
Edge and Corner Detection in Unorganized Point Clouds for Robotic
Pick and Place Applications

Mohit Vohra1, Ravi Prakash1 and Laxmidhar Behera1,2

1Department of Electrical Engineering, IIT Kanpur, India
2TCS Innovation Labs, Noida, India

Keywords: Edge Extraction, Unorganized Point Cloud, Autonomous Grasping.

Abstract: In this paper, we propose a novel edge and corner detection algorithm for an unorganized point cloud. Our edge
detection method classifies a query point as an edge point by evaluating the distribution of local neighboring
points around the query point. The proposed technique has been tested on generic items such as dragons,
bunnies, and coffee cups from the Stanford 3D scanning repository. The proposed technique can be directly
applied to real and unprocessed point cloud data of random clutter of objects. To demonstrate the proposed
technique’s efficacy, we compare it to the other solutions for 3D edge extractions in an unorganized point
cloud data. We observed that the proposed method could handle the raw and noisy data with little variations
in parameters compared to other methods. We also extend the algorithm to estimate the 6D pose of known
objects in the presence of dense clutter while handling multiple instances of the object. The overall approach
is tested for a warehouse application, where an actual UR5 robot manipulator is used for robotic pick and place
operations in an autonomous mode.

1 INTRODUCTION

Over the past decade, the construction industry has
struggled to improve its productivity, while the manu-
facturing industry has experienced a dramatic produc-
tivity increase (Changali et al., 2015) (Vohra et al.,
2019) (Pharswan et al., 2019). A possible reason
is the lack of advanced automation in construction
(Asadi and Han, 2018). However, recently various in-
dustries have shown their interest in construction au-
tomation due to the following benefits, i.e., the con-
struction work will be continuous, and as a result, the
construction period will decrease, which will provide
tremendous economic benefits. Additionally, con-
struction automation improves worker’s safety and
enhances the quality of work. The most crucial part of
the construction is to build a wall and to develop a sys-
tem for such a task; the system should be able to es-
timate the brick pose in the clutter of bricks, grasp it,
and place it in a given pattern. Recently, a New York-
based company, namely "Construction Robotics", has
developed a bricklaying robot called SAM100 (semi-
automated mason) (Parkes, 2019), which makes a
wall six times faster than a human. The SAM100 re-
quires a systematic stack of bricks at regular intervals,
making this system semi-autonomous, as the name

suggests.
Similarly, in the warehouse industry, the task of

unloading goods from trucks or containers is crucial.
With the development of technology, various solu-
tions have been proposed to incorporate automation
in unloading goods (Doliotis et al., 2016) (Stoyanov
et al., 2016). One of the main challenges in the au-
tomation of the above work is that the system has to
deal with a stack of objects, which can come in ran-
dom configurations, as shown in Fig. 1. For devel-
oping a system for such a task, the system must esti-
mate the pose of the cartons in a clutter, grasp it, and
arrange it in the appropriate stack for further process-
ing.

In this paper, we focus on estimating the pose of
the objects (carton or brick) in clutter, as shown in
Fig. 1. We assume that all the objects present in the
clutter have the same dimensions, which is very com-
mon in warehouse industries (clutter of cartons all
having the same dimensions) and construction sites
(clutter of bricks). Traditionally, Object pose is es-
timated by matching the 2D object features (Lowe,
2004) (Collet et al., 2011) or 3D object features (Drost
et al., 2010) (Hinterstoisser et al., 2016) between ob-
ject model points and view points. Recently, CNN
based solutions have shown excellent results for 6D

Vohra, M., Prakash, R. and Behera, L.
Edge and Corner Detection in Unorganized Point Clouds for Robotic Pick and Place Applications.
DOI: 10.5220/0010501202450253
In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2021), pages 245-253
ISBN: 978-989-758-522-7
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

245

Figure 1: Cartons Clutter (Image Courtesy: Internet).

pose estimation, which exempts us from using hand-
crafted features. For example, (Xiang et al., 2017)
(Tekin et al., 2018) can estimate the pose of the ob-
jects directly from raw images. Similarly, (Qi et al.,
2017)(Zhou and Tuzel, 2018) can directly process the
raw point cloud data and predict the pose of the ob-
jects. While all the above methods have shown excel-
lent results, they cannot be used directly for our work.

