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Abstract: Machine Learning (ML) techniques are being intensively applied in educational settings. They are employed 
to predict competences and skills, grade exams, recognize behavioural academic patterns, evaluate open 
answers, suggest appropriate educational resources, and group or associate students with similar learning 
characteristics or academic interests. Knowledge Tracing (KT) allows modelling the learner's mastery of skill 
and to meaningfully predict student’s performance, as it tracks within the Learner Model (LM) the knowledge 
state of students based on observed outcomes from their previous educational practices, such as answers, 
grades and/or behaviours. In this study, we survey commonly used ML techniques for KT figuring in 51 
papers on the topic, out of an original search pool of 628 articles from 5 renowned academic sources, 
encompassing the latest research, based on the PRISMA method. We identify and review relevant aspects of 
ML for KT in LM that help paint a more accurate panorama on the topic and hence, contribute to alleviate the 
difficulty of choosing an appropriate ML technique for KT in LM. This work is dedicated to MOOC 
designers/providers, pedagogical engineers and researchers who need an overview of existing ML techniques 
for KT in LM.  

1 INTRODUCTION 

Evidence from several studies has long linked having 
a Learner Model (LM) can make a system more 
effective in helping students learn, and adaptive to 
learner’s differences (Corbett et al., 1995).  

LMs represent the system’s beliefs about the 
learner’s specific characteristics, relevant to the 
educational practice (Giannandrea & Sansoni, 2013), 
encoded using a specific set of dimensions (Nakić et 
al., 2015). Ultimately, a perfect LM would include all 
features of the user’s behaviour and knowledge that 
effect their learning and performance (Wenger, 
2014). Modelling the learner has the ultimate goal of 
allowing the adaptation and personalization of 
environments and learning activities (El Mawas et al., 
2019) while considering the unique and 
heterogeneous needs of learners. We acknowledge 
the difference between Learner Profile (LP) and LM 
in that the former can be considered an instantiation 
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of the latter in a given moment of time (Martins et al., 
2008).  

Knowledge Tracing (KT) models students’ 
knowledge as they correctly or incorrectly answer 
exercises (Swamy et al., 2018), or more generally, 
based on observed outcomes on their previous 
practices (Corbett & Anderson, 1994). KT is one out 
of three approaches for student performance 
prediction (Yudelson et al., 2013). In an Adaptive 
Educational System (AES), predicting students’ 
performance warrants for KT. This allows for 
learning programs recommendation and/or level-
appropriate, educational resources personalization, 
and immediate feedback. KT facilitates personalized 
guidance for students, focusing on strengthening their 
skills on unknown or less familiar concepts, hence 
assisting teachers in the teaching process (Juntao 
Zhang et al., 2020).  

Machine Learning (ML) is a branch (or subset) of 
Artificial Intelligence (AI) focused on building 
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applications that learn from data and improve their 
accuracy over time without being programmed to do 
so (IBM, 2020). To achieve this, ML algorithms build 
a model based on sample data (a.k.a. input data) 
known as ‘training data’. Once trained, this model can 
then be reused with other data to make predictions or 
decisions. 

ML techniques are currently applied to KT in vast 
and different forms. The goal of this literature review 
is to survey all available works in the field of 
“Machine Learning for Knowledge Tracing used in a 
Learner Model setup” in the last five years to identify 
the most employed ML techniques and their relevant 
aspects. This is, in general terms, what common ML 
techniques and their relevant aspects, designed to 
trace a learner’s mastery of knowledge, also account 
for the creation, storage, and update of a LM. 
Moreover, we aim to identify relevant ML aspects to 
consider insuring KT in a LM. The motivation behind 
this work is to present a comprehensive panorama on 
the topic of ML for KT in LM to our target public. To 
our knowledge, currently there is no research work 
that addresses the literature review of ML techniques 
for KT accounting for the LM. 

Thus, we decided to focus our literature review on 
the terms “machine learning”, “knowledge tracing” 
and “learner model”, a.k.a. “student model” (SM). 
Using the PRISMA method (Moher et al., 2009), we 
performed this research in the IEEE, Science Direct, 
Scopus, Springer, and Web of Science databases 
comprising the 2015-2020 period. The thought 
behind these choices is to obtain the most recent and 
high-quality corpus on the topic. 

