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Abstract: Identifying postal codes with the highest recruiting potential corresponding to the desired profile for a military
occupation can be achieved by using the demographics of the population living in that postal code and the lo-
cation of both the successful and unsuccessful applicants. Selecting N individuals with the highest probability
to be enrolled from a population living in untapped postal codes can be done by ranking the postal codes using
a machine learning predictive model. Three such models are presented in this paper: a logistic regression,
a multi-layer perceptron and a deep neural network. The key contribution of this paper is an algorithm that
combines these models, benefiting from the performance of each of them, producing a desired selection of
postal codes. This selection can be converted into N prospects living in these areas. A dataset consisting of
the applications to the Canadian Armed Forces (CAF) is used to illustrate the methodology proposed.

1 INTRODUCTION

Military recruitment refers to the overall process of
attracting and selecting suitable candidates for mili-
tary occupations. At any given time, a broad range
of efforts are deployed in order to continuously im-
prove this process by making it more efficient and
more effective, or, in other words, to ensure the best
use of the available resources to select the best can-
didates for the job. Many of these recruiting efforts,
such as advertising, or career fairs, are addressed to
the general population. Recently, a new line of re-
cruiting efforts became of interest, that of identifying
sub-groups within the general population that have
higher odds than other sub-groups to contain success-
ful candidates for a particular set of jobs, and then
tailor recruiting efforts to these sub-groups. This pa-
per presents a mathematical translation of the process
of identifying the most promising sub-groups, i.e.,
those with the highest potential for prospects that cor-
respond to the desired profile for the occupation(s)
of interest. To be more specific, the aim is not to
identify individuals per se, but the geographical areas
where they live, at the postal code level of granular-
ity. This will allow, for example, for tailored mail-
ing campaigns to the households in a select set of
postal codes. The selection of this level of granular-
ity was pragmatic, based on the fact that this informa-
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tion is known for all applicants (whether successful or
not), and that a multitude of external data sources ex-
ist, which provide rich information about neighbour-
hoods, also at the postal code level. The approach
presented here is based on using the postal code as a
primary key (in database terminology) to connect an
applicant with the neighbourhood to which he/she be-
longs which makes possible to augment the applicant
data with the demographic attributes of that neigh-
bourhood. With this augmentation realized, it is pos-
sible to identify the separation between the profile of
the successful applicants (enrollees) and that of non-
successful applicants, using only demographics of the
population living in the postal code. This separation
(a mathematical relationship) can be used to derive
the probability to be enrolled for individuals living
in previously ‘untapped’ postal codes (i.e., no previ-
ous applicants from that postal code), thus uncover-
ing new promising areas where tailored recruited ef-
forts could be applied successfully. The population
in each postal code is known; therefore the number
of individuals can be determined. Identification of
N individuals with the highest probability to be en-
rolled, from a population living in untapped postal
codes, can be done by ranking the population using
a machine learning predictive model derived from the
separation described above. Three such models are
presented in this paper, along with an algorithm that
combines them, benefiting from the strength of each
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of the individual models, which is considered the key
contribution of this paper.

A brief presentation of the paper follows. We de-
scribe developing three Machine Learning (ML) mod-
els to predict the probability of applicant’s success by
postal codes (Section 2.1). We propose a dynamic
method for combining models in a manner that satis-
fies the requirement N and considers the performance
of each model (Section 2.2).We use a dataset con-
sisting of applications to the Canadian Armed Forces
(CAF) to illustrate the methodology we describe, al-
lowing for a concrete discussion of implementation
issues (Section 3).

2 MACHINE LEARNING
MODELS FOR TAILORED
RECRUITMENT

A machine learning algorithm is an algorithm able
to learn from data. The concept of learning is used
here in the context of improving the algorithm perfor-
mance, for a given task, by using experience (more
data). The task explored in this research is the clas-
sification in two categories; the learning algorithm is
asked to produce a function f : Rn→{0,1}. In order
to solve this task, we implemented three architectures:
a logistic regression, a multi-layer perceptron, and a
deep neural network.