• Since the objects are textureless. Therefore the
number of features will be less, making the feature
matching methods less reliable. Furthermore, due
to the presence of multiple instances of the object,
it can be challenging to select features that corre-
spond to a single object.

• The performance of CNN-based algorithms relies
on extensive training on large datasets. However,
due to the large variety of objects in the warehouse
industry (various sizes and colors), it is challeng-
ing to train CNN for all types of objects.

Therefore, we aim to develop a method that re-
quires fewer features and can easily be deployed for
objects with different dimensions.

The main idea of our approach is that if we can
determine at least three corner points of the cartons,
then this information is sufficient to estimate its pose.
So the first step is to extract sharp features like edges
and boundaries in point cloud data. In the case of
edge detection in unstructured 3D point clouds, tradi-
tional methods reconstruct a surface to create a mesh
(Kazhdan and Hoppe, 2013) or a graph (Demarsin
et al., 2007) to analyze the neighborhood of each
point. However, reconstruction tends to wash away
sharp edges, and graph-based methods are computa-
tionally expensive. In (Bazazian et al., 2015), the au-
thor performs fast computation of edges by construct-
ing covariance matrices from local neighbors, but the
author has demonstrated for synthetic data. In (Ni
et al., 2016), the authors locate edge points by fit-
ting planes to local neighborhood points. Further a
discriminative learning based approach (Hackel et al.,
2016) is applied to unstructured point clouds. The au-

thors train a random forest-based binary classifier on
a set of features that learn to classify points into edge
vs. non-edge points. One drawback of their method
is poor performance on unseen data.

In this paper, we present a simple method to ex-
tract edges in real unstructured point cloud data. In
this approach, we assign a score to each point based
on its local neighborhood distribution. Based on the
score, we classify a point as an edge (or boundary)
point or a non-edge point. From the edge points, we
find the line equation, the length of the 3D edges, and
the corner points, which are intersections of two or
more edges. For each corner point, the correspond-
ing points in the local object frame are calculated to
estimate the object’s 6D pose. Our approach’s main
advantage is that it can be easily applied to other ob-
jects with known dimensions.

The remainder of this paper is organised as fol-
lows. Proposed 3D edge extraction is presented in
Section II. In Section III corner points are found us-
ing those edges. Pose estimation using edges and cor-
ners are presented in Section IV. In Section V, ex-
perimental results for robotic manipulation using a
6-DOF robot manipulator and their qualitative com-
parison with the state-of-the-art is done. This paper is
finally concluded in Section VI.

2 EDGE POINTS EXTRACTION

In this section, we will explain the method for extract-
ing the edge points. Input to the algorithm is raw point
cloud data P , user-defined radius rs, and threshold
value th. The output of the algorithm is point cloud E
which contains the edge points. To decide if a given
query point pi ∈ P is an edge point or not, we calcu-
late R (pi), which is defined as a set of all points in-
side a sphere, centered at point pi with radius rs. For
an unorganized point cloud, this is achieved through
a k-dimensional (K-d) tree. We call each point in set
R (pi) as a neighboring point of pi, and it can be rep-
resented as R (pi) =

{
n1,n2, . . . ,nk

}
. For each query

point pi and neighboring point nj we calculate the di-
rectional vector as

d(pi,nj) = nj−pi (1)

d̂(pi,nj) =
d(pi,nj)∥∥d(pi,nj)

∥∥ (2)

Then we calculate the resultant directional vector
R̂(pi) as sum of all directional vector and normalize
it

R(pi) =
k

∑
j=1

d̂(pi,nj), R̂(pi) =
R(pi)

‖R(pi)‖
(3)

ICINCO 2021 - 18th International Conference on Informatics in Control, Automation and Robotics

246

We assign a score s(pi) to each query point pi
as an average of the dot product between R̂(pi) and
d̂(pi,nj) for all neighboring points.

s(pi) =
∑

k
j=1 R̂(pi) · d̂(pi,nj)

k
(4)

If s(pi) exceeds some threshold th, pi is considered
an edge point, otherwise not. We have tested the algo-
rithm on standard data set from Stanford 3D Scanning
Repository1 and (Lai et al., 2014), with point cloud
models of various objects such as bowls, cups, cereal
boxes, coffee mugs, soda cans, bunnies, and dragons.
We have also applied our algorithm to a clutter of ran-
dom objects to extract edges, shown in Fig. 2.