This work differs from other literature reviews 
(Das & Behera, 2017; Olsson, 2009; Shin & Shim, 
2020) on two accounts. First, we focus exclusively on 
ML techniques for KT accounting for the LM. That 
is, we do not cover pure Data Mining (DM) 
techniques, nor AI intended for purposes other than 
KT, such as Natural Language Processing (NLP), 
gamification, computer vision, learning styles 
prediction, nor any processes that make pure use of 
LP data (instead of LM data), nor other User Model 
data, such as sociodemographic, biometrical, 
behavioural, or geographical data1. Second, we do not 
review nor compare the mathematical inner workings 
of ML techniques: we feel (a) the research field and 
the literature corpus found cover it extensively, and 
(b) our target public might be unable to exploit 
appropriately such complex form results. Instead, we 
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employed ML for KT (the core of this paper). 

shift the focus to a pragmatic report on ML for KT in 
a LM application and purpose(s). 

The remainder of this article is structured as 
follows. Section 2 of this paper oversees the 
theoretical framework concerning this paper, namely 
the definition of ML and its categorization. Section 3 
details the methodology steps taken. Section 4 
presents the findings of this research, Section 5 
discusses the results and, finally Section 6 concludes 
this paper and presents its perspectives. 

2 THEORETICAL 
BACKGROUND 

In this section we present the theoretical background 
put in motion behind this research, namely the 
definition of ML and how it is categorized. 

2.1 Machine Learning 

ML is a branch (or subset) of AI focused on building 
applications that learn from data and improve their 
accuracy over time without being programmed to do 
so (IBM, 2020). Additional research (Chakrabarti et 
al., 2006; Schmidhuber, 2015) to this definition 
allows us to present Figure 1 to illustrate and discern 
the situation of ML against other common terms used 
in the field. 

 
Figure 1: Situational context of ML. 

2.2 ML Methods / Styles / Scenarios 

Although some authors (Das & Behera, 2017; Mohri 
et al., 2018) admit several more ML methods (or 
styles or paradigms or scenarios), we retain the 
following categorization: Supervised ML, Semi 
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Supervised ML, Unsupervised ML, Reinforcement 
Learning, and Deep Learning (IBM, 2020). The first 
three differentiate each other on the labelling of the 
input training data while creating the model. The two 
latter constitute special cases altogether (Brownlee, 
2019; IBM, 2020; Mohri et al., 2018).  

First, in Supervised Learning (SL) labels are 
provided (metadata containing information that the 
model can use to determine how to classify it). 
However, properly labelled data is expensive 2  to 
prepare, and there is a risk of creating a model so tied 
to its training data that it cannot handle variations in 
new input data accurately (“overfitting”) (Brownlee, 
2019). 

Second, Unsupervised Learning (UL) must use 
algorithms to extract meaningful features to label, 
sort and classify its training data (which is unlabelled) 
without human intervention. As such, it is usually 
used to identify patterns and relationships (that a 
human can miss) than to automate decisions and 
predictions. Because of this, UL requires huge 
amounts of training data to create a useful model 
(Brownlee, 2019).  

Third, Semi Supervised Learning (SSL) is at the 
middle point of the two previous methods: it uses a 
smaller labelled dataset to extract features and guide 
the classification of a larger, unlabelled dataset. It is 
usually used when not enough labelled data is made 
available (or it is too expensive) to train a preferred, 
Supervised Model (van Engelen & Hoos, 2020). 

Fourth, Reinforcement Learning (RL) is a 
behavioural machine learning model akin to SL, but 
the algorithm is not trained using sample data but by 
using trial and error. A sequence of successful 
outcomes will be reinforced to develop the best 
recommendation or policy for a given problem. RL 
models can also be deep learning models (IBM, 
2020). 

Lastly, Deep Learning (DL) is a subset of ML 
(all DL is ML, but not all ML is DL). DL algorithms 
define an artificial neural network3 that is designed to 
learn the way the human brain learns. DL models 
require a large amount of data to pass through 
multiple layers of calculations, applying weights and 
biases in each successive layer to continually adjust 
and improve the outcomes. DL models are typically 
unsupervised or semi-supervised (IBM, 2020). For 
clarity reasons, the figure illustrating this ML 
categorization is available in the Appendix.  

