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Abstract: Proof-of-Work (PoW) is one of the fundamental and widely-used consensus algorithms in blockchains. In
PoW, nodes compete to receive the mining reward by trying to be the first to solve a puzzle. Despite its fairness
and wide-availability, traditional PoW incurs extreme computational and energy waste over the blockchain.
This waste is considered to be one of the biggest problems in PoW-based blockchains and cryptocurrencies.
In this work, we propose a new useful PoW called Proof-of-Useful-Randomness (PoUR) that mitigates the
energy waste by incorporating pre-computed (disclosable) randomness into the PoW. The key idea is to inject
special randomness into puzzles via algebraic commitments that can be stored and later disclosed. Unlike the
traditional wasteful PoWs, our approach enables pre-computed commitments to be utilized by a vast array of
public-key cryptography methods that require offline-online processing (e.g., digital signature, key exchange,
zero-knowledge protocol). Moreover, our PoW preserves the desirable properties of the traditional PoW and
therefore does not require a substantial alteration in the underlying protocol. We showed the security of our
PoW, and then fully implemented it to validate its significant energy-saving capabilities.

1 INTRODUCTION

The Proof-of-Work (PoW) algorithm provides a
means of consensus in blockchains and therefore
plays a central role in various blockchain applications.
The traditional PoW puzzle has been shown to be fair
and is widely adopted in practice. Specifically, a tradi-
tional PoW (at minimum) satisfies the following prop-
erties: (i) Hardness: Each attempt to solve the PoW
puzzle should succeed in a similar probability. This
gives incentives to invest in computational resources
because the puzzle rate (i.e., the hashing effort) grows
linearly with the possibility of finding a solution. (ii)
Efficiency: A puzzle must have a solution, and should
be generated/verified in polynomial time. (iii) Com-
pleteness: Only a valid puzzle solution should be ac-
cepted by the verifier (Ball et al., 2018).

The traditional PoW accounts for about 90% of
the total market in digital cryptocurrencies (Gervais
et al., 2016), as well as dominating the blockchain-
based applications. However, despite its merits and
wide-use in practice, the traditional PoW also has
been shown to be extremely energy costly. For in-
stance, Bitcoin was measured to have consumed 39
TWh of electricity in 2018 which at the time was

more than the electricty consumption of Qatar and
Bulgaria (Bahri and Girdzijauskas, 2018). A big
chunk of these electricity consumption are due to the
computational wastefulness of traditional PoW algo-
rithms. This severe energy waste is considered as one
of the biggest disadvantage of traditional PoW (Ger-
vais et al., 2016). Various alternative consensus al-
gorithms have been developed to reduce the energy
waste in blockchains. Below, we first outline some
of the prominent approaches related to our work, and
then elaborate our contributions in this paper.

2 RELATED WORK

The existing PoW algorithms can be classified into
three groups: (i) Traditional Proof-of-Work, (ii)
Proof-of-Non-Wasteful-Work, (iii) Proof-of-Useful-
Work.
• Traditional Proof-of-Work. The most common

example for such consensus algorithms is the hash-
based Bitcoin PoW algorithm. These type of algo-
rithms are based on the fact that the hash function
output is pseudorandom. The puzzle is constructed
in a way that, every miner in the network tries to cou-
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ple an arbitrary nonce with the block content whose
hash will be satisfying the puzzle (Meng et al., 2018).
The more computational power a miner has, the more
nonce values they can try which can potentially end
up satisfying the requirements of the puzzle. We take
the Bitcoin PoW algorithm as a starting point and
thus, will elaborate on this idea further in the pro-
posed PoW algorithm section.
Note. There are other variants of PoW algorithm such
as Number Theoretic PoW which is used in popu-
lar cryptocurrencies such as PrimeCoin (King, 2013).
Another important variants are linear algebra based
(e.g. (Ball et al., 2017)) or graph theoretic ones (e.g.
(Tromp, 2015)). However, the focus of this paper is
going to be a hash-based approach for two reasons:
(i) our construction is on top of the traditional hash-
based Bitcoin PoW, (ii) the hash-based PoW domi-
nates the cryptocurrency market (Loe and Quaglia,
2018).
• Proof-of-Non-Wasteful-Work. A proof-of-non-