(a) Coffee mug (b) bunny

(c) dragon (d) Objects Clutter

Figure 2: Edge cloud.

3 ESTIMATING THE LENGTH OF
EDGES

Once we have found all the edge points, our next
step is to find the line equation of edges, length of
edges, and corner points. In general, the equation of
a line is represented by two entities, a point through
which line passes and a unit directional vector from
that point. However, in our case, we represent the line
with two extreme points. The advantage of the above
representation is that we can estimate the length of the
edge by calculating the distance between two extreme
points. The intersecting point between two edges can
be found by calculating the distance between the ex-
tremities of edges.

3.1 Reference Index and Line Equation

To find the line equation, we apply the RANSAC
method on the edge point cloud E . The output of
the RANSAC method is L and I , where L represents
the equation of a line in standard form i.e., a point

1http://graphics.stanford.edu/data/3Dscanrep/

and a directional vector, and I represent the set of
inliers. To find two extremities of line L , we have
to make sure that two extremities should represent
the same edge because, in a cluttered environment, I
could have points that belong to different objects. So
for this task, we will find the reference point pr. We
define a point pr ∈ I , which has the maximum num-
ber of neighbors in I , and r is the reference index of
pr in I . The maximum number of neighbors property
ensures that pr is not at the extreme ends, and from
pr we will find the two extreme points, which is ex-
plained in the next section. Following are the steps to
estimate the reference index r

• Use RANSAC on E for estimating the line equa-
tion L and set of inliers I .

• We define R (pi) as set of all inlier points inside a
sphere, centered at point pi, where pi ∈ I

• we define r = argmax
i

size(R (pi))

3.2 Finding Extremities

In this section, we will explain the procedure to find
the extreme points e1 and e2 in a set of points I
for a reference point pr. To test if a query point
pi ∈ I is an extreme point or not, we find a set of
inliers R (pi), with radius rs and represent the set as
R (pi) =

{
n1,n2, . . . ,nk

}
. For each query point pi,

we calculate the directional vector from a query point
to the reference point d1 = pr − pi, and a local di-
rectional vector from the query point to the neighbor
points d2 = nj− pi, where nj ∈ R (pi). Now to de-
cide if the query point is an extreme point or not, we
compute the dot product between d1 and d2 for all
neighboring points. If any of the dot product value is
negative, then pi is not an extreme point; otherwise,
it is. We repeat the procedure for all pi and select the
extreme points which have the smallest distance from
pr. Implementation of the above procedure is given
in Algorithm 1.

3.3 Get All Edges

To find all the lines in the edges point cloud E , we re-
cursively apply the above algorithms, and the points
corresponding to the line will be removed from E to
obtain the new line equation. The following is a se-
quence of steps to extract all the lines.

• Let P be the raw Point cloud data, rs be the radius
and th be the threshold value to extract the edges
point cloud E .

• Apply RANSAC on E to get reference index r and
set of inliers I .

Edge and Corner Detection in Unorganized Point Clouds for Robotic Pick and Place Applications

247

Algorithm 1: Get extreme points.

Require: r, I
Ensure: e1,e2 . extreme points

1: for i = 0→ size(I) and i 6= r do
2: find R (pi)
3: d1 = pr−pi
4: d̂1 =

d1
‖d1‖

5: for j = 0→ size(R (pi)) do
6: d2 = nj−pi

7: d̂2 =
d2
‖d2‖

8: v = d̂1 · d̂2
9: if v < 0 then . pi is not an extreme point

10: break
11: end if
12: end for
13: if v > 0 then . pi can be an extreme point
14: pi→ points . save point
15: d̂1→ directions . save direction
16: ‖d1‖→ distances . save distance
17: end if
18: end for
19: e1→ mindis(distances)
20: e2 is first minima opposite to e1 . using saved d̂1

• Extract two extreme points e1 and e2.

• Store e1 and e2 in an array A and remove all the
points between e1 and e2 from E .

• repeat the steps 2−4.

4 POSE ESTIMATION

4.1 Club Edges of Same Cube

Algorithm 2: Get edges of same cube.