The data sets consist of demographics data at the
postal code level, namely of 760 attributes (Environ-
ics Analytics, 2018), as well as a labeled data set of
59,084 postal codes associated with applications to
the CAF in the 2015-18 timeframe. The label is ‘1’
for a successful applicant (enrolled) and ‘0’ for an
unsuccessful applicant. Applicants with no final deci-
sion were removed from the data set. The labeled set
was split into development and validation sets, as will
be discussed below.

2.1 Machine Learning Models

Model 1: A logistic regression model (model LR)
was trained as a baseline model. A 14 dimensional
subset of the 760 attributes was chosen by stepwise
selection. Specifically, for stepwise selection a sig-
nificance level of 0.1 was required to allow a variable
into the model and a significance level of 0.01 for a
variable to stay in the model. Collinearity was tested
for, with the acceptable variance inflation factor set to
< 2.5 and the acceptable condition index to < 10. The
Hosmer and Lemeshow goodness-of-fit test for the fi-
nal selected model was used. The specific parame-

ter values used for stepwise selection were based on
standard guidance and diagnostics, for example see
(Chen et al., 2003).

Table 1: Model performance on the validation set. The
percentage of observation and the mean probability are re-
ported for each decile.

Decile LR MLP DNN
Obs. p mean Obs. p mean Obs. p mean

1 15.8 60.0 16.4 64.9 16.1 58.9
2 12.3 44.4 13.2 45.9 13.0 48.7
3 11.2 42.3 11.4 43.1 12.4 46.4
4 10.8 40.8 10.8 40.9 11.2 44.6
5 10.2 39.6 10.2 39.1 10.0 42.8
6 9.4 38.4 8.8 36.7 9.7 40.7
7 9.0 37.0 8.8 34.1 8.4 38.3
8 8.0 35.3 8.1 30.9 7.7 35.0
9 6.9 32.8 6.6 27.5 6.4 30.6
10 6.4 24.5 5.6 22.7 5.2 24.4

Model 2: A classic feed forward multi-layer
perceptron (model MLP) with one hidden layer of
five nodes and sigmoidal weights was trained via
back-propagation (Rumelhart et al., 1986). The
Adam optimizer was used, with the recommended
default parameters (Kingma and Ba, 2015). L2
regularization was used to penalize large weight
values, with regularization terms of 0.0001. The
MLP was trained on the same 14 dimension subset
of attributes as the LR model, as accuracy was poor
when trained on the full 760 attributes.

Model 3: A Deep Neural Network (model DNN)
classifier, with three hidden layers of 30 nodes each
and rectified linear unit weights, was also trained
with back-propagation. Again, the Adam optimizer
was used, with the recommended default parameters
(Kingma and Ba, 2015). L2 regularization was used
to penalize large weight values, with regularization
terms of 0.01. The DNN was trained on the full 760
dimensional attributes.

For the LR model the labeled data set was split
into two equal subsets, for development and valida-
tion. In contrast, for the neural networks a 80%-20%
split was used, due to more parameters existing in
these architectures (81 parameters for the MLP and
24,721 for the DNN, versus 15 for the LR model).

The entire validation dataset is scored and a prob-
ability is computed from the score, using the stan-
dard transformation p = escore

1+escore , such that each postal
code receives a score and a corresponding probabil-
ity. Next, the validation dataset is sorted in descend-
ing order of the probabilities. We build deciles, the
first having the highest probability to enroll and the
last having the lowest probability. We report for each
decile the following numbers: the fraction of enroll-
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ments realized on that decile (% Obs.), and the mean
of probabilities predicted by the model (Mean Prob.).
Table 1 contains these values. The lift is defined as
the ratio of enrollments realized in a given segment
(decile here) to the average expected under a uniform
random distribution; for example, the lift for the LR
model on the first decile is 15.8%

10.0% = 1.58. A model
is powerful if it can group in the first decile a high
percentage of enrollments. Note that the top deciles
exhibit enhanced lift for all three models.