wasteful-work, is an algorithm that does not consume
computational resources for establishing consensus.
One good example is the the proof-of-stake (PoS) al-
gorithm. In this algorithm, the nodes deposit certain
amount of financial resources as stakes. The node
that will add a new block to the blockchain is cho-
sen with a probability that is linear to the stake they
deposit. PoS is a clever attempt to solve the electric-
ity/computation waste problem. An instantiation of
the PoS puzzle idea can be found in (Bentov et al.,
2016). PoS has also been partially used in other novel
PoW schemes (e.g. (Bentov et al., 2014)). Further-
more, Krol et. al. proposed Proof-of-Prestige (PoP)
which is built on top of PoS. In PoP, the users earn
prestige via performing useful work which in turn in-
creases their chances of obtaining the mining reward
(Król et al., 2019).

However, PoS is not perfect due to its innate
foundational differences (i.e. incentivizing the miner
via stakes instead of compuatation power) compared
to PoW. This is a problem because many popular
blockchains (e.g. Bitcoin) use the wasteful PoW as
the consensus algorithm (Nakamoto, 2009). There-
fore, a big algorithmic jump from PoW to a com-
pletely different consensus algorithm (PoS) would re-
quire costly development efforts. Furthermore, coin
holders in the network would need to be convinced to
participate in a whole different consensus algorithm
which could be problematic (Kiayias et al., 2017).
Another fundamental difference between traditional
PoW algorithms and the PoS algorithm is the source
of pseudorandomness. In a desirable PoW algorithm,
the pseudorandomness should be external. In other
words, finding the solution to the PoW puzzle should

have no relation with the cryptocurrency itself but
should be a process that is dependent on external fac-
tors such as hash output. In the PoS algorithm, the
pseudorandomness is internal (Brown-Cohen et al.,
2019).

The PoS variants also suffer from the "nothing
at stake" problem. In PoS, validators can maximize
their earning by joining various forks (and generat-
ing clashing blocks) without taking on extra risk for
losing the stake (Li et al., 2017). Some important ap-
proaches to mitigate this problem can be found in (Ki-
ayias et al., 2017). Another concern with PoS is the
security impact of stale blocks as described in (Ger-
vais et al., 2016). GHOST protocol works to solve
this problem (Gervais et al., 2016).

Another good example is the Intel’s proof-of-
elapsed-time (PoET) which is based on time instead
of execution power. The first node to finish waiting
gets the mining reward (Chen et al., 2017). This al-
gorithm is a good candidate to solve the PoW elec-
tricity consumption problem, but it does not incen-
tivize nodes and has a considerable deployment cost
on PoW dominated blockchains.
• Proof-of-Useful-Work (PoUW). This type of al-

gorithms produce a useful component during consen-
sus. One good example is from Ball et. al. who pro-
posed a PoUW that helps tackle computational prob-
lems (3SUM, Orthagonal Vectors etc.) while solv-
ing the PoW puzzle (Ball et al., 2017). Another good
approach is by (Loe and Quaglia, 2018) who gener-
ated an instance of the Travelling-Salesman problem
which is known to be NP-Hard during the PoW con-
sensus. There are other notable approaches such as
Hastings et. al., who proposed a PoUW algorithm
that computes the discrete logarithm of a cyclic group
during consensus (Hastings et al., 2019) or by Lihu et.
al. who incorporates ML training into puzzle solving
(Lihu et al., 2020) to save energy.

To sum up, the traditional (wasteful) PoW is still
the most widely adopted consensus algorithm despite
its wastefulness. Therefore, we need a new useful
PoW algorithm that stays in the realm of traditional
PoW consensus but also mitigates its energy waste
problem (Nakamoto, 2009).

3 OUR CONTRIBUTION

In this work, to the best of our knowledge,
we proposed the first PoUW that creates useful-
randomnesses, which not only substantially reduces
the energy waste, but also preserves the main PoW
architecture, thereby avoid the hurdles of heavy
transition costs of alternative consensus algorithms.

