
Managing Evolution of Heterogeneous Data Sources of a Data Warehouse

Darja Solodovnikova a, Laila Niedrite b and Lauma Svilpe
Faculty of Computing, University of Latvia, Raina blvd. 19, Riga, Latvia

Keywords: Data Warehouse, Evolution, Change Propagation, Metadata, Big Data.

Abstract: The evolution of heterogeneous integrated data sources has become a topical issue as data nowadays is very
diverse and dynamic. For this reason, novel methods are necessary to collect, store and analyze data from
various data sources as efficiently as possible, while also handling changes in data structures that have occurred
as a result of evolution. In this paper, we propose a solution to problems caused by evolution of integrated data
sources and information requirements for the data analysis system. Our solution incorporates an architecture
that allows to perform OLAP operations and other kinds of analysis on integrated big data and a mechanism for
detecting and automatically or semi-automatically propagating changes occured in heterogeneous data sources
to a data warehouse.

1 INTRODUCTION

Over the last few years, due to the increase in vol-
ume of data stored in data warehouses and emergence
of various new data sources, such as unstructured and
semi-structured data types, new challanges related to
data storage, maintenance and usage arise. Therefore,
novel efficient algorithms for the integration and anal-
ysis of heterogeneous data are necessary for the devel-
opment of data warehouses. Besides, despite the fact
that in most cases data sources are already integrated
into the data warehouse system, there is a need for
automatized solutions that are able to deal with data
variability and evolution problems.

Traditional methods applied in relational
databases may not be laveraged for new types
of data, therefore, tools, technologies, and frame-
works have been introduced to support large-scale
data analytics, such as Apache Hadoop file system,
Apache HBase database management solution, Hive
data warehouse solution and others. These tools are
mainly aimed at managing the data growth, leaving
the problems caused by evolution of data and their
structure unresolved. Hence, handling various types
of changes in data structure still requires a large
amount of manual work on the part of the developer
as existing solutions do not support automatic or
semi-automatic propagation of changes in data
sources to a data warehouse.

a https://orcid.org/0000-0002-5585-2118
b https://orcid.org/0000-0002-8173-6081

To address the evolution problem, we propose a
solution to handle changes caused by the evolution of
heterogeneous integrated data sources. Our solution
includes a data warehouse architecture that on one
hand supports various types of data analysis of data
integrated in a data warehouse and on the other hand
is able to discover changes in structured and semi-
structured data sources and automatically or semi-
automatically propagate them in the system to main-
tain continuous system operation.

The rest of this paper is organized as follows. In
Section 2 the recent studies related to the topic are
discussed. In Section 3 we outline the proposed data
warehouse architecture. Section 4 is dedicated to the
description of the case study system and the running
example we use throughout the paper to illustrate our
solution. We overview the metadata employed in our
solution to handle evolution in Section 5. The main
contribution of this paper is presented in Section 6,
where we discuss the adaptation scenarios for changes
in data sources and present the mechanism for change
handling. Finally, we conclude with directions for fu-
ture work in Section 7.

2 RELATED WORK

The problem of data warehouse evolution has been
studied extensively in relational database environ-
ments. There are in general two approaches to solv-
ing evolution problems. One approach is to adapt just

Solodovnikova, D., Niedrite, L. and Svilpe, L.
Managing Evolution of Heterogeneous Data Sources of a Data Warehouse.
DOI: 10.5220/0010496601050117
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 1, pages 105-117
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

105



the existing data warehouse schema (Bentayeb et al.,
2008) or ETL processes (Wojciechowski, 2018) with-
out keeping the history of changes and another ap-
proach (Ahmed et al., 2014), (Golfarelli et al., 2006),
(Malinowski and Zimányi, 2008) is to maintain mul-
tiple versions of schema that are valid during some
period of time.

The topicality of evolution problems in big data
environments is discussed in the several recent re-
view papers. The authors in (Kaisler et al., 2013)
mention dynamic design challenges for big data ap-
plications, which include data expansion that occurs
when data becomes more detailed. A review paper
(Cuzzocrea et al., 2013) indicates research directions
in the field of data warehousing and OLAP. Among
others, the authors mention the problem of designing
OLAP cubes according to user requirements. Another
recent vision paper (Holubová et al., 2019) discusses
the variety of big data stored in the multi-model poly-
store architectures and suggests that efficient manage-
ment of schema evolution and propagation of schema
changes to affected parts of the system is a complex
task and one of the topical issues.