Observe that the DNN has limited data per weight,
45,818 observations for 24,721 weights, placing train-
ing well outside the classic ‘10x data to weights’ rule
of thumb regime (Baum and Haussler, 1989).

2.2 Ensemble of Models

The underlying motivation of this work is to find a
means of combining ML models, to benefit from dif-
ferent strengths of each model. We first provide the
algorithm for concreteness and then discuss the moti-
vation behind this approach. The algorithm proposed
is general, namely it can combine any number of
models. The motivation of the algorithm is presented
below. There are two main constraints for the design:
the target audience N (and a corresponding estima-
tion of B postal codes) and the error within any given
model. Predictions for any specific postal code may
be in error and predicted orderings may have local
‘mixing’ and mis-ordering. By asking for an agree-
ment set between several models up to a given num-
ber B of postal codes (A1), we place the focus near
the ‘top’ postal codes where we are most interested in
good performance. This approach, majority voting,
is a common ensemble averaging scheme (Wolpert,
1992), but we note that it does not account for the
fact that each model has different performance. By
introducing the predictive strength of the models, the
algorithm uses the lift in the segment under consider-
ation (observed success in segment/overall observed
success) in order to weight rankings (A2). We sub-
tract the normalized lift from one in order to account
for the fact that high rankings have a low index value.
Note that by focusing on lift and rank order, we do not
require a precise calibration of the predicted proba-
bilities. The weighted ranks (A3) will not necessarily
be integers; this is not substantial as sorting on non-
integers will lead to interpretable ranking.

Inputs:
• The number of postal codes to target, B, estimated from

the target audience N.

• The lift profiles for each model.

• Predictions for each model (postal code, p1, p2, ... ,
pM), where pi is the vector of the ith ML model pre-

diction of applicants’ success, and M is the number of
models. (In our setting M = 3).

Output:
• Top B ranked postal codes.

Algorithm to Determine the Top B Postal Codes:

• A0: Rank and sort the postal codes for each model, us-
ing the pi vector.

• A1: Find the intersection which contains the top B
postal codes, as ranked by each pi. This ‘agreement
set’ consists of the top S postal codes, with S≥ B.

• A2: Determine the lift for each model `i for the
deciles containing the S postal codes. Define normal-
ized weights wi =

1
M−1 (1−

`i
∑k `k

), where the sum is
over the M models in the ensemble.

• A3: Find the final weighed ranking r′i for the postal
codes in the agreement set, r′i = ∑k rk

i ·wk where i in-
dexes the postal codes and k the models.

• A4: Sort and output the reranked top B postal codes.

3 RESULTS

As discussed in previous section, we trained three ML
models (a LR, a MLP, and a DNN model). In the
example here, we consider B = 2000 postal codes to
target; the specific value in practice will be dictated by
N. We apply the algorithm to 694,621 unlabelled and
‘untapped’ (with respect to our labeled data subset)
postal codes. The number of untapped postal codes is
derived by subtracting the number of postal codes in
our labeled data from the total number of postal codes
in Canada.

For the selection of B postal codes derived with
the algorithm presented above, the number N f of in-
dividuals can be computed. Environics demographic
data contains the population per age group for each
postal code. If N f is different than the initial target
audience N, an adjustment on B can be applied, in-
creasing or decreasing it.

The lift which characterizes model performance
is considered in deciles here, for stability reasons,
though percentiles or other more granular breakdowns
are potentially useful, given sufficient data. Use of
deciles is standard practice in industry as the ‘cream
of the crop’ is the focus. Figure 1 plots the cumula-
tive lift percentage by decile for each model. It was
observed that the DNN performs better than the other
two models over the majority of deciles, as can be
more clearly seen in the inset which shows the resid-
ual between the observed lift and the uniform random
model with no lift. Further, the relative performance
depends on which decile cutoff is considered. This
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demonstrates the utility of adaptively selecting the lift
to match the region we are interested in. For example,
if the overlap is identified in the first two deciles the
lift corresponding to these two deciles must be used.
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Figure 1: Cumulative lift by decile for each model. The dot-
ted red line is the null case random model; the inset shows
the residual between the models and the null case.