Proof-of-Useful-Randomness: Mitigating the Energy Waste in Blockchain Proof-of-Work

413



We name our scheme as proof-of-useful-randomness
(PoUR).

Main Idea. In the traditional PoW, one-time ran-
domnesses (nonces) are used as a solution to the puz-
zle. However, this is expensive and wasteful, as gen-
erating a bitcoin block takes on average 232 attempts
(O’Dwyer and Malone, 2014), and mostly impor-
tantly, those nonces are just discarded (wasted). Our
key observation is that the wasted randomness gen-
eration in PoW can be turned into an opportunity, if
one can produce (special) useful randomness that can
be harnessed by the cryptographic algorithms. Our
PoUR algorithm randomly generates (one-way) al-
gebraic commitments that not only serve as the ran-
domness source for PoW but also can be integrated
into a vast range of public key cryptographic prim-
itives. We call these useful randonmness as Pre-
computed Algebraic Commitments (PAC), which can
be integrated into various cryptographic schemes in
offline-online settings (e.g., digital signatures, key ex-
change). We further elaborate the desirable properties
of our scheme as follows:

• Energy-Saving and Efficient Consensus. PoUR
saves considerable energy by creating useful-
randomnesses that can be used by various crypto-
graphic operations as needed. For example, after
230 puzzle-solving attempts, PoUR saves around
2.18 · 105 J worth of energy in elliptic-curve set-
tings. This energy-saving process does not come
with the cost of any additional efficiency overhead
to the protocol since the target value of the puz-
zle could be adjusted to accommodate the desired
hardness (i.e. the necessary number of attempts to
solve the puzzle on average).

• Security and Open-Source Implementation. We
present a security discussion for PoUR and pro-
vide the implementation of our proposed scheme
on commodity hardware. We will open-source our
implementation.

• Potential Use-cases. PoUR is applicable to a
wide-array of cryptographic schemes that admit
an offline-online phase, in which PACs can be
generated via PoUR and then later consumed by
cryptographic scheme. Some example crypto-
graphic schemes that receive benefit from PoUR
includes ,but not limited to digital signatures, key-
exchange, public-key encryption, zero-knowledge
proofs, random beacons and their quantum-safe
variants. We have shown two specific PoUR in-
stantiations with elliptic-curve and lattice based
digital signatures.

• Ease-of-Integration. PoUR algorithm requires

minimal alteration to the existing and traditional
PoW algorithms in popular platforms such as Bit-
coin. We save commitments during consensus
without impacting the other parts of the system.

4 PRELIMINARIES

We now present the prelimineries of our scheme.

Definition 1. An Algebraic One-way function AOWF
consist of two algorithms Gen,F(Catalano et al.,
2013):

1. K ← Gen(1κ). Given the security parameter κ,
Gen(1κ) outputs a key K. The key K determines
the order of the groups AK and BK for F.

2. FK : AK → BK . For input a ∈ AK , there is an
output b ∈ BK such that b = FK(a) is computed
in polynomial-time. However, given b, it should
be infeasible for a probabilistic polynomial-time
(PPT) adversary A to come up with a function F ′

such that Pr[F ′(a′) = b] ≥ ε.
3. ∀ κ ∈ N, K← Gen(1κ) such that K constitutes an

order for AK and BK in FK : AK → BK .
4. We Can Perform Efficient Group Operations.

F(AK)
⊕

F(BK) = F(AK
⊕

BK) where
⊕

is an
operator over the ring R.

AOWF is popular in many cryptographic domains
such as ECDLP, DLP and Post-Quantum Cryptogra-
phy. We leverage them in PoUR for energy saving
purposes.

One of the most popular AOWF is the hash func-
tion H. A hash function is a one-way function takes
in an arbitary length input and produces a fixed out-
put. We leveraged SHA-256 in our constructions as
an AOWF. Bitcoin also leverages the SHA-256 hash
function durining consensus (Nakamoto, 2009).

Definition 2. Given an elliptic curve E(Fq) over a
finite field Fq, ECDLP asks to find a value k ∈ Zq
such that P2 = k · P1 where P1,P2 are points on E(Fq)
(Behnia et al., 2019).