We have also found several studies that deal with
evolution problems in big data context. A solution to
handling data source evolution in the integration

field was presented in the paper (Nadal et al.,
2019). The authors propose the big data integration
ontology for the de

nition of integrated schema, source schemata,
their versions and local-as-view mappings between
them. When a change at a data source occurs, the
ontology is supplemented with a new release that re-
flects the change. Our approach differs in that the pro-
posed architecture is OLAP-oriented and is capable of
handling not only changes in data sources, but also re-
quirements.

Another study that considers evolution is pre-
sented in the paper (Chen, 2010). The author pro-
poses a data warehouse solution for big data analysis
that is implemented using MapReduce paradigm. The
system supports two kinds of changes: slowly chang-
ing dimensions are managed with methods proposed
in (Kimball and Ross, 2019) and fact table changes
are handled by schema versions in metadata. Unlike
our proposal, the system does not process changes in
big data sources.

An architecture that exploits big data technolo-
gies for large-scale OLAP analytics is presented in the
paper (Sumbaly et al., 2013). The architecture sup-
ports source data evolution by means of maintaining
a schema registry and enforcing the schema to remain
the same or compatible with the desired structure.

There is also the latest study presented in (Wang

et al., 2020) dedicated to evolution problems in het-
erogeneous integrated data sources. The authors pro-
pose to use deep learning to automatically deal with
schema changes in such sources.

For our solution, we adapted the metadata model
proposed in (Quix et al., 2016) to describe data
sources of a data lake. The authors distinguish three
types of metadata: structure metadata that describe
schemata of data sources, metadata properties and se-
mantic metadata that contain annotations of source el-
ements. In our approach, we extended the model with
metadata necessary for evolution support.

3 DATA WAREHOUSE
ARCHITECTURE

To solve problems caused by the evolution, we pro-
pose a data warehouse architecture for the analysis of
big data, which supports OLAP operations and other
types of analysis on integrated data sources, as well
as includes algorithms for detecting and handling var-
ious changes in structured, semi-structured, and un-
structured data sources of a data warehouse and in-
formation requirements. The detailed description of
the architecture is given in the paper (Solodovnikova
and Niedrite, 2018). The architecture consists of var-
ious components that provide data flow and process-
ing from the source level to the data stored in the data
warehouse. The interaction of these components is
shown in the Figure 1.

The basic components of the data warehouse ar-
chitecture are data sources, data highway, metastore
and adaptation component. At the source level, data
is obtained from various heterogeneous sources (in-
cluding big data sources) and loaded into the first
level of the data highway (data processing pipeline
which may be considered as a data lake) in its orig-
inal format for further processing. Because big data
includes different types of data, the system supports
structured sources (database tables), semi-structured
sources (such as XML, JSON or CSV format), and
unstructured data (log files, photos, videos).

The data highway consists of several levels. The
idea and the concept of the data highway was first
presented in (Kimball and Ross, 2019). At the first
level, raw data is stored. The data for each subse-
quent data highway level is obtained from the pre-
vious level by performing transformations, aggrega-
tions and integrating separate data sets. Usually, data
at the later levels is updated less frequently. The num-
ber of levels, their contents and the frequency of their
updating are determined by the requirements of the
particular system. The final level of the highway is

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

106



Figure 1: Data warehouse architecture.

a data warehouse which stores structured aggregated
multidimensional data.

Business analysts can access already processed
data from pre-calculated OLAP cubes introduced to
improve query performance, but data analysts can an-
alyze data at various levels of the data highway and
are involved in the data retrieval and transformation
process. Developers access metadata at the metastore
via the metadata management tool.

The unique feature of the architecture is the adap-
tation component that is aimed at handling changes in
data sources or other levels of the data highway. The
metadata management tool is intended for users, but
the adaptation component is integrated with that tool.