                                                                                                 
2 Mostly in terms of computational resource allocation. 

In this subsection we covered the ML definition 
and a categorization of ML techniques. In the 
following subsection we deepen into the relevant 
aspects in ML for KT in LM. 

2.3 ML for KT in LM 

An overwhelming number of ML techniques have 
been designed and introduced over the years (Das & 
Behera, 2017). They usually rely on more common 
ML techniques, within optimized pipelines. As such, 
we identify the ML techniques (or algorithms) upon 
which any new research is based.  

Additionally to performing KT in LM, 
researchers have acknowledged that ML techniques 
can reliably determine the initial parameters when 
instantiating a LM (Eagle et al., 2016; Millán et al., 
2015). This led us to consider this purpose when 
reviewing ML techniques. Different ML techniques 
are applied at different stages of the ML pipeline, and 
not all stages are responsible for KT (other 
applications can be NLP, computer vision, automatic 
grading, demographic student clustering, mood 
detection, etc.) We differentiate purposes related to 
KT and/or learner modelling, specifically if the ML 
technique is used for (1) either grade, skills, or 
knowledge prediction (and hence later, clustering, 
personalizing, or suggesting resources), (2) either for 
LM creation (or instantiation), or (3) both. 

Studies highlight the importance of justifying the 
rationale when choosing a ML technique (Chicco, 
2017; Wen et al., 2012; Winkler-Schwartz et al., 
2019). We note such rationale, when made explicit, 
and contrast it to other authors’ rationale for 
commonalities, on the same technique. This allows us 
to present and weigh known, favourable, and 
unfavourable features specific to ML techniques 
applied to KT accounting for the LM. 

Research studies stress the ultimate importance of 
the input data (dataset) and the effects of the chosen 
programming language software employed for ML  
(Chicco, 2017; Domingos, 2012). Indeed, ML 
techniques require input data for creating a model. 
The feature engineering of this input data (dataset) 
might be determinant for a ML project to succeed or 
fail (Chicco, 2017). We compile and verify the 
availability of all public datasets presented in the 
reviewed articles. Furthermore, the choice of the 
programming language for ML plays a role in 
collaboration, licensing, and decision-making 

3  A quite complete and updated chart of many neural 
networks was made available by (van Veen & Leijnen, 
2019). 
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processes: it helps to determine the most appropriate 
choices for ML implementation (purchasing licences, 
upgrading hardware, hiring a specialist, or 
considering self-training). Hence, we highlight the 
family of ML programming languages used by 
researchers on their proposals.  

Thus, based on this state-of-the-art, we identify 
relevant aspects to consider in ML for KT in LM: the 
ML technique employed, its purpose, the 
contextual, known rationale for choosing it, the 
programming language software used for ML, and 
the dataset(s) employed for KT. We consider that 
these aspects are relevant for our target public when 
choosing a ML technique for KT in LM.  

3 REVIEW METHODOLOGY 

This review of literature follows the PRISMA (Moher 
et al., 2009) methodology, comprising: Rationale, 
Objectives & Research questions, Eligibility criteria, 
Information sources & Search strategy, Screening 
process & Study selection, and Data collection & 
Features. 

3.1 Rationale, Objectives & Research 
Questions 

The goal of this literature review is to present a 
comprehensive panorama on the topic of ML for KT 
in LM. This is, in general terms, what ML techniques 
designed to trace a learner’s mastery of skill also 
account for the creation, storage, and update of the 
LM.  

This article aims thus to answer the following two 
research questions (RQ): 

• RQ1: What are the most employed ML 
techniques for KT in LM? 

• RQ2: How do the most employed ML techniques 
fulfil the considered relevant aspects (identified 
in section 2.1.2) to insure KT in LM? 

3.2 Eligibility Criteria, Information 
Sources & Search Strategy 

In this section we describe the inclusion and 
exclusion criteria used to constitute the corpus of 
publications for our analysis. We also detail and 
justify our choice of in-scope publications, the search 
terms, and the identified databases. 