Definition 3. Short Integer Solution Problem (SIS).
Given a collection of n-dimensional modulo q (prime
number) vectors ṽ1, . . . , ṽm ∈ Zn

q, the SIS problem
asks to find a collection of non-trivial s1, . . . ,sm ∈
{−1,0,1} such that s1 · ṽ1 + . . . + sm · ṽm = ṽ0 ∈
Zn

q where ṽ0 is an n-dimensional vector that contains
all zeros (Peikert, 2016).

Definition 4. Learning with Errors Problem (LWE).
Given dimension n, modulo q, an error distribution e
such that

√
n ≤ e ≤ q, and b ∈ Zq, the LWE problem

asks to find a secret s ∈ Zn
q, such that b = 〈s,a〉 + e ∈

Zq where a ∈ Zn
q and 〈s,a〉 denotes the inner-product
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between s and a. The decision version of the same
problem asks to distinguish a collection of pairs from
truly random pairs (Peikert, 2016).

Definition 5. Cryptographic Pseudorandom Num-
ber Generators (CPRNG). A CPRNG, G is a deter-
ministic algorithm that takes a uniform input seed and
produces a pseudorandom output. Given a short uni-
form seed s, G is a CPRNG satisfies the following
properties:
• ∀s, L(G(s)) > L(s) where L is gives the string
length.
• |Pr[T (G(s)) = 1] - Pr[T [(r) = 1]]| ≤ ε where ε is a
negligible value, T is an efficient statistical random-
ness test (distinguisher), and r ∈ {0,1}L(G(s)) (Katz
and Lindell, 2014).

Definition 6. Pre-computed Algebraic Commit-
ments (PAC). PACs are expensive cryptographic to-
kens created in the offline phase and directly used in
the online phase for computational saving. Creation
of a PAC consists of three steps:

1. ri
$←D for all i = 1 to K where ri is selected from

is selected from a specified distribution D which
is random-uniform.

2. Ri ← AOWF(ri) for all i = 1 to K (All Ri are dis-
closable randomnesses)

3. U←U ∪{(ri,Ri)} for all i = 1 to K where U is
a set that stores the commitments.

Definition 7. A PoW scheme has three algorithms
(Ball et al., 2018):

• c← Gen(1κ): Generates the challange c given the
security parameter κ.

• π ← Solve(c) : Satisfies the requirements of the
challenge c and generates the proof π.

• {0,1} ← Ver(c, π): Verifies that the proof π satis-
fies the requirements of the challenge c.

Miners try to solve the puzzle by finding a nonce v
such that H(BC || v) < T (target value) where || denotes
concatenation and BC denotes the block content. The
first miner with such a nonce keeps the reward.

5 PROPOSED PROOF-OF-WORK
ALGORITHM

The classical PoW compares the target value with
H(BC || v) (v is the nonce). If the comparison fails,
PoW increases the nonce by one and compares the
hash output against the target value. The idea in tradi-
tional Bitcoin PoW is that the miners try out different
nonces for which when appended with the block con-
tent, will result in a hash output that is smaller than

the target. In PoUR we replace the duty of nonces
with disclosable PACs and store them for energy-
saving. Storing PACs is essential for our scheme be-
cause the usage of PACs are common in blockchain-
based public-key infrastructure where offline-online
cryptography is leveraged. Furtermore, in our PAC
creation we leverage BR. This prevents miners to pre-
create and use these PACs prior to mining.
PoUR Energy Saving. PACs are computationally ex-
pensive to create and are neccessary in cryptographic
operations. Our PoUR construction pre-computes
PACs during consensus and stores them. The stored
PACs results in energy-efficiency because instead of
creating them in future cryptographic methods, we
fetch the stored ones.
Generic PoUR Algorithm. We now present the
generic construction of our PoUR algorithm. We use
this construction as a starting point to show the us-
age of PoUR in other cryptographic settings such as
offline-online cryptographic settings as well as instan-
tiations in elliptic-curve and post-quantum settings.
We note that −→m : (m1, . . .mn) means a vector of mes-
sages. {0,1}∗ denotes a string with arbitrary length
and BR denotes the block randomness.