4 CASE STUDY

As a proof of concept, we have applied the solution
presented in this paper to the data warehouse that
integrates data on research publications authored by
the faculty of our university. In this section, we will
briefly describe the case study system and present the
running example of the change.

4.1 Publication Data Warehouse

Data about publications are integrated from four data
sources. Structured data about faculty (authors of ar-
ticles) are acquired from the university information
system. Semi-structured data are gathered in XML
and JSON formats from the library information sys-
tem and indexing databases Scopus and Web of Sci-
ence. The system architecture consists of three lev-
els of the data highway, the last of them being a data
warehouse storing data from all four sources fully in-
tegrated within the first and second levels of the high-
way.

During the operation of the publication data ware-
house, several changes in data sources and data high-
way levels were detected by the adaptation compo-
nent or introduced manually via the metadata man-
agement tool. Such real-world changes include an ad-
dition of new data items and removal of existing data
items in data sources, addition of a new data source
and change in a value of a data set property. We
have also emulated other types of changes described
in Section 6 in order to practically verify our solution.

4.2 Running Example

In order to demonstrate our approach in the next sec-
tions of this paper, we will use a running example of
a change that occured in the publication data ware-
house. A new XML element citeScoreYearInfoList
was added to the XML document Scopus metrics ob-
tained from SCOPUS. It was composed of several
subelements that were also absent in the previously
gathered documents. Before the change, data about
other Scopus metrics were used in the data ware-
house to evaluate publications. The new metric de-
fined by SCOPUS should have been considered too in
this evaluation.

5 METADATA

The operation of the data warehouse architecture is
mainly based on the data in the metadata repository.
Using a metadata management tool and defining dif-
ferent metadata, the developer determines how the
system will work. The metadata repository stores six
types of interconnected metadata: Schematic meta-
data describe schemata of data sets stored at different
levels of the highway. Mapping metadata define the
logic of ETL processes. Information about changes in

Managing Evolution of Heterogeneous Data Sources of a Data Warehouse

107



data sources and data highway levels is accumulated
in the evolution metadata. Cube metadata describe
schemata of precomputed cubes. Adaptation meta-
data accumulate proposed changes in the data ware-
house schema. Finally, adaptation rules store addi-
tional information provided by the developer required
for change propagation.

5.1 Schematic, Mapping and Evolution
Metadata

To describe schemata of data sources and data high-
way levels necessary for the analysis along with
changes in structure and other properties of involved
data sets we developed the metadata shown in Fig-
ure 2. In this section, we briefly describe the physical
implementation of the schematic, mapping and evolu-
tion metadata. The detailed description these types of
metadata is given in the paper (Solodovnikova et al.,
2019).

5.1.1 Schematic Metadata and Mappings

The table DataSet represents a collection of
DataItems that are individual pieces of data. Data sets
are assigned FormatTypes that are stored in the table
Type and grouped into parent types. Parent types and
corresponding format types currently supported in the
system are defined in the Table 1. Data items are also
assigned types, such as table columns, XML elements
or attributes, objects or arrays in JSON, keywords or
tags that describe unstructured data sets, and others.

Table 1: Format types of data sets.

Parent Type Format Types
Structured data set Table
Semi-structured
data set

XML, JSON, CSV, RDF,
HTML, Key-Value

Unstructured data
set

Text, image, other multi-
media

A data set can be obtained from a DataSource or it can
be part of a DataHighwayLevel. In addition to data set
formats, information on the Frequency and Velocity of
a data set retrieval, being batch, near real-time, real-
time and stream is also stored. If a data set is a part
of a data warehouse, a Role in the multidimensional
model is assigned to such data set (dimension or fact)
and corresponding data items (attribute or measure).

If there is a link between different data items in
the same or across different data sets, the tables Rela-
tionship and RelationshipElement are used to connect
the respective child and parent objects. The types of

relationships supported include composition, foreign
key and predicate.

Data sets in the system are either extracted from
data sources or obtained from other levels of the data
highway, thus the information about provenance of
data sets within the data highway must be maintained
to make it possible to follow their lineage and imple-
ment change handling process. For this purpose, map-
pings were introduced in the metadata. A record in
the table Mapping indicates a transformation (saved
in the column Operation) that is used to obtain a data
item at the next data highway level from data items at
the previous levels associated via the table Mappin-
gOrigin.