In this research, we focus on recent ML 
techniques (and/or algorithms) that explicitly “learn” 

(with minimal or no human intervention) from its data 
input to perform KT, while accounting for the LM. 
Thus, we do not cover all predictive statistical 
methods (as they are not all ML), nor pure DM 
techniques, nor AI intended for purposes other than 
KT (such as NLP, gamification, computer vision, 
learning styles prediction, etc.), nor any processes 
that make pure use of LP data (instead of LM data), 
nor other User Model data, such as 
sociodemographic, biometrical, behavioural, or 
geographical data. 

On one hand, our Inclusion criterion are: Works 
that present a ML technique for KT while accounting 
for the LM, in the terms presented in the previous 
paragraph. On the other hand, our chosen Exclusion 
criterion consist of: Works written not in English, 
under embargo, not published or in the works. We 
choose to keep subsequent works on the same subject 
from the same research team because they represent a 
consolidation of the techniques employed. 

We performed this research at the end of October 
2020 in the following scientific databases: IEEE, 
Science Direct, Scopus, Springer, and Web of 
Science, comprising 2015-2020. The thought behind 
these two choices is to have the most recent and 
quality-proven scientific works on the subject. Our 
general search terms were (("learner model" OR 
"student model" OR "knowledge tracing") 

AND "machine learning"), declined for the 
specificities of each scientific database (search 
engines parse and return verbal, noun, plural, and 
continuous forms of search terms). We used their 
‘Advanced search’ function, or we queried them 
directly, if they allowed it. Some direct queries did 
not allow for year filtering, so we applied it manually 
on the results page. For accessibility reasons, we 
explicitly selected “Subscribed content” results for 
the scientific databases supporting it. 

3.3 Screening Process & Study 
Selection 

The paper selection process happened as follows: 
First, we gathered all the results in two known 
Citation Manager programs to benefit from the 
automatic metadata extraction, the report creation, 
and duplicate merging. We also used a spreadsheet to 
record, based on section 2.1.2, the following 
information: doi, title, year, purpose, 
ml_method, method_rationale, software, 

data_source, and observations. Second, we 
screened the abstracts of all 708 results: three 
categories appeared: obvious Out-of-scope results, 
clear Eligible results, and Pending (verification 
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needed) results. Third, using the institutional 
authentication, we downloaded all the papers in the 
Eligible and Pending categories. Fourth, we read the 
full papers in the Eligible and Pending categories and 
re-classified them as Eligible or Out-of-scope, as 
needed. 

We used the papers’ titles and keywords metadata 
fields to discern if they satisfy the inclusion criteria, 
when the abstract was ambiguous. We highlighted the 
text in the abstract that made it Eligible. We 
registered the reason(s) for rejection NO_ML: no ML 
is involved but instead other prediction or classifying 
mechanism, NO_KT: ML is not used for KT, and 
NO_LM: no LM/SM accountability. 

Figure 2 presents a PRISMA flow diagram of the 
process presented in this section. From a total of 708 
results from the five academic search engines, 628 
articles were collected (i.e., duplicates removed) and 
their abstracts read: 134 publications were thus 
categorized either Eligible or Pending; 494 
publications were excluded. After full text read, 83 
publications were again removed as they were out of 
scope, leading to a core of 51 papers. 

 
Figure 2: PRISMA Flow diagram of the publication 
screening process. 

                                                                                                 
4 With more than five applications in the last five years. 

3.4 Data Collection & Features 

In this section we review the relevant features of 
interest described in subsection 2.1.2 found in the 
reviewed literature. 

During the full text read, we extracted the 
following information from the selected papers: (1) 
ML technique employed; (2) purpose of the ML 
technique; (3) rationale for employing that specific 
ML technique; (4) software employed for ML; and 
(5) dataset employed for KT, if any. 

We note here that rarely a single, known 
technique ML is employed, but it is rather 
implemented in a pipeline, connected with another 
secondary ML (probabilistical, or DM) techniques. In 
such cases, we focused on the technique(s) employed 
for KT and on the reasons given for choosing it over 
other techniques acknowledged by the authors.  

We surveyed the software used to perform the 
calculation of ML and we grouped them by 
programming language, which is a rather meaningful 
description, compared to combinations of libraries 
and platforms. We think this result shows a clear 
tendency on the necessary requirements to implement 
and perform ML for KT in LM.  