Algorithm 1: Generic Constructions of PoUR.

c← PoUR.Gen(1κ) :
1: Target value T is determined
2: Let (BC, BR) ∈ {0,1}∗
3: return c = (BC,T,BR)

π← PoUR.Solve(c = (BC,T,BR)):
1: i = 0
2: do
3: si

$←D
4: ri← G(si || BR)
5: Ri ← AOWF(ri)
6: U←U∪{(ri,Ri)}
7: i = i+1
8: while H(BC || Ri)≥ T
9: return π = (si−1,Ri−1)

Note. We disclose only a single PAC out of the
232 (on average) PACs we save. Therefore, our
232 (on average) -1 PACs are processable and we
save the energy that would have been needed to
create the commitments.

{0,1} ← PoUR.Ver(c = (BC,T,BR),π = (s,R)):
1: r′← AOWF(G(s || BR))
2: if AOWF(r′) = R & G(BC || R) < T then
3: return 1
4: return 0
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In our PoUR.Solve method, we store the PACs.
These pre-computed PACs could later be utilized in
many cryptographic methods instead of creating them
from stratch (which results in energy efficiency). In
the subsequent sections, we show how we leverage
PoUR in cryptographic applications.
Usage in Offline-Online Cryptography. In
blockchains with public-key infrastructure, online
stage execution time is crucial. Thus, we store the
pre-computed and compuationally expensive alge-
braic commitments in U during the offline-phase for
faster execution in the online phase. CryptOp.process
is a function for cryptographic operations like encryp-
tion, signing etc. whereas CryptOp.verify refers to its
verification.

Algorithm 2: Offline-Online Settings with PoUR.

U← PoUR.Offline(1κ)

1: c← PoUR.Gen(1κ)
2: π← PoUR.Solve(c) //PACs are in U
3: if PoUR.Verify(c, π) = 0 then
4: Go Back to Step 1

(F ,R )← PoUR.Online(−→m , U)

1: for i = 1 to n do
2: (ri,Ri)← Pick and remove from U
3: R ← R ∪{(Ri)}
4: F ← F ∪CryptOp.process(ri, Ri, mi)

return (F , R )

{0,1}← PoUR.Verify(−→m ,F ,R )

1: Let F : ( f1, .., fn)
2: Let R : (R1, ..,Rn)
3: −→m = (m1, ..,mn)
4: for i = 1 to n do
5: fi ← Pick from F
6: Ri ← Pick from R
7: if CryptOp.verify(Ri, fi, mi) = 0 then
8: return 0
9: return 1

5.1 Generic Constructions of PoUR

We now describe our elliptic-curve and lattice instan-
tiations with PoUR. The core idea is to generate com-
mitments during consensus and use them in crypto-
graphic operations later. If it were not for the PoUR,
these commitments would need to be created from
scratch which would be computationally costly.
Note. The type of commitments that are saved in
PoUR.Solve is dependent on the underlying crypto-
graphic instantiation.

PoUR Construction in Elliptic Curves. We now
show how PoUR uses PACs and saves energy
in ECDLP settings. We chose SchnorrQ signa-
tures (Schnorr, 1991) but any digital signature with
special features (e.g., forward-security, aggregation
(e.g. (Seyitoglu et al., 2020)) would benefit from
PoUR. We denote (k, K) as a public, private key pair.
The key generation, signature generation and verifi-
cation functions are denoted by Kg,Sig,Ver respec-
tively. Rx is the x-coordinate of R. P is the elliptic
curve generator.

Algorithm 3: PoUR Construction in Elliptic-Curves and its
usage in SchnorrQ Signature.

c← PoUR.Gen(1κ) :
1: Target value T is determined
2: Let (BC, BR) ∈ {0,1}∗
3: return c = (BC,T,BR)

π← PoUR.Solve(c = (BC,T,BR)):
1: i = 0
2: do
3: si

$← Z∗q
4: ri← H(si || BR)
5: Ri ← ri ·P //P: Elliptic Curve Generator
6: U←U∪{(ri,Ri)}
7: i = i+1
8: while H(BC || Ri)≥ T
9: return π = (si−1,Ri−1)

(0,1)← PoUR.Ver(c = (BC,T,BR),π = (s,R)):
1: t ← H(s || BR)
2: if P · t = R & H(BC || R))< T then
3: return 1
4: return 0