5.1.2 Metadata Properties

Even though several common properties of data sets
and items, such as types, velocity, frequency, are ex-
plicitly reflected in our metadata model, there still
might be other characteristics of data that are neces-
sary to be stored. Examples of such properties include
file names, sizes, character sets, check constraints,
data types, mechanism used to retrieve data from a
data source (for instance, API request), etc. To this
end, we included the table MetadataProperty. Any
name:value pair relevant to schema elements present
in the model can be added to the metadata. Consider-
ing that various elements may possess different prop-
erties, such approach allows for some flexibility. Fur-
thermore, it allows to store user-defined properties or
so-called conversational metadata associated with the
Author who recorded the property.

5.1.3 Evolution Metadata

Thus far, we have discussed the schematic and map-
ping metadata, however, the infomation on evolution
of data sets must also be maintained in the metastore.
Hence, we identified a set of change types that are
discussed in more detail in the section 6.1, as well as
we included the table Change intended for recording
changes that have been automatically discovered or
introduced manually. Every record of this table stores
a date and time of the change, its Type, Status (new,
propagated or in process of propagation) and is asso-
ciated with a schema element affected by the change.
The columns AttrName, OldAttrValue and NewAttr-
Value are filled with a name, previous and updated
values of a property if a value has been changed. If
the change was produced manually, we associate it
with the corresponding Author.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

108



Figure 2: Schematic and evolution metadata model.

5.1.4 Running Example

The schematic metadata of the publication data ware-
house were gathered automatically and supplemented
by additional information manually. The informa-
tion about Scopus metrics and the addition of a new
element as indicated in Section 4.2 was represented
in metadata as shown in the table 2. The table
shows an example of a relationship between the par-
ent element citeScoreYearInfoList and the child ele-
ment citeScoreCurrentMetric in XML document. The
new element citeScoreYearInfoList included a more
complicated hierarchy of child elements that are not
diplayed in the table due to space limitations.

5.2 Adaptation Metadata

After changes have been recorded in the metadata by
the change discovery algorithm, the change handling
mechanism of the adaptation component determines
possible scenarios for each change propagation. The
information about possible scenarios for each change
type is stored in the adaptation metadata. Scenarios

Table 2: Metadata describing the addition of a new element.

Table Data References
DataSource SCOPUS
DataSet Scopus met-

rics
DataSource:
SCOPUS

DataItem citeScore-
YearInfoList

DataSet: Scopus
metrics

DataItem citeScore-
CurrentMetric

DataSet: Scopus
metrics

Relationship Type: Com-
position

Parent: citeScore-
YearInfoList

Relationship-
Element

Child: citeScore-
CurrentMetric

Change Type: Addi-
tion

DataItem:
citeScoreYear-
InfoList

that may be applied to handle changes are provided to
the data warehouse developer who chooses the most
appropriate ones that are to be implemented. Since
certain scenarios may require additional data from the
developer, such data are entered by the developer via

Managing Evolution of Heterogeneous Data Sources of a Data Warehouse

109



the metadata management tool and stored in the adap-
tation rules metadata after the respective scenario has
been chosen.

The Figure 3 demonstrates the adaptation meta-
data model utilized in the change handling mecha-
nism. The model incorporates three tables from the
evolution and schema metadata (Figure 2): Change,
Types and Author. The table Change stores informa-
tion about identified changes. It is possible to deter-
mine which type of change has occurred by process-
ing entries in this table. The overall change handling
process is based on the records in this table.

The table Author stores information about system
users. This table is used to identify which user per-
formed adaptation after a certain change in the sys-
tem. The table Type is used as a classifier, which de-
termines the types of various elements used in the sys-
tem. To implement the evolution mechanism, several
types and subtypes have been created for storing dif-
ferent statuses and data types in the adaptation meta-
data.

5.2.1 Change Adaptation Scenarios and
Operations

The tables ChangeAdaptationOperation and
ChangeAdaptationScenario are intended for storing
information about change adaptation scenarios and
operations to be performed to implement each
scenario. These tables are filled with data manually
before any changes occur.