We surveyed all datasets presented in the 51 
reviewed papers and checked for their existence. We 
understand that our target public may not have data 
made available to perform ML for KT accounting for 
the LM and we feel that this resource may be 
invaluable when evaluating their results. 

In this section we presented our literature review 
methodology, the considered features, and the train of 
thought behind them. The following section details 
our literature review results. 

4 RESULTS 

We aggregated the data collected (described in the 
previous section) to make it easier to digest.  

First, we quickly present the seven most 
employed4 ML techniques for KT in LM found in the 
reviewed publications. These comprise based-upon 
techniques for the paper proposal, techniques used as 
baselines, and techniques used for comparison. 

Bayesian Knowledge Tracing (BKT) (Corbett 
& Anderson, 1994) is the most classical method used 
to trace students’ knowledge states.  

Deep Knowledge Tracing (DKT) was proposed 
by (Piech et al., 2015) to trace students’ knowledge 
using Recurrent Neural Networks (RNNs), achieving 
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great improvement on the prediction accuracy of 
students’ performance. 

Long Short-Term (LSTM) is a special type of 
RNN, effective in capturing underlying temporal 
structures in time series data and long-term 
dependencies more effectively than conventional 
RNN (Mao et al., 2018). 

Bayesian Networks (BN) are graphical models 
designed to explicitly represent conditional 
independence among random variables of interest and 
exploit this information to reduce the complexity of 
probabilistic inference (Pearl, 1988). They are a 
formalism for reasoning under uncertainty that has 
been widely adopted in AI (Conati, 2010). 

Support Vector Machines (SVM) are one of the 
most robust prediction methods, based on statistical 
learning frameworks (Vapnik, 1998). The primary 
aim of this technique is to map nonlinear separable 
samples onto another higher dimensional space by 
using different types of kernel functions (Hämäläinen 
& Vinni, 2010). They distinctively afford balanced 
predictive performance, even in studies where sample 
sizes may be limited. 

Dynamic Key Value Memory Network 
(DKVMN) is a memory augment neural network-
based model, which uses the relationship between the 
underlying knowledge points to directly output the 
student's mastery of each knowledge point (Jiani 
Zhang et al., 2017). 

Performance Factor Analysis (PFA) is one 
specific model from a larger class of models based on 
a logistic function  (Pavlik et al., 2009). In PFA, the 
probability of learning is computed using the previous 
number of failures and successes. 

This list answers then RQ1. “What are the most 
employed ML techniques for KT in LM?”. Figure 3 
shows a yearly heatmap of the most used techniques: 
the number indicates the total number of applications5 
in all 51 combined-and-reviewed papers, per year. 
DKT was applied eight times in 2019 (emerging of 
two consecutive zero years) while BKT was mostly 
 

 
Figure 3: Yearly heatmap of the most employed ML 
techniques. 

                                                                                                 
5Programming and teaching the ML model with input data. 

applied in 2016 and 2017, five and six times 
respectively, decreasing since. LSTM peaked in 
2017, with 7 applications, and has decreased since. 
BN remains with a steady application since 2017. For 
clarity reasons, the 29 ML techniques found in the 51 
papers issued from this study are available in the 
Appendix. 

Second, we noted the rationale (if any) given by 
authors when choosing a ML technique. We do not 
account for the rationale of the paper’s unique ML 
proposal if its improvements are related to parameter 
fine-tuning, or if the justification is à posteriori. 
Instead, we account rationale for the general 
application of the original, unmodified technique. 
Also, very few publications detail the shortcomings 
of their choice. We grouped these rationales in the 
following categories:  

R1-Uses Less Data and/or Metadata. These 
techniques handle sparse data situations better 
compared to others, according to the authors, e.g. 
DKT (Jiani Zhang & King, 2016).  

R2-Extended Tracing. These techniques provide 
additional attributes and/or dimensional tracing with 
ease when compared to other techniques, according 
to authors, e.g. LSTM (Sha & Hong, 2017).  

R3-Popularity. These techniques were chosen 
because of their popularity, e.g. BN (Millán et al., 
2015).  

R4-Persistent Data Storage. These techniques 
explicitly save their intermediate states to long-term 
memory, e.g. DKVMN (Trifa et al., 2019).  

R5-Input Data Limitations. These techniques have 
been acknowledged to lack when the number of peers 
is “too high”, e.g. BN (Sciarrone & Temperini, 2020).  