Require: A, a
Ensure: C . all edges of a cube

1: l1 = A(a)
2: while not traverse all edges do
3: l2 ∈ A− l1
4: if l1 ⊥ l2 and l1∩ l2 6= φ then
5: l1, l2→ C . save l1, l2 in C
6: A 6≡ l1 . remove l1 from A
7: l1 = l2 . replace l1 with l2
8: end if
9: end while

Once we have all the edges in A, our next step is
to club the edges of the same cube. Let a be an edge
number, and the corresponding edge is l1 = A(a). If
l1 represents one edge of a cube, then we need to find

all other edges of the same cube. To find other edges,
we consider the property that l2 must be orthogonal to
l1, i.e., l1 ⊥ l2, and intersect with each other at a point,
i.e., l1∩ l2 6= φ. If l2 satisfies the above conditions, we
store l1 and l2 in an array and replace l1 with l2. We re-
peat the above steps until we cover all the edges. The
process is described in Algorithm 2. Once we have all
the edges representing the same cube, we compute the
corner points, which are intersections of two or more
edges. These corner points are calculated in the cam-
era frame, and by estimating the corresponding points
in the local object frame, we can estimate the object’s
pose.

(a) Local Brick frame (b) Pose using b, h

(c) Pose using l, b (d) Pose using l, h

Figure 3: Local brick frame and assumptions.

4.2 Corresponding points and Pose
Estimation

4.2.1 Local Frame and Assumptions

Let l, b, h represent the length, breadth, and height of
the cube, and we define a local frame with the origin
at the centroid of the cube, and x-axis, y-axis, and z-
axis pointing along the length, breadth, and height of
the cube respectively, shown in Fig. 3.

For estimating the pose, we need a minimum
of two orthogonal edges. Although two orthogonal
edges can give two poses, we will assume that the
third axis corresponding to the remaining edge will
point to camera origin. So this assumption filter out
the one solution, and we will get a unique pose from
two edges shown in Fig. 3.

4.2.2 Corner Points and Directional Vector

Let two edges are l1, l2, and from these edges, we
will calculate three corner points, p1, p2, p3, where
p1 is the intersecting point of two lines, p2 is another
extreme of l1 and p3 is another extreme of l2. We also
define four unit directional vector d1,d2, t, and d as

ICINCO 2021 - 18th International Conference on Informatics in Control, Automation and Robotics

248

d1 =
p2−p1
‖p2−p1‖

, d2 =
p3−p1
‖p3−p1‖

, t =
−p1
‖p1‖

(5)

d = d1×d2, d =
d
‖d‖

(6)

Vector d1 represents the unit directional vector
corresponding to edge l1, d2 represents the unit direc-
tional vector corresponding to edge l2 and t represents
the unit directional vector from p1 to camera origin.
Vector d is a unit directional vector orthogonal to d1
and d2.

4.2.3 Direction Assignment and Corresponding
Points

Once we have the corner points, our next step is
to find their corresponding points in the local object
frame. For estimating the corresponding points, it is
important to verify if the d1(or d2) is representing the
+x(y,z) or -x(y,z) wrt local object frame. Further, we
have to assign the direction to d1 and d2 in such a way
that third remaining axis of the brick should point to-
wards the camera frame.

We explain direction assignment with an example.
Let ‖l1‖= l and ‖l2‖= b. Since remaining edge is the
height edge so corresponding axis i.e. z-axis of local
frame must point towards the camera frame which is
shown in Fig. 4. From the two edges we compute the
corner points and directional vectors. For visualiza-
tion, we represent l1 in red color because l1 must have
a direction of either x̂ or −x̂ in local frame. Similarly
we represent l2 in green color because l2 must have a
direction of either ŷ or −ŷ in local frame. Directional
vector and corner points are represented in black color
(Fig. 4). Let us assume that d1 has a direction of x̂ and
d2 has a direction of ŷ in local frame. To verify our
assumption, we compute d which represents the di-
rectional vector along the third axis (z-axis) and val-
idate our assumptions by computing the dot product
between d and t.

As shown in Fig. 4, for the first brick our direction
assumptions are correct because dot product between
d and t is positive and corresponding points are given
in Table 1.

For second brick, our direction assumptions are
incorrect because dot product between d and t is neg-
ative, which means either d1 has a direction of −x̂ or
d2 has a direction of −ŷ. One can conclude from sec-
ond brick (Fig. 4), that d1 with a direction of x̂ and d2
with a direction of −ŷ is the valid solution and corre-
sponding points are given in Table1.