Change adaptation operations are steps that must
be taken to handle a change in the system. They
are defined as short and universal as possible. Each
of the operations is stored as a record in the table
ChangeAdaptationOperation. An operation is as-
signed a type that indicates whether it can be per-
formed manually or automatically. In the former case,
the column Operation stores a textual description of
what the developer must do to perform the operation.
In the latter case, the column Operation stores the
name of the procedure to be executed.

A change adaptation scenario is a series of sequen-
tial operations that are performed to successfully han-
dle a change in the system. Multiple adaptation sce-
narios correspond to each change type. The steps of
each scenario are stored in the table ChangeAdapta-
tionScenario. Each step of a scenario contains a ref-
erence to the adaptation operation, a change type, as
well as a parent record identifier from the same table.
Storing the parent record identifier maintains the se-
quence of operations. First steps of each scenario do
not have parent records. Each next step contains a ref-
erence to the previous step. Such structure facilitates
adjustments. For example, adding an operation in the

middle of a scenario requires only two table records
to be edited.

Several scenarios may overlap in terms of their op-
erations, therefore operations are stored in the sepa-
rate table to avoid duplication of information in the
metadata.

In order to follow the change handling process and
store information about the execution of each opera-
tion, we introduced the table ChangeAdaptationPro-
cess which stores the adaptation scenario correspond-
ing to each actual change. This table is populated
automatically during the change handling process.
When a change has taken place, the adaptation com-
ponent inserts potential alternative adaptation scenar-
ios into the table ChangeAdaptationProcess for that
change. Each record in the table ChangeAdaptation-
Process stores the link to the operation of the adap-
tation scenario (defined in the table ChangeAdapta-
tionScenario). We also store a reference to a record
of the table Change to identify which of the changes
is being handled. In order to keep track of the change
handling process, the status of the operation to be per-
formed (whether the operation has been performed or
not) is also stored, as well as the date, time and the
user who executed or launched the operation.

5.2.2 Branching Conditions of Change
Adaptation Scenarios

To store the branching conditions of adaptation sce-
narios and to manage the fulfillment of the conditions,
the tables ChangeAdaptationCondition and CaCon-
ditionMapping have been introduced. Although the
type of change can be determined at the time of its
occurrence, it does not guarantee the existence of an
unambiguous change adaptation scenario. There are
various conditions under which a scenario can branch
out. They can be evaluated automatically or manu-
ally. In the former case, the adaptation component
determines which of the scenario branches to follow.
In the latter case, the developer needs to evaluate the
specific situation and make a decision.

Just like operations, the conditions for handling
different types of changes overlap, so they are stored
in a separate table ChangeAdaptationCondition. Each
record of this table stores the type of the condition
(whether the condition is evaluated manually or auto-
matically) and the condition definition. If the condi-
tion is executable manually, a textual description that
must be evaluated by the developer is stored in the
column Condition. If the condition is automatically
evaluable, the name of the function to be executed is
stored there. The conditions are manually described
for each change type in advance and are entered in the
table before any changes occur.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

110



Figure 3: Adaptation metadata model.

Because each operation that is executed within a
scenario can have multiple conditions, the table Ca-
ConditionMapping is used to provide the N:N rela-
tionship between the tables ChangeAdaptationCondi-
tion and ChangeAdaptationScenario.

Conditions that can be evaluated automatically
can be checked before each operation since they do
not require the intervention of the developer. Thus,
it is possible to automatically move along one of the
branches defined in the scenario. However, when per-
forming a manual condition evaluation (the developer
decides on the future course of the scenario), it is nec-
essary to keep information about the decision the de-
veloper has made in order for this decision to be taken
into account throughout the whole change handling
process.

The table CaManualConditionFulfillment is used
to store decisions of the developer. Records in this ta-
ble are linked to the particular change and condition
as well as determine the condition fulfillment status
(whether the condition is fulfilled or not). The table
CaManualConditionFulfillment is filled in automati-
cally during the specific change handilng process.

5.2.3 Additional Information for the Change
Handling Process

During the change handling process, various addi-
tional data may be required to be provided by the de-
veloper. Such data might be needed to perform oper-
ations included in the scenario as well as to evaluate
conditions.