R6-Modelling Shortcomings. Techniques in this 
category face difficulties when modelling either 
forgetting, guessing, multiple-skill questions, time-
related issues, or have other modelling shortcomings, 
e.g. BKT (Crowston et al., 2020).  

A heatmap illustrating the number of publications 
mentioning each of these rationales, for each of the 
most common ML techniques, is shown in Figure 4. 
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Figure 4: Heatmap of most employed ML techniques, 
categorized by Method (SL, UL, SSL, RL, DL) and number 
of publications sharing a Rationale (R1-R6). 

This heatmap includes the ML categorization 
presented in 2.1.1 (SL, UL, SSL, RL, DL). BKT faced 
mostly R6 rationales, englobing the whole of RL as 
well. DKT and BKT were mostly commented on R1 
and R2, respectively. This leads to the DL 
categorization (DKT + LSTM + DKVMN) to be 
extensively justified in the literature, while UL (PFA) 
is sparsely commented, and SVM not at all, despite 
its non-negligeable number of applications (7). BN 
had the highest R3 count of all and carries all the 
justifications related to SL. 

Third, we looked over the intended purpose of the 
ML implementation, besides KT. Out of the 51 
publications reviewed, seven (~15%) employ ML for 
initializing the LM (e.g., for another course, academic 
year, or for determining the ML parameters in a 
pipeline) by accounting previous system interactions, 
grades, pre-tests or other data. 44 publications, the vast 
majority (~85%) perform some form of prediction. 
Finally, only one proposal (~2%) incorporates both a 
prediction and/or recommendation mechanism as well. 
A pie chart of ML techniques purpose distribution is 
presented in Figure 5. 

 
Figure 5: Pie chart distribution of ML purpose. 

Fourth, we surveyed the software used to perform 
the ML calculations. Note that many publications 
(~50%) do not mention their software of choice. 
Python (comprising Keras, TensorFlow, PyTorch and 
scikit-learn) is the largest group, with 13 papers. Ad-
hoc solutions follow with five papers, and finally C, 
Java (-based), Matlab and R, with 2 publications each. 
Outliers were SPSS and Stan, with 1 paper each. A 
pie chart illustrating the distribution of programming 
languages is shown in Figure 6. 

 
Figure 6: Pie chart distribution of ML programming 
language. 

Fifth, we highlighted (and checked for existence) 
the public datasets employed, shown in Table 1. All 
the datasets we found in the literature were online and 
accessible when reviewed. We made the version  
 

Table 1: Public datasets found. 

Name URL 
ASSISTments2009 https://sites.google.com/site/assist

mentsdata/home/assistment-2009-
2010-data/skill-builder-data-2009-

2010 
ASSISTments2013 https://sites.google.com/site/assist

mentsdata/home/2012-13-school-
data-with-affect 

ASSISTments2015 https://sites.google.com/site/assist
mentsdata/home/2015-

assistments-skill-builder-data  
KDD Cup https://pslcdatashop.web.cmu.edu/

KDDCup/downloads.jsp 
DataShop https://pslcdatashop.web.cmu.edu/

DataShop: OLI 
Engineering Statics - 

1.14 (Statics2011) 

https://pslcdatashop.web.cmu.edu/
DatasetInfo?datasetId=507 

The Stanford 
MOOCPosts Data Set 

https://datastage.stanford.edu/Stan
fordMoocPosts/ 

Hour of Code https://code.org/research 
DeepKnowledgeTracing 

dataset 
https://github.com/chrispiech/Dee

pKnowledgeTracing 
DeepKnowledgeTracing 

dataset - Synthetic-5 
https://github.com/chrispiech/Dee
pKnowledgeTracing/tree/master/d

ata/synthetic 
MOOC [Big Data and 
Education on the EdX 

platform] 

https://github.com/davidjlemay/Ed
X-Video-Feature-Extraction 
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distinction (yearly or topic) of datasets from the same 
source (DeepKnowledgeTracing and ASSISTments, 
respectively) because they differ on either number of 
features, dimensioning, or creation method. 