(k,K)← SchnorrQ.Kg(1κ):

1: (k,K)← Pick and remove from U
2: return (k,K)

σ← SchnorrQ.Sig(k,M):

1: (r,R)← Pick and remove from U
2: e← H(M || Rx) //Rx: x coordinate of the point R
3: s← r− e · k
4: return σ = (s,e)

{0,1}← SchnorrQ.Ver(K,M,σ = (s,e)):

1: R′← K · e + P · s
2: if e = H(M || R′x) then
3: return 1
4: else return 0
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PoUR Construction in Lattices. PoUR can be useful
in Lattices. ϕ is the coefficient threshold. Rl

q is a vec-
tor with l elements. Rm×l

q is a matrix with dimensions
m× l. Sl

ϕ ∈ Rl
q and G is the generator in Rm×l

q . We
use the sampling in lattices Samp() to incorporate the
BR in our secret. β is the maximum coefficient. High
and Low refer to high and low bits due to signature
compression in Dilithium (Ducas et al., 2018). ||z|| is
the norm operation on z. ∞ is the norm infinity.

Algorithm 4: PoUR Construction in Lattices and its usage
in Dilithium Signature (Ducas et al., 2018).

c← PoUR.Gen(1κ) :
1: Target value T is determined
2: Let (BC, BR) ∈ {0,1}∗
3: return c = (BC,T,BR)

π← PoUR.Solve(c = (BC,T,BR):
1: i = 0
2: do
3: si

$← Sl
ϕ, ri← Samp(si,BR), Ri ← G · ri

4: ei
$← Sl

ϕ, U←U∪ (ri,ei), i = i+1
5: while H(BC || Ri−1)≥ T
6: return π = (si−1,Ri−1)

(0,1)← PoUR.Ver(c = (BC,T,BR),π = (s,R)):
1: x← Samp(s,BR)
2: return G ·x = R & H(BC || R))< T

(k,K)← Dilithium.Kg()

1: (r,e)← Pick and remove from U
2: t = G · r + e
3: return (k = (r,e,G, t), K = (G, t))

σ← Dilithium.Sig(k,M)

1: do
2: (r,e)← pick from U
3: w←G · r, c← H(High(w) || M)
4: z← y + c · r
5: b1← ||z||∞ ≥ ϕ1−β

6: b2← ||Low(w− c · e),M)||∞ ≥ ϕ2−β

7: while b1 or b2
8: return σ← (z,c)

(0,1)← Dilithium.Ver(K, M,σ)

1: a← H(High(G · z - c · t) || M)
2: b1 ← ||z||∞ < ϕ1−β, b2 ← H(M || a) = c
3: if b1 & b2 then
4: return 1
5: else return 0

5.2 Security Analysis of PoUR

We base our security claim on the fact that the disclos-
able commitments we save in PoUR operates identi-
cal as the nonce in the original hash-based PoW. The
difference between the traditional hash-based PoW
and our PoUR is that we replace the nonce in tradi-
tional hash-based PoW algorithm with the disclosable
PAC component in our construction.

The secret component of PACs in PoUR is
selected from a uniformly distributed set of numbers.
Furthermore, the disclosable commitment portion is
created as a AOWF of the secret. Thus, the discloable
PAC component operates identical as the traditional
nonce since the probability of selecting the same
disclosable secret component is neglible by κ. Fur-
thermore, we assume a collusion-free AOWF. The
collusion-freeness property is preserved in Schnorr
(Schnorr, 1991) variants or discrete log based prob-
lems. Even if the AOWF is not collusion-free, PoUR
still preserve its security but can potentially cause a
slight (negligible) performance drawback.

Remark. The security of SchnorrQ (Schnorr, 1991),
Dilithium (Ducas et al., 2018), and, CryptoOp are
presevered when instantiated with PoUR since the
corresponding commitments (which are located in U)
with PoUR are identical to the original corresponding
commitments.

Therefore, since our disclosable commitment
component operates identical as the original nonce in
the traditional consensus, PoUR is as secure as the
traditional Bitcoin PoW.