If any additional information from the developer

is required during the change handling, it is saved
in the table ChangeAdaptationAdditionalData, which
stores the reference to the table Change, the informa-
tion on the purpose for which the additional data is
used, as well as the data itself. The format of the data
depends on the type of data. For example, storing
only the identifier will be a simple number. However,
there might be situations when data has another for-
mat (JSON, XML, CSV, etc.), therefore, a textual data
type with a large capacity is used for the column Data.

6 EVOLUTION SUPPORT

The main element of the proposed architecture that
is responsible for handling changes in data sources
and information requirements is the adaptation com-
ponent. Its main task is to detect changes that have
taken place and to generate change adaptation scenar-
ios for each change. To ensure the desired function-
ality, the adaptation component uses data in the meta-
data repository, as well as additional data that cannot
be automatically identified, in which case the devel-
oper provides this data manually using the metadata
management tool. When the developer has chosen the
specific scenarios to execute and provided all neces-
sary data or scenacio choice has been made automati-
cally based on the evaluation of automatic conditions,
the adaptation component manages the execution of
scenarios. Since data from data sources are loaded
into the data highway initially in their original for-
mat, the data acquisition may continue even during

Managing Evolution of Heterogeneous Data Sources of a Data Warehouse

111



the change handling process. In this section, we con-
centrate on changes supported in our proposed solu-
tion as well as their propagation mechanism.

6.1 Atomic Changes

Various kinds of changes to data sets employed in
each level of the data highway must be handled by
the adaptation component. The list of atomic changes
supported in our proposed solution classified accord-
ing to the part of the metadata model they affect fol-
lows:

• Schematic Changes: addition of a data source,
deletion of a data source, addition of a data high-
way level, deletion of a data highway level, addi-
tion of a data set, deletion of a data set, change of
data set format, renaming a data set, addition of
a data item, change of a data item type, renam-
ing a data item, deletion of a data item from a
data set, addition of a relationship, deletion of a
relationship, addition of a mapping, deletion of a
mapping;

• Changes in Metadata Properties: addition of a
metadata property, deletion of a metadata prop-
erty, update of an attribute value.

Most of these changes may be identified automati-
cally by the change discovery algorithm implemented
as a part of the adaptation component and described
in detail in the paper (Solodovnikova and Niedrite,
2020). Manually introduced changes are processed by
the metadata management tool, however, automatic
change discovery is triggered when any new data are
loaded from data sources into the data highway by
wrappers or during ETL processes.

Initially, the change detection algorithm gath-
ers schema metadata and properties of existing data
sources and data highway levels in temporary meta-
data. For metadata collection, special procedures are
used depending on the format of data sets. Struc-
tured, semi-structured and unstructured data sets are
handled by different procedures. To identify changes
in metadata, a change discovery algorithm first pro-
cesses data sources and data highway levels, then data
sets and data items, and finally mappings and rela-
tionships. For each processed element, the algorithm
compares metadata describing the element available
in the metastore with collected temporary metadata
and identifies differences that determine types of
atomic changes occured. The identified changes are
then saved in the table Change.

6.2 Change Adaptation Scenarios

After any changes have been detected, the adapta-
tion component of our proposed architecture must
first generate potential adaptation scenarios for each
change and then execute scenarios according to
branching conditions. We have predefined adapta-
tion scenarios for each change type and operations
necessary for each scenario. In total, 34 differ-
ent change adaptation scenarios were defined for 19
atomic changes. The average proportion of automatic
operations and conditions within each change adapta-
tion scenario is almost 47%. In the following subsec-
tions, scenarios for each atomic change are described.

6.2.1 Addition of a Data Source

If a new data source is required for decision mak-
ing, examples of data sets from the new source must
be added manually so that the metadata collection
procedures can generate the necessary metadata for
the new source structure. The adaptation component
must then create the data structures according to the
data sets of the new source at the first level of the
data highway (see the change 6.2.5). The developer
must then define schemas of other new data highway
levels, ETL processes, and create the corresponding
metadata.