Thus, the elements presented here-in, namely the 
ML techniques, their chosen rationale, their KT in 
LM purpose, the most usual programming language 
software employed, and the subsequent required 
datasets, found in the 51 reviewed publications 
constitute the answer to “RQ2: How do the most 
employed ML techniques fulfil the considered 
relevant aspects (identified in section 2.1.2) to insure 
KT in LM?” 

5 DISCUSSION 

In this section we present our observations on the ML 
techniques addressed in the precedent section, issued 
from the 51 reviewed publications. This discussion 
covers the five elements mentioned in subsection 
2.1.2. 

ML Technique: We begin by noting that, in the 
reviewed papers, rarely a clear, well-defined, single 
ML technique is employed: very often additions or 
variants are employed (which make the point of the 
paper). Research teams seem to focus their attention 
on fine-tuning parameters (to improve prediction) 
rather than on expanding the application of ML for 
KT to other educational data sources or contexts. 
Authors recognize that additional features (or 
dimensions) would encumber the learning phase for 
limited gains, compared to parameter fine-tuning. As 
such, many papers propose pipelines (‘chains’) of ML 
techniques to optimize the process without increasing 
the calculation load. Performance improvements 
aside, this brings up two inconveniences: the 
difficulty of identifying the ML technique suitable for 
KT, and the difficulty to evaluate and compare any 
two papers employing different pipelines, as the 
intermediary inputs and outputs of the chain elements 
are quite different between papers.  

ML Purpose: We distinguish two families of 
stated purposes in the reviewed ML techniques for 
KT: prediction and LM creation. Prediction is often 
portrayed as a probability, which can be interpreted 
as a mastery (or degree) of a skill (0-100), a grade (0-
10), or a likelihood (0-1) of getting the answer right 
(in binary answers). In LM creation, ML predicts 
parameters for initializing the LM. We noticed that 
clustering, personalization, and/or resource 
suggestion (or other ML techniques, such as NLP) 
were performed once the predicting phase had taken 
place.  

ML Choice Rationales: We condense the 
rationales exposed by the authors when choosing a 
ML technique. We omit rationales based on novelty, 
status-quo, or generalities, e.g., “nobody had done it 
before”, “the existing system already uses this 
mechanism”, “because it helps predict students’ 
performance”. The choice of BKT’s was mostly 
driven by popularity, although it had issues on 
learners’ individuality, multi-dimensional skill 
support and modelling forgetting. BN also seemed to 
be a common, popular choice. Its main advantage was 
its ability to model uncertainty, although it seems to 
reach its limits if the number of students is kept 
relatively low. On the contrary, DKT may benefit 
from large datasets and has proven being able to 
model multi-dimensional skills, although lacking in 
consistent predicted knowledge state across time-
steps. DKVMN (based on LSTM) can model long-
term memory and mastery of knowledge at the same 
time, as well as finding correlations between 
exercises and concepts, although it does not account 
for forgetting mechanisms. LSTM appears to 
additionally handle tasks other than KT satisfactory. 
It also models forgetting mechanisms over long-term 
dependencies within temporal sequences. It is then 
well suited for time series data with unknown time lag 
between long-range events. PFA does not consider 
answers’ order (which is pedagogically relevant), nor 
models guessing, nor multiple-skills questions. 
Finally, RNNs are well suited for sequential data with 
temporal relationships, although long-range 
dependencies are difficult to learn by the model, 
hence the resurgence of LSTM. 

Software for ML: Python (frameworks and 
libraries merged) is the most common programming 
language employed for ML, more than doubling the 
number of papers employing Ad-hoc languages. We 
think that employing platform-specific programming 
languages for ML assures lack of code portability 
(licensing issues, steep learning curve, little 
replicability, code isolation, etc.) and thus, little to no 
adoption of these research proposals. However, 
specialized ML software, designed by experts on the 
field, tends to be performance optimized for diverse 
hardware and software, which an ad-hoc solution 
cannot compete with. We were taken aback by two 
facts: the sparse use of specialized mathematical 
software (Matlab, R, SPSS) in ML, and to learn that 
about 50% of all reviewed publication do not specify 
what software was employed for their ML 
calculations, leaving little room for independent 
replication, results verification, and additional 
development. 
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Datasets: We noticed that frameworks proposal 
papers aim to prove the performance of their 
approach using publicly available datasets. An 
overview of the found public datasets is in Table 1, in 
previous section. The chosen datasets are static, 
mostly contain grades (or other evaluating 
measurements), opposed to behavioural or external 
sensor data, and provide the non negligeable 
advantages of being explained in detail and having 
their data already labelled, often by experts. This 
contrasts with the “organic” data employed in 
publications where ML is addressed for an existing, 
live system, even if it is for testing purposes. Both 
variants could benefit from each other’s approaches, 
but this would require diverse, detailed, copious high-
quality data that many institutions simply cannot 
afford to generate nor stock, let alone analyse. 