Note that logistic regression is a linear model
while neural networks can account for nonlinear sepa-
ration boundaries. With that in mind, the MLP model,
with its five nodes, has more similar behaviour to the
LR model than the DNN when overlap is considered
(see Figure 2) yet still appears to display more ca-
pacity to separate than the LR (linear) model (see
Figure 1, where performance approaches that of the
DNN).
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Figure 2: Agreement set size between models.

For illustration of the algorithm, Table 2 shows
five postal codes randomly selected from the agree-
ment set, their ranks in the three models, and their re-
ordered ranking; for confidentiality, the postal codes
are not presented explicitly, but denoted as (pc1, pc2,
. . . ).

We should emphasize that the approach taken here
is not intended to be static, but rather a dynamic learn-
ing approach which improves over time. Based on
future campaigns using this approach we will update
predictions. In particular, as we obtain more data the
underlying models and their lifts will be improved.

Table 2: Example postal code rankings and reranking for
five untapped postal codes.

P. Code LR Rank MLP Rank DNN Rank Ens. Rank
pc1 8 15 25 5
pc2 99 97 242 73
pc3 2813 623 875 470
pc4 1338 421 3773 543
pc5 736 3250 10665 1337

4 DISCUSSION

4.1 Weights

We focus on the ‘best’ predicted B postal codes and
this makes the lift in the top percentiles a natural
means of estimating a model’s performance. We also
want to eliminate any postal code that is not near the
top across models; to do this, we use the intersection,
which may be too conservative, and in which case ma-
jority voting may become a viable alternative. Cali-
bration of probabilities (e.g., ensuring absolute accu-
racy of numbers) is difficult and, in general, there has
been little work done in this area. For this reason,
we do not use the absolute probabilities in determin-
ing performance or reranking, but rather the relative
rankings. The resulting algorithm emphasizes perfor-
mance precisely where we are interested in it (as dic-
tated by the target audience N and the corresponding
number of postal codes B).

The weights introduced here linearly reward rela-
tive performance of the models; these are adaptively
adjusted by using the performance in the segmenta-
tion under consideration (e.g., the top S postal code
regime). To be more specific, if S covers p deciles, the
weights are derived from lifts generated for p deciles.
In contrast, equal weighing is widely used in ensem-
ble averaging (Wolpert, 1992), which does not ac-
count for different performance of models. We opted
for using reward/penalty of relative performance, for
adaptive reasons (discounting models which become
poor under selection criteria drift; see the next para-
graph for more discussion).

It should be noted that by using normalized lift,
we impose a non-negative and sum one condition on
the weights with values related to relative (predictive)
strength, by construction. Alternative weighting (re-
laxing non-negative or sum one conditions) could po-
tentially be argued as a viable alternative. Early work
on linear stacking (averaging models via weights)
found that if one forces non-negative weights and op-
timizes on training data then, empirically, the sum
one condition approximately holds in practice; more-
over, if non-negativity was not enforced performance
was poor (Breiman, 1996). That work further con-
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vincingly argued that the sum one constraint will be
approximately enforced as long as some low predic-
tion error models exist in the ensemble. Note that in
(Dawes, 1979) it was suggested that non-negativity
constraints are required: assuming a model’s perfor-
mance is not anti-correlated with the true behaviour
the weight should be non-negative in a linear fit. In
general, by imposing a sum one condition on the
weights we ensure our final model will also be ap-
proximately equal to the expectation of the underly-
ing distribution. The non-negative constraint is self-
evident as long as models are not in severe error (anti-
correlated), and such models are excluded by con-
struction. Selection based on optimality (e.g., relative
predictive strength, as measured by lift here) is likely
to have a lesser affect, but can be argued on adap-
tive grounds: such weightings will adaptively adjust
to model performance, so, for example, if the selec-
tion criteria drift over time, selection of weights via
optimization will downweight models that become
ineffective and reward models that show improved
performance and will therefore reduce model mis-
specification risk. Moreover, as we use lift, for var-
ious values of N, we adaptively reweight to take rela-
tive performance into account.