5.3 Alternative Constructions of PoUR

We now discuss alternative constructions of PoUR.
Key-exchange. PACs created during PoUR can be
used as session keys during key-exchanges.
Signcryption. PACs created during PoUR can be
used in signcryption when the public-keys are known
prior to mining.
Zero-knowledge Proofs. PoUR provides support for
creating PACs for zero-knowledge proof construc-
tions such as (Biasse et al., ) the same way it provides
support with digital signatures.
Cryptographic Beacons. We could store the random
beacon outputs during consensus with PoUR (Bünz
et al., 2017).

Remark. Due to the generation of PACs, a single
iteration in PoUR can take more time than a single it-
eration in a traditional PoW. However, this does not
result in a loss in performance because it is possible
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to adjust the target value of the puzzle and use PoUR
instead of PoW so that we do not give up on the hard-
ness of the puzzle and also leverage a useful PoW.

6 PERFORMANCE ANALYSIS

We now present our evaluation metrics and experi-
mental setup.

6.1 Evaluation Metrics and
Experimental Setup

Hardware. We fully-implemented the PoUR on com-
modity hardware with an Intel i7-8750H 2.20 GHz
processor on a 32GB of RAM.
Implementation. Our implementation is based on the
Bitcoin infrastructure (Nakamoto, 2009). We replace
the classical hash-based Bitcoin1 PoW with PoUR.
This allows for the creation of commitments during
consensus to be used at a later time and thus, prevents
energy and execution-time waste.

www.github.com/efeseyitoglu/PoUR

Open-source Tools. We executed the open-source
code of Dilithium2 (Ducas et al., 2018) for generating
post-quantum commitments. For elliptic-curve com-
mitment savings, we measured SchnorrQ (Schnorr,
1991) implementation of the FourQlib library 3.
We chose Dilitium (Ducas et al., 2018) and
SchnorrQ (Schnorr, 1991) due to their popularity and
leveraged the FourQlibrary because it is a fast ellip-
tic curve library. We obtained the energy savings
and power consumption by executing Intel’s power-
top tool4.
Performance. We calculate the performance effi-
ciency in terms of execution and energy savings we
acquire via PACs. Considering that a traditional com-
mitment pair (e.g. (Schnorr, 1991)) would require
around 32KB of storage, this is a small price to pay
considering our efficiency results.
Methodology. Since it would be difficult to create
large number of commitments (e.g. 245), we mea-
sured the execution time and power requirements for
generating 25,210,215 commitments and extrapolated
with Matlab for larger number of commitments 220,
225, 230, 235.

1https://github.com/bitcoin/bitcoin
2https://github.com/pq-crystals/dilithium
3https://github.com/Microsoft/FourQlib
4https://github.com/fenrus75/powertop

6.2 Performance Evaluation

We focused on the savings that PoUR enables on ex-
ecution time and energy consumption. J and W mean
Joule and Watt. Our experiments showed a linear re-
lation between the puzzle solving attempts and the en-
ergy/execution time savings.

Table 1: Experimental Results for Savings in Elliptic-Curve
and Post-Quantum Settings.

Puzzle
Solving

Attempts

Execution Time
Savings (ms)

Energy
Savings (J)

Power
Consumption

Rate (W = J/Sec)
Elliptic-Curve Commitments
25 0.306 0.0065
210 10.6 0.2248 21.2
215 314.74 6.6724
Post-Quantum Commitments
25 2.47 0.06
210 84.60 2.12 25.2
215 2596.295 65.85
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Figure 1: Execution Time (ms) and Energy (J) Savings for
Elliptic-Curve Commitments.
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Figure 2: Execution Time (ms) and Energy (J) Savings for
Post-Quantum Commitments.
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7 CONCLUSION

We propose PoUR: a PoW algorithm that requires
minial alteration to the existing hash-based consen-
sus. Our experiments showed that PoUR saves around
2 · 106 J in post-quantum and 2 · 105 J in elliptic-curve
settings. We fully-implemented PoUR to demonstrate
its’ energy-saving capabilities. We also algorithmi-
cally showed how the PACs we save with PoUR could
be used in a wide array of cryptographic schemes.
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