If we consider the other solution i.e. −x̂ for d1
and ŷ for d2, then as shown in third brick, local cube
frame rotates by an angle 180 about z-axis, and since
the cube is symmetric, so both solutions will project
the same model.

Table 1: Correspondences.

Corner points Brick 1 Brick 2

p1 − l
2 ,−

b
2 ,

h
2 − l

2 ,
b
2 ,

h
2

p2
l
2 ,

b
2 ,

h
2

l
2 ,

b
2 ,

h
2

p3 − l
2 ,−

b
2 ,

h
2 − l

2 ,−
b
2 ,

h
2

Figure 4: Direction assignment and corresponding points.

4.2.4 Pose Refinement

Using three correspondences, we compute the pose
of the cube. To further refine the pose, we need more
correspondences. From Algorithm 2 we get C which
represents all edges of same cube and intersection
of edges will give the corner points. From the ini-
tial pose calculated from three correspondences, we
will find the correspondence between the other corner
points in camera frame and in local frame by calcu-
lating the distance between corner points and the pre-
dicted corner points from the initial pose. Pair of cor-
ner point and predicted corner point with minimum
distance will form a correspondence pair. Thus more
correspondences will give more accurate pose.

5 EXPERIMENTAL RESULTS
AND DISCUSSION

5.1 Experimental Setup

Our robot platform setup is shown in Fig. 5. It
consists of a UR5 robot manipulator with its con-
troller box (internal computer) and a host PC (external
computer). The UR5 robot manipulator is a 6-DoF
robot arm designed to work safely alongside humans.
The low-level robot controller is a program running
on UR5’s internal computer, broadcasting robot arm
data, receiving and interpreting the commands, and
controlling the arm accordingly. There are several
options for communicating with the robot low-level
controller, for example, teach pendant or opening a
TCP socket (C++/Python) on a host computer. Our
vision hardware consists of an RGB-D Microsoft

Edge and Corner Detection in Unorganized Point Clouds for Robotic Pick and Place Applications

249

(a) Setup (b) Visual Processing (c) Grasp (d) Retrieve (e) Place

Figure 5: Experimental setup and execution steps during robotic manipulation.

Kinect sensor mounted on top of the workspace. Point
cloud processing is done in the PCL library, and ROS
drivers are used for communication between the sen-
sor and the manipulator. A suction gripper is mounted
at the end effector of the manipulator.

5.2 Motion Control Module

The perception module passes the 6D pose of the ob-
ject to the main motion control node running on the
host PC. The main controller then interacts with low
level Robot Controller to execute the motion. A pick
and place operation for an object consists of four ac-
tions: i) approach the object, ii) grasp, iii) retrieve
and iv) place the object. The overall trajectory has
five way-points: an initial-point (I), a mid-point (M),
a goal-point (G), a retrieval point (R), and a final des-
tination point (F). A final path is generated which
passes through all of the above points.

i) Approach: This part of the trajectory connects
I and M. The point I is obtained by forward kine-
matics on current joint state of the robot and M is an
intermediate point defined by M = G+ d ẑ, where G
is the goal-point provided by the pose-estimation pro-
cess and ẑ is the unit vector in vertical up direction at
G. The value of d is selected subjectively after several
pick-place trial runs.

ii) Grasp: As the robot’s end effector reaches M,
the end-effector align according to the brick pose.
This section of the trajectory is executed between M
and G with directed straight line trajectory of the end
effector.

iii) Retrieve: Retrieval is the process of bringing
the grasped object out of the clutter. This is executed
from G to R. The retrieval path is traversed vertically
up straight line trajectory. R is given by R = G+h ẑ,
where G is the goal-point and ẑ is the unit vector in
vertical up direction at G. The value of h is selected
to ensure the clearance of the lifted object from the
clutter.

iii) Place: Placing is the process of dropping the
grasped object at the destination place. This is exe-

cuted from R to F . Fig. 5 shows the execution steps
during robotic manipulation.

5.3 Experimental Validation

We explore two experimental settings: when bricks
are presented to the robot in isolation and when bricks
are presented in a dense cluttered scenario as shown
in Fig. 7 and Fig. 8 respectively.