One of most recurring datasets is the 
ASSISTment (Razzaq et al., 2005) (employed in 11 
publications), of which there are different versions. A 
noteworthy fact is that this dataset has been 
acknowledged to have two main kind of data errors: 
(1) duplicate rows (which are removed if 
acknowledged by the authors) and (2) 
“misrepresented” skill sequences. Drawbacks of this 
issue have been discussed: while this does not affect 
the final prediction, it nevertheless might conduce the 
learner to being presented with less questions on one 
of the merged skills (the less mastered) because the 
global (merged) mastery of skill is achieved mainly 
through the mastery of the most known skill (Pelánek, 
2015; Schatten et al., 2015). This raises the 
importance of the data cleaning process (Chicco, 
2017), which processing time is not negligeable and 
should be accounted at early data mining stages.   

6 CONCLUSION AND 
PERSPECTIVES 

This review of literature presents a current panorama 
of ML techniques for KT in LM for the last five years. 
To our knowledge, there is no research work that 
addresses the literature review of such topic between 
2015 and 2020. This study intents to fill in that gap 
by reviewing the most recent and high-quality 
academic publications on ML for KT that account for 
the LM. Its primary goal is to survey currently used 
ML techniques for KT in LM (methods and 
algorithms), their intended purpose, and their 
required software resources. It helps to paint a picture 
of the current trends in the research field, and to 
                                                                                                 
6 https://moocgdp.gestiondeprojet.pm/  

prepare the target public of this paper to the task of 
selecting a ML technique based on an argued choice.  

Out of an academic database search result pool of 
628 publications, 51 papers were reviewed, their 
employed ML technique extracted, and their 
employment rationale highlighted. We found a large 
variety of ML techniques, the most common ones are 
BKT (18 applications), DKT (13 applications), 
LSTM (12 applications), BN (11 applications), SVM 
(7 applications), DKVMN (7 applications), and PFA (6 
applications). We found authors rationale for favouring 
one over another is seldomly described in publications, 
or very lightly. Additionally, we highlighted that 
combinations of ML techniques in pipelines are a 
common practice, with the most recent research 
focusing on optimizing combinations or parameter 
tweaking, and not in new techniques. We also noticed 
a steady use of public datasets, containing usually 
grades or other evaluating metrics, but no other 
pedagogical relevant data. Moreover, we insist that 
additional pre-treatment and cleaning is often required 
in these datasets before their use. Finally, our results 
show that ML programming language of choice is 
Python (libraries & frameworks combined).  

This review of literature is inscribed in the context 
of the “Optimal experience modelling” research 
project, conducted by the University of Lille. This 
research project (Ramírez Luelmo et al., 2020) 
models and traces the Flow psychological state, 
alongside KT, via behavioural data, using the generic 
Bayesian Student Model (gBSM), within an Open 
Learner Model.  

The current challenge is to incorporate the ML 
relevant aspects highlighted in this study, and the 
behavioural and psychological aspects (log traces and 
Flow state determination) specifically linked to the 
project. Namely, a ML technique supporting the 
gBSM, capable to initialize the LM and perform KT, 
supported by the most common programming 
language for ML, based on a sound rationale. The 
originality of such research lies in the use of live, 
behavioural, Flow-labelled data issued from the 
French-spoken international MOOC “Project 
Management”6.  
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APPENDIX 

The Appendix is composed of: (a) the ML 
categorization figure, (b) the summary table of ML 
for KT in LM (for clarity reasons, the extensive 
column ‘rationale’ has been removed), and (c) the full 
table of the 29 ML techniques.  

It can be found at the following address: 
https://nextcloud.univ-lille.fr/index.php/s/pDSX4c7 
QgDT8mdT 
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