad-blocking apps. In 2017 IEEE 16th International
Symposium on Network Computing and Applications
(NCA), pages 1–8. IEEE.

Ikram, M., Vallina-Rodriguez, N., Seneviratne, S., Kaafar,
M. A., and Paxson, V. (2016). An analysis of the
privacy and security risks of android vpn permission-
enabled apps. In IMC.

matlink (2018). Google play downloader via command line
v3.25. https://github.com/matlink/gplaycli. Accessed:
10/10/2020.

Melamed, T. (2020). Hacking android
apps through exposed components.
https://www.linkedin.com/pulse/hacking-android-
apps-through-exposed-components-tal-melamed.

mitmproxy (2020). - an interactive https proxy. https://
mitmproxy.org.

Oracle (2020). keytool. https://docs.oracle.com/javase/
8/docs/technotes/tools/unix/keytool.html. Accessed:
18/12/2020.

OWASP (2020). Testing anti-debugging detection
(mstg-resilience-2) - android anti-reversing
defenses. https://mobile-security.gitbook.io/
mobile-security-testing-guide/android-testing-guide/
0x05j-testing-resiliency-against-reverse-engineering.
OWASP Mobile Security Guide - Accessed:
18/01/2020.

RedNaga (2016). Apkid - anti-analyisis open source tools.
https://github.com/rednaga/APKiD.

Seneviratne, S., Kolamunna, H., and Seneviratne, A.
(2015). A measurement study of tracking in paid mo-
bile applications. In WiSeC.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

672

SIMFORM (2015). How to avoid reverse engineering of
your android app? https://www.simform.com/how
-to-avoid-reverse-engineering-of-your-android-app/.

Smahel, D., Elavsky, S., and Machackova, H. (2019). Func-
tions of mhealth applications: A user’s perspective.
Health informatics journal, 25(3):1065–1075.

SSL (2020). Why you need code signing certificate
for your android app? https://aboutssl.org/why
-you-need-code-signing-certificate-for-android-app/.

Trifan, A., Oliveira, M., and Oliveira, J. L. (2019). Pas-
sive sensing of health outcomes through smartphones:
Systematic review of current solutions and possible
limitations. JMIR mHealth and uHealth.

VirusTotal (2020). Multitude anti-virus engines. https://
www.virustotal.com/gui/home/upload.

Empirical Security and Privacy Analysis of Mobile Symptom Checking Apps on Google Play

673