6.2.2 Deletion of a Data Source

If a data source from which data was previously
downloaded is no longer available, then three manual
adaptation scenarios are possible:

• Replacement of a Missing Data Source with Data
from Other Sources. The objective of this sce-
nario is to make it possible to continue data load-
ing to data items that depend on the deleted data
source. To implement the replacement of the
deleted data source, the developer must provide
information on alternative data sources. For each
data item from the missing source, an alternative
data item from another source must be specified
or a formula that calculates data items of the miss-
ing source from data items of other sources must
be provided. For this adaptation scenario, it may
be necessary to add metadata describing the data
structure and properties of the new data source
(see the change 6.2.1).

• Data Source Skipping. If replacement of a miss-
ing data source is not possible, data items that de-
pend on the missing data source can not be further
updated. The adaptation scenario in such a case
includes the modification of ETL processes (not

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

112



filling dependent data items) and modification of
the mapping metadata.

• Hybrid Scenario. If it is possible to replace part
of data items that were obtained from the missing
source, for such data items new ETL processes,
data structure of new sources (if needed) and other
properties must be defined. Other data items that
can not be obtained any more are left blank.

6.2.3 Addition of a Data Highway Level

If the developer has added a new data highway level,
for this change the adaptation scenario consists of
describing the data structure of the new level in the
metadata, creating the data structure according to the
definition and defining ETL processes in the mapping
metadata. If any new data source is required to popu-
late the new data highway level, the metadata describ-
ing the data structure of the source must be obtained
automatically. In this case, the developer must pro-
vide examples of data sets from the new data source
to detect the data structure.

6.2.4 Deletion of a Data Highway Level

If the developer has deleted a data highway level, it
must be examined whether data sets of other data
highway levels depend on the deleted level. If such
data sets exist, ETL processes must be modified to
replace the missing data highway level. This can be
done automatically if a data source that was used to
retrieve the deleted data is available. If the data source
is not available, this change should be treated as the
change 6.2.2.

6.2.5 Addition of a Data Set

If the developer has added a data set to a data highway
level, then this change is implemented manually. The
developer must define the structure (data items) of the
new data set, the data highway level to which the new
data set is added, the mapping metadata and metadata
properties. If an additional data source is required to
obtain data for the new data set, it must be added by
implementing the change 6.2.1.

If a new data set is added to a data source, the
data set metadata should be automatically collected
and the new data set must be added to the first level of
the data highway.

6.2.6 Deletion of a Data Set

The following adaptation scenarios are possible for
this change type, depending on the origin of the
deleted data set.

If a data set is deleted from a data source, three
manual adaptation scenarios are possible:

• Replacement of a Deleted Data Set with Data
from Other Data Sets. This scenario is possible
only if the developer can provide information on
alternative data sets. For each data item in the
deleted data set, an alternative data item from an-
other data set must be specified or a formula that
calculates data items of the deleted data set from
data items of other data sets must be provided.
For this adaptation scenario, it may be necessary
to add metadata describing the data structure and
properties of the new data set (see the change
6.2.5).

• Data Set Skipping. If replacement of a deleted
data set is not possible, data items that depend on
the deleted data set are not further updated. The
adaptation scenario includes the modification of
ETL processes (not filling dependent data items)
and mapping metadata adjustment.

• Hybrid Scenario. If it is possible to replace part
of a data items belonging to the deleted data set,
then for such data items new ETL processes, data
structure of new sources (if needed) and other
properties must be defined.

If the developer has deleted a data set from a data
highway level, it must be determined whether other
data sets depend on the deleted set. If such datasets
exist, ETL processes must be modified to replace the
deleted data set. This can be done automatically if the
data source that was used to retrieve the deleted data
set is still available. If the data source is not available,
this change must be handled as one of the scenarios
described in this subsection for the case when a data
set is deleted from a data source.

6.2.7 Change of Data Set Format

If only a data set format has changed and its struc-
ture (data items) has remained the same, such change
can be propagated automatically if it is possible to re-
define related ETL processes to use a different data
set format. This implies that mapping metadata must
be modified to use a different format for data load.
Such a solution may also require additional informa-
tion from the developer on the modification of ETL
processes.

If there have been considerable changes in the for-
mat, for example from unstructured data to