5.3.1 Objects Present in the Isolation

In the first experiment we measure the dimension of
bricks and place the bricks separately in front of the
3D sensor.
Edge Points: For extracting edges, we perform sev-
eral experiments for selecting the optimum value of
rs and th. We initiate with rs = 0.005m and increment
it with a step size of 0.001m. We record the compu-
tation time at each rs (Table 2). Based on quality of
edges (Fig. 6) and computation time we select the rs.
Based on several trials we found that for extracting
edge points, rs = 0.02m and th = 0.35 are the optimal
values.

Table 2: Computation time (sec) at various rs.

rs = 0.010 rs = 0.015 rs = 0.020 rs = 0.025 rs = 0.030

0.66538 1.29415 2.13939 3.16722 4.40235

Lines and Corner Points: For finding the equation of
lines we apply RANSAC method with threshold value
of 0.01m and for finding the corner point, we compute
the distance between two extremities of edges and if
distance is < 0.01m, then corner point is the average
of two extreme points. With these parameters, we find
the edges and corner points which is shown in Fig. 7
and computation time for each step is shown in Table
3.

ICINCO 2021 - 18th International Conference on Informatics in Control, Automation and Robotics

250

(a) rs = 0.01 (b) rs = 0.015 (c) rs = 0.025 (d) rs = 0.030

Figure 6: Effect of rs at th = 0.35.

(a) Raw point cloud (b) Edges Point (c) All Edges (d) Model Fitting

Figure 7: Isolated bricks experiment.

(a) Input (b) Edges points (c) All Edges (d) Model Fitting

Figure 8: Clutter bricks experiment.

Table 3: Computation time (sec) at each step.

Edges Point All edges Model Fitting Total Time

Exp 1 2.13939 2.0854 0.07573 4.36192

Exp 2 2.13056 5.26684 0.21726 7.61466

5.3.2 Clutter of Bricks

In the second experiment we place the brick in clut-
ter as shown in Fig. 8. For edge points and lines,
we use the same parameter values which were used in
experiment 1. Result of each step is shown in Fig. 8
and computation time for each step is shown in Table
3. With each successful grasp of the brick, computa-
tion time will decreases, because the number of points
which needs to be processed will decrease. Above ex-
periment is performed on a system with an i7 proces-
sor having a clock speed of 3.5GHz and 8GB RAM.

5.4 Performance on Different Objects

As mentioned earlier, our method can be easily ap-
plied for the other objects with known dimensions.
Hence we tested our algorithm on two different ob-
jects with different dimensions. Fig. 9 shows the
output of our method on two different objects (only
dimensions are known in advance). A single pose has

Figure 9: Pose predictions for different objects.

been visualized in Fig. 9 to avoid a mess in the im-
ages. From Fig. 9, we can claim that our method can
easily be deployed for other objects.

5.5 Performance Analysis

To demonstrate the efficacy of our proposed edge ex-
traction method from unorganized point cloud, we
compare the results from the method (Bazazian et al.,
2015) for edge extraction. Their method estimates the
sharp features by analysing the eigenvalues of the co-
variance matrix which is defined by each point's k-

Edge and Corner Detection in Unorganized Point Clouds for Robotic Pick and Place Applications

251

nearest neighbors. We apply their method2 on raw
point cloud data with k vary from 4 to 30 as shown in
Fig. 10. The results of the method (Bazazian et al.,
2015) is unsatisfactory on the same data set where our
method perform very well. It is because of the inher-
ent noise in the sensor, points on a flat surface has
large variations. Thus all eigenvalues of the covari-
ance matrix will be large, hence predicts the sharp
edges even at the flat surface.

(a) k = 4 (b) k = 5

(c) k = 10 (d) k = 30

Figure 10: Edges from covariance matrix based method.

6 CONCLUSION

Novel edge and corner detection algorithm for un-
organized point clouds was proposed and tested on
generic objects like a coffee mug, dragon, bunny, and
clutter of random objects. The algorithm is used for
6D pose estimation of known objects in clutter for
robotic pick and place applications. The proposed
technique is tested on two warehouse scenarios, when
objects are placed distinctly and when objects are
placed in a dense clutter. Results of each scenario
is reported in the paper along with the computation
time at each step. To demonstrate the efficacy of the
edge extraction technique, we compared it with the
covariance matrix based solution for 3D edge extrac-
tions from unorganized point cloud in a real scenario
and report better performance. The overall approach
is tested in a warehouse application where a real UR5
robot manipulator is used for robotic pick and place
operations.

