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Abstract: The fastest known general-purpose technique for factoring integers is the General Number Field Sieve Method
(GNFSM), in which the most time-consuming part is the sieving stage. For both line sieving and lattice sieving,
two cache-friendly extensions used in practical implementations are block sieving and bucket sieving. The
new AVX-512 instruction set in modern Intel CPUs offers some fast vectorization intrinsics. In this paper, we
report our AVX-512 based cache-friendly parallelization of block and bucket sieving for the GNFSM. We use
vectorization for both sieve-index calculations and sieve-array updates in block sieving, and for the insertion
stage in bucket sieving. Our experiments using Intel Xeon Skylake processors demonstrate a performance
boost in both single-core and multi-core environments. The introduction of cache-friendly sieving leads to a
speedup of up to 63%. On top of that, vectorization yields a speedup of up to 25%.

1 INTRODUCTION

The General Number Field Sieve Method (GN-
FSM) (Lenstra et al., 1993a) is the fastest known
technique for factoring large composite integers, like
RSA moduli. The RSA (Rivest–Shamir–Adleman)
algorithm (Rivest et al., 1978) is one of the earliest
and most widely used public-key cryptographic algo-
rithms, and exploits the difficulty of factoring prod-
ucts of pairs of large primes to derive its security.
The last published successful RSA factorization at-
tempt was that of an RSA modulus of length 795
bits (Boudot et al., 2020a). There is also an un-
published claim of successful factorization of RSA-
250 (Boudot et al., 2020b) which is a 829-bit RSA
modulus. All these attempts implement the GNFSM.

The GNFSM originates from a specialized form
called the Special Number Field Sieve Method
(SNFSM) (Lenstra et al., 1990) which is developed
to factor composite integers of the form re± s, where
r,s,e ∈ Z and e > 0. It is asymptotically faster than
the GNFSM, and is used to factor the ninth Fermat
Number F9 = 2512 + 1 (Lenstra et al., 1993b). The
SNFSM is later generalized to the GNFSM to work
for any composite integer (Buhler et al., 1993). This
method is based on a ring homomorphism (Briggs,
1998) Z[θ] → Z for a suitable algebraic number θ,
and is intended to discover a non-trivial Fermat con-
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gruence of the form x2 ≡ y2 (mod n).

The GNFSM consists of multiple stages, among
which sieving is the most time-consuming one taking
around 60–80% of the overall running time. There
are two main techniques used for sieving: line sieving
and lattice sieving. In this paper, we mainly focus on
line sieving. In both of these types of sieving, mem-
ory accessing plays a pivotal role. In order to mini-
mize costly cache misses, two new modifications are
introduced. These are called block sieving (Wambach
and Wettig, 1995) and bucket sieving (Aoki and Ueda,
2004). In the recent factorization attempts, the block
and bucket sieving ideas are extensively used. Earlier,
SSE2- and AVX-based SIMD parallelization tech-
niques are attempted (Sengupta and Das, 2017) for
line and lattice (Pollard, 1993) sieving. In that work,
the index-calculation part is vectorized, but the sieve-
array updating part is not. This is attributed to limited
and costly intrinsics available in previous generations
of CPUs. The recent introduction of AVX-512 offers
a new set of intrinsics, and thereby opens the opportu-
nities of exploring the potentials of fully vectorizing
the sieving stage. In this paper, we report our AVX-
512-based vectorization attempts for cache-friendly
block- and bucket-sieving variants of line sieving. We
are able to achieve speedup factors of up to 63% with
cache-friendly sieving and additional speedup factors
of up to 25% with vectorization.

The rest of the paper is organized as follows. Sec-
tion 2 deals with the background and a study of ex-
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isting factoring algorithms. Section 3 elaborates our
vectorization approaches for both block sieving and
bucket sieving. The experimental results for single-
core and multi-core environments are presented in
Section 4. Section 5 concludes the paper with notes
on possible extensions of our current work.

2 BACKGROUND

2.1 General Number Field Sieve
Method

In order to factor n, the GNFSM starts with the selec-
tion of two irreducible polynomials fr(x) and fa(x) of
degrees dr and da and with a common root m modulo
n. Here, fr (with dr = 1) pertains to the rational side,
whereas fa (with da > 1) pertains to the algebraic side.
We also let θ∈C be a root of fa(x). Next, the rational
(RFB) and the algebraic (AFB) factor bases are cre-
ated. RFB consists of small (integer) primes bounded
by a limit Br, while the AFB consists of prime ide-
als in the number ring Q[X ]/〈 fa(X)〉 of prime norms
bounded by a limit Ba. For each small prime p, the
prime ideals of norm p can be obtained by identifying
the roots of the equation fa(x) modulo p, that is, by
solving the congruence fa(r)≡ 0 (mod p).

The sieving stage uses two integer parameters a
and b with gcd(a,b) = 1. If a+ bm and a+ bθ are
both smooth over the respective factor bases, a re-
lation is discovered. The integer a + bm is called
smooth if it factors completely over the RFB, whereas
the algebraic number a+ bθ is called smooth if the
ideal 〈a+ bθ〉 factors completely over the prime ide-
als in AFB. A choice of the pair (a,b) gives a relation
if and only if both the integers (−b)dr fr(−a/b) and
(−b)da fa(−a/b) factor completely over the primes≤
Br and Ba. Using the ring homomorphism η : Z[θ]→
Z/nZ taking θ 7→ m, each relation η(a+ bθ) ≡ a+
bm (mod n) gives a linear congruence. The resulting
linear system is solved to reach the Fermat congru-
ence. If gcd(x− y,n) is a trivial factor of n, we go for
the other solutions else we report the factors.

2.2 Sieving

The main focus of this paper is on the efficient imple-
mentations of the sieving part mainly the line sieving
whereas the proposed methods are applicable to lat-
tice sieving in a straightforward manner. Block and
bucket sieving techniques are the cache-friendly ex-
tensions of normal sieving.

2.2.1 Block Sieving

Instead of accessing the whole sieve array S for each
factor f in the factor base FB, we divide S into multi-
ple blocks and perform sieving on one block at a time.
The entire sieve line of length 2MAXA + 1 is subdi-
vided into bn blocks, where the size of each block
is bs = d(2MAXA + 1)/bne. This method is advan-
tageous if we keep the value of bs within the size of
the available cache memory. This enables the runtime
system to load a whole block of S at a time in the
cache, and for all f ∈ FB, accesses are made within
that block only. This reduces the cache misses sig-
nificantly, thereby speeding up the whole sieving pro-
cess. The factor base is subdivided into two parts:
0≤ f ≤ FBS and FBS < f ≤ FBMAX . For the smaller
factors ( f ≤ FBS), block sieving is used.

2.2.2 Bucket Sieving

In order to manage the cache memory efficiently for
large factors also, bucket sieving is introduced. In-
stead of performing normal sieving over large factors,
buckets are created, filled, and sieved only one at a
time. The main concept relies again on the use of
only a portion of the sieve array S during accessing
and log subtractions. Let Bn be the number of buck-
ets under consideration, and Bs = d(2MAXA+1)/Bne.
Bucket sieving employs a two-fold approach. For
each large factor f and for each of the sieving loca-
tion a we encounter, an element (a, log( f )) is inserted
in the b(a+MAXA)/Bsc-th bucket. The size of each
bucket is kept within the limits of the available cache
memory. Later, we iterate over all the buckets one
by one, popping its elements and performing S up-
dates accordingly. As each of the buckets holds the
elements having a within the range of the cache size,
cache misses are reduced drastically.

3 OUR IMPLEMENTATION
APPROACH

In this section, we elaborate our approach of using
SIMD (Single Instruction Multiple Data) in the con-
text of block sieving and bucket sieving. The latest
SIMD feature added by Intel is AVX-512 which sup-
ports 512-bit registers. In the context of sieving, it
allows us to perform 16 index calculations and log
subtractions in a data-parallel fashion.
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Table 1: AVX-512 SIMD instructions used.

AVX-512 intrinsic Pseudo-function
mm512 load epi32 (void const*

mem addr)

simd load

mm512 store epi32 (void* mem addr,

m512i a)

simd store

mm512 add epi32 ( m512i a, m512i b) simd add
mm512 sub epi32 ( m512i a, m512i b) simd sub
mm512 reduce min epi32 ( m512i a) simd minimum
mm512 i32gather epi32 ( m512i vindex,

void const* base addr, int scale)

simd gather

mm512 i32scatter epi32 (void*

base addr, m512i vindex, m512i

a, int scale)

simd scatter

3.1 SIMD-based Block Sieving

In Intel’s AVX-512 intrinsics, a special data type
m512i can store sixteen 32-bit integers in a vec-

tor. In (Sengupta and Das, 2017), vectoriza-
tion of the subtraction phase of the sieve array
is avoided in line and lattice sieving because of
limitations of AVX. With AVX-512, we can per-
form SIMD-level parallelization of both index cal-
culations and sieve-array modifications. We pack
16 primes pi, pi+1, . . . , pi+15 = p[i : i+15] from the
factor base FB into a m512i SIMD variable ∆p,
and their log values into another SIMD variable
∆log p. For a fixed b, we calculate the starting siev-
ing locations asi ,asi+1 , . . . ,asi+15 = as[i : i+15] for
(r[i : i+15], p[i : i+15]). Then, we pack another
m512i variable ∆a with as[i : i+15]. Now, we keep

on incrementing ∆a by ∆p over the entire a-line up
to MAXA to find out 16 sieving cell indices at a time.
Using the AVX-512 intrinsic gather, we collect the
values S[∆a] and store them in ∆S, and subtract ∆log p
from ∆S. Then, we store the subtracted components
back to their corresponding locations using another
AVX-512 intrinsic scatter. This enables us to shorten
the outer factor-base loop by a factor of 16 at the
cost of some SIMD overhead. The index vector ∆a is
packed with the starting indices only once for a par-
ticular p[i : i+15].

Moreover, the incremental addition of ∆p to ∆a

Table 2: Details of the pseudo functions.

Pseudo-function Description
allocate memory Allocates memory to the array.

is incomplete Checks if an element has pending iterations.
process bucket For each (a, log p) stored in the bucket, S[a+

MAXA] − log p is performed emptying the
bucket.

insert element Inserts (a, log(p)) into a given bucket.
populate sieve array For a given b and a ∈ [AL,AR], S[a+MAXA] is

populated by log |(−b)d f (−a/b)|.
initialize Initializes array elements with given value.

Algorithm 1: SIMD-based block sieving.
1 for b← BL to BR do
2 for AL ←−MAXA to MAXA in steps of bs do
3 AR← minimum(AL +bs,MAXA)

4 populate sieve array (S,b,AL,AR)

5 for each p[i : i+15] ∈ FB such that p[ j]≤ FBS ,
i≤ j ≤ i+15, do

6 ∆p← simd load(p[i : i+15])
7 ∆log p← simd load(log p[i : i+15])
8 if AL equals −MAXA then
9 as[i : i+15]← initial sieving points

10 ∆a← simd load(as[i : i+15])
11 while simd minimum(∆a)≤ AR do
12 ∆S ← simd gather(S,∆a)

13 ∆S ← simd sub(∆S,∆log p)

14 simd scatter(S,∆S,∆a)

15 ∆a← simd add(∆a,∆p)

16 as[i : i+15]← simd store(∆a)

17 for j← i to i+15 do
18 if is incomplete(as[ j],AR) then
19 while as[ j]≤ AR do
20 S[as[ j]+MAXA]←

S[as[ j]+MAXA]− log(p[ j])
21 as[ j]← as[ j]+ p[ j]

does not require unpacking of any of the SIMD reg-
isters. Therefore we achieve effective vectorization
of sieving-index calculations with 16-fold speedup.
However, gathering and scattering costs after each in-
dex increment introduce some overhead. Algorithm 1
elaborates the steps of AVX-512-based block sieving.
Table 1 lists the AVX-512 intrinsics used in the im-
plementation of this algorithm.