4.2 Implementation Details

The algorithm was implemented in Python 3.6. We
found no implementation or computational issues.
The LR model was implemented in SAS 9.4 and
again no computational difficulties were encountered.
In contrast, implementing the neural network mod-
els was somewhat problematic on the Windows lap-
top used (dual core 2.9 GHz i7, 8 GB Random Ac-
cess Memory (RAM), Windows 7 Enterprise). Python
was used with the Scikit-Learn 0.19.2 package (Pe-
dregosa et al., 2011) for training the MLP and the
1.12.0 TensorFlow package (Abadi et al., 2015) for
training the DNN. For the DNN model, due to the
large dimension of the training data (760 attributes)
and number of nodes, our limited computational re-
sources led to slow training and system stability was
compromised to the extent that restarts were neces-
sary. ML libraries often target Graphical Processor
Units (GPUs) to allow more efficient computations,
and the laptop used lacked both GPUs and adequate
RAM. Despite the computational loads stressing our
machine, training was successful although moving
to larger dimensions (more attributes) or training set
sizes would be difficult.

4.3 Potential Extensions
We briefly raise a few items of interest for extending
the approach taken:

• We do not perform dimension reduction or any
other feature engineering, other than the stepwise
reduction used for the LR and MLP; such consid-
erations can improve the performance of the un-
derlying models in the ensemble and additional
work in this area could be beneficial.

• There are many variations one can make to our
algorithm. For example, instead of finding the in-
tersection in step A1, majority voting can be used
to find the agreement set. The model accuracy can
be used to determine weights in step A2, etc. The
crucial aspects are a winnowing of data to keep
the ‘top’ rated postal codes with a voting between
models to ensure enough high value data is con-
sidered, and the integrated use of a budget and
error consideration when selecting and using this
subset of data to determine weights. In addition,
the algorithm is generic, in that any number of
models can be used. If M, the number of mod-
els, is large then the agreement set is expected to
be too conservative, and the use of majority vot-
ing would become increasingly attractive. This is
particularly true if we want to use an ensemble of
weak learners.

• In Canada, postal codes are categorized into urban
and rural regions. Splitting the data into urban and
rural regions may be beneficial. If the number of
postal codes in rural regions is small, eliminating
them from the original data set may improve per-
formance of the model. If the number of postal
codes in rural regions is big enough, developing
separate urban and rural models can be another
option.

• A different direction for research is to explore the
saturation and the frequency of the mailings in a
fixed period of time. The final selection N can be
adjusted considering these aspects.

• It should be noted that the approach explored
here is related to stacked generalization (Wolpert,
1992), which is the generic idea of using model
outputs (predicted probability of success here) as
features to construct a meta-model. Here we are
selecting a linear model corresponding to averag-
ing, with weights found by an algorithm that ac-
counts for model error and a finite N, but other
meta-models can be used (for example logistic re-
gression is a reasonable approach, as probabili-
ties will be the output, and neural networks or any
other suitable machine learning algorithm can be
considered).
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5 CONCLUSION

The main contribution of this paper is an algorithm
that combines three predictive models (a logistic re-
gression, a multi-layer perceptron and a deep neural
network) by assigning weights to the ranks produced
by each model. The assignation of the weights is done
considering the lift of each individual model. The al-
gorithm is not intended to be static, but rather a dy-
namic learning approach which improves over time:
the lift will be updated after each additional recruit-
ing campaign.

We tested the algorithm on B = 2000 postal codes
and we identified an overlap of 21,554 postal codes
in the first decile. The models architectures are con-
siderably different and in this context the overlap is
impressive. Using the lift in the first decile of our
predictive models we produced a list of ranked postal
codes. This algorithm for combining the models will
be validated with the data collected in future recruit-
ment campaigns. The same data will be used for ad-
justing the lift for each individual model in the ensem-
ble.
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