REFERENCES

Asadi, K. and Han, K. (2018). Real-time image-to-bim reg-
istration using perspective alignment for automated
construction monitoring. In Construction Research
Congress, volume 2018, pages 388–397.

2https://github.com/denabazazian/

Bazazian, D., Casas, J. R., and Ruiz-Hidalgo, J. (2015).
Fast and robust edge extraction in unorganized point
clouds. In 2015 International Conference on Digi-
tal Image Computing: Techniques and Applications
(DICTA), pages 1–8. IEEE.

Changali, S., Mohammad, A., and van Nieuwland, M.
(2015). The construction productivity imperative.
How to build megaprojects better.„McKinsey Quar-
terly.

Collet, A., Martinez, M., and Srinivasa, S. S. (2011). The
moped framework: Object recognition and pose esti-
mation for manipulation. The International Journal of
Robotics Research, 30(10):1284–1306.

Demarsin, K., Vanderstraeten, D., Volodine, T., and Roose,
D. (2007). Detection of closed sharp edges in point
clouds using normal estimation and graph theory.
Computer-Aided Design, 39(4):276–283.

Doliotis, P., McMurrough, C. D., Criswell, A., Middleton,
M. B., and Rajan, S. T. (2016). A 3d perception-based
robotic manipulation system for automated truck un-
loading. In 2016 IEEE International Conference on
Automation Science and Engineering (CASE), pages
262–267. IEEE.

Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). Model
globally, match locally: Efficient and robust 3d ob-
ject recognition. In 2010 IEEE computer society con-
ference on computer vision and pattern recognition,
pages 998–1005. Ieee.

Hackel, T., Wegner, J. D., and Schindler, K. (2016). Con-
tour detection in unstructured 3d point clouds. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1610–1618.

Hinterstoisser, S., Lepetit, V., Rajkumar, N., and Konolige,
K. (2016). Going further with point pair features. In
European conference on computer vision, pages 834–
848. Springer.

Kazhdan, M. and Hoppe, H. (2013). Screened poisson sur-
face reconstruction. ACM Transactions on Graphics
(ToG), 32(3):29.

Lai, K., Bo, L., and Fox, D. (2014). Unsupervised fea-
ture learning for 3d scene labeling. In 2014 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 3050–3057. IEEE.

Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60(2):91–110.

Ni, H., Lin, X., Ning, X., and Zhang, J. (2016). Edge de-
tection and feature line tracing in 3d-point clouds by
analyzing geometric properties of neighborhoods. Re-
mote Sensing, 8(9):710.

Parkes, S. (2019). Automated brick laying system and
method of use thereof. US Patent App. 16/047,143.

Pharswan, S. V., Vohra, M., Kumar, A., and Behera, L.
(2019). Domain-independent unsupervised detec-
tion of grasp regions to grasp novel objects. In
2019 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 640–645.
IEEE.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet:
Deep learning on point sets for 3d classification and

ICINCO 2021 - 18th International Conference on Informatics in Control, Automation and Robotics

252

segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
652–660.

Stoyanov, T., Vaskevicius, N., Mueller, C. A., Fromm, T.,
Krug, R., Tincani, V., Mojtahedzadeh, R., Kunaschk,
S., Ernits, R. M., Canelhas, D. R., et al. (2016). No
more heavy lifting: Robotic solutions to the container
unloading problem. IEEE Robotics & Automation
Magazine, 23(4):94–106.

Tekin, B., Sinha, S. N., and Fua, P. (2018). Real-time seam-
less single shot 6d object pose prediction. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 292–301.

Vohra, M., Prakash, R., and Behera, L. (2019). Real-time
grasp pose estimation for novel objects in densely
cluttered environment. In 2019 28th IEEE Interna-
tional Conference on Robot and Human Interactive
Communication (RO-MAN), pages 1–6. IEEE.

Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. (2017).
Posecnn: A convolutional neural network for 6d ob-
ject pose estimation in cluttered scenes. arXiv preprint
arXiv:1711.00199.

Zhou, Y. and Tuzel, O. (2018). Voxelnet: End-to-end learn-
ing for point cloud based 3d object detection. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4490–4499.

Edge and Corner Detection in Unorganized Point Clouds for Robotic Pick and Place Applications

253