3.2 SIMD-based Bucket Sieving

In bucket sieving, updating indices are calculated sep-
arately and stored in buckets. Later, the buckets are
emptied followed by sieve-array updates. The bucket-
filling part is SIMD-friendly. In bucket sieving, we
work with the large primes (p > FBS) of the factor
base FB. We take 16 primes p[i : i+15] at a time, and
store them in an SIMD variable ∆p. We also calculate
the initial locations as[i : i+15], and store them in an-
other SIMD variable ∆a. Then, we keep on finding 16
new sieving locations using an SIMD increment of ∆a
by ∆p, and fill the buckets.

We start by allocating memory to the array BARR
of buckets. In order to keep track of the numbers of
elements in the buckets in the array BARR, we main-
tain another array BT . For efficient memory usage,
we pre-allocate each bucket in the bucket array BARR
with a maximum element capacity of BUCMAX . The
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value of BUCMAX is determined according to the size
of the cache memory so that during the bucket-pop
operation, cache-miss rates are minimized. During
each insertion, we keep a check whether any bucket
exceeds its capacity. If it so happens, we pop all
the elements from that bucket, and update the siev-
ing array at the stored locations. This strategy also
eliminates the need of malloc and free operations
of bucket entries after individual insert and pop op-
erations. These memory operations are atomic, so
avoiding them inside the loop boosts parallelism in
multi-threaded implementations.

Algorithm 2 summarizes these implementation
ideas. The workings of the pseudo-functions used in
this algorithm are explained in Table 2.

4 EXPERIMENTAL RESULTS

4.1 Hardware and Software Setup

We use Intel’s Xeon Gold Series (Model No. 6130)
processor clocked at 2.10 GHz with an L3 Cache of
size 22 MB. The gcc compiler (version 9.2.0), GMP
library (version 6.1.2)and OpenMP API (version 4.5)
is used. For calculating the prime ideals, we use
Victor Shoup’s NTL library (version 11.3.2) (Shoup
et al., 2020). The optimization flag -O3 and the in-
trinsic flag -mavx=native are used. In the multi-core
implementations, we use all of the 16 cores of a sin-
gle processor. The operating system is CentOS Linux
release 7.4.1708 (Core).

4.2 Data Setup

As a test bench, we here consider the two numbers
RSA-512 and RSA-768 which are factored as re-
ported in (Cavallar et al., 2000) and (Kleinjung et al.,
2010). In each of the cases, we consider the same
polynomials that are used in the actual factorization
attempts. Suitable partitioning of the factor base be-
tween block- and bucket-sieving primes has a ma-
jor impact on the overall running time. We vary the
small-versus-large demarcation boundary FBS based
on the sieving range MAXA across various test cases.

For our multi-threaded implementation, we use
the OpenMP directive #pragma omp parallel for
to launch 16 threads expected to map to the individ-
ual cores. We allocate different segments of b values
to the different threads in order to avoid concurrent
writes. The read-only p and log p arrays are shared
by all the threads, so that they can stay loaded in the
cache. We have chosen the same limiting values (up-
per) for both the factor bases: Br = Ba = MAXFB.

4.3 Timing Results

Table 3 reports the timings T±v
±b of our implemen-

tations of sieving. The subscript indicates whether
cache-friendly (block/bucket) sieving is used (+b) or
not (−b), whereas the superscript indicates whether
vectorization is used (+v) or not (−v). For exam-
ple, T−v

+b indicates the timing of our non-vectorized
implementation with block and bucket sieving. All
the times are in seconds, and stand for the com-
bined times of rational sieving and algebraic siev-
ing. Each sieving includes the time taken by the pre-
computation of initial indices, index increments and
log subtractions, and locating potential sieving loca-
tions. The time for final trial divisions (relation gen-
eration) is excluded here. The number of threads uti-
lized is denoted as Nθ. Each of the reported times is
the average over 100 test cases.

Based on these four sets of timings, we calculate
four relevant sets of speedup figures. The speedup

of [T+] over [T−] is calculated as
(
[T−]− [T+]

[T−]

)
×

100%, where both the signs ± appear either in the
subscript or in the superscript with the other kept

unchanged. For example, ψ+b =

(
T−v
+b −T+v

+b

T−v
+b

)
×

100% indicates the speedup obtained by vec-
torization on cache-friendly sieving, and ψ

−v =(
T−v
−b −T−v

+b

T−v
−b

)
× 100% indicates the speedup ob-

tained by cache-friendly sieving without vectoriza-
tion.

The experimental data establishes two facts. First,
AVX-512-based vectorization achieves a speedup of
up to 56% in non-cache-friendly sieving and up to
25% in cache-friendly block and bucket sieving over
non-vectorized implementations. Second, the effec-
tiveness of cache-friendly sieving is manifested by a
speedup of up to 63% both with and without vector-
ization. In particular, the best running times are ob-
tained with both cache-friendly sieving and vectoriza-
tion (the column headed T+v

+b ).

5 CONCLUSION

In this paper, we report the practical effectiveness
of block and bucket sieving and AVX-512-based
vectorization. This study establishes the usefulness of
exploiting latest hardware features for implementing
time-consuming algorithms like the GNFSM for fac-
toring integers. There are several ways in which our
study can be extended. Both cache-friendly sieving
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Algorithm 2: SIMD-based bucket sieving.
1 BN ← (2×MAXA +1)/Bs // Total number of buckets
2 BARR← allocate memory(BN ×BUCMAX ) // Memory for all buckets
3 BT ← initialize(0) // All buckets are initially empty
4 for b← BL to BR do
5 for AL←−MAXA to MAXA in steps of bs do
6 AR← minimum(AL +bs,MAXA)
7 populate sieve array (S,b,AL,AR) // Initialize with log values
8 block sieving(AL,AR) // Use Algorithm 1 to handle small primes

9 for each p[i : i+15] ∈ FBLIST such that p[ j]> FBS, i≤ j ≤ i+15 do
10 ∆p← simd load(p[i : i+15])
11 as[i : i+15]← initial sieving points
12 ∆a← simd load(as[i : i+15]) // Calculate next indices
13 while simd minimum(∆a)≤MAXA do
14 for each (as[ j], p[ j]) in (as[i : i+15], p[i : i+15]) do
15 bn← (as[ j]+MAXA)/Bs // The bucket number
16 if BT [bn] equals BUCMAX then
17 // Bucket capacity reached
18 process bucket(S,BARR,BT ,bn)
19 BT [bn]← 0 // Bucket flushed

20 insert element(S,BARR,BT ,bn,as[ j], log(p[ j]))
21 BT [bn]← BT [bn]+1 // Update entry stored

22 ∆a← simd add(∆a,∆p)
23 as[i : i+15]← simd store(∆a)

24 for j← i to i+15 do
25 if is incomplete(as[ j],MAXA) then
26 while as[ j]< MAXA do
27 bn← (as[ j]+MAXA)/Bs
28 if BT [bn] equals BUCMAX then
29 process bucket(S,BARR,BT ,bn)
30 BT [bn]← 0

31 insert element(S,BARR,BT ,bn,as[ j], log(p[ j]))
32 BT [bn]← BT [bn]+1
33 as[ j]← as[ j]+ p[ j]

34 for bn← 1 to BN do
35 process bucket(S,BARR,BT ,bn) // Use all non-empty buckets

and the use of vectorization are expected to boost lat-
tice sieving by the same margins as line sieving. How-
ever, explicit experiments are not carried out with lat-
tice sieving. Block sieving is effectively vectorized,
but bucket sieving has further rooms for investigation,
particularly in the bucket emptying process.

The current processor technology imposes restric-
tions on the processing speed in the presence of SIMD
utilization. For Xeon 6130 processors, individual
cores work at a speed of 2.1 GHz, but enabling AVX2
or AVX-512 reduces the frequency to 60–65% (Wi-
kiChip, 2020). Further reduction happens with the
increasing number of cores. This is one of the main

reasons behind not achieving the ideal speedup in the
case of multi-threaded implementations. Finding a
balance between the use of multiple cores and the use
of SIMD features remains a challenging practical area
of investigation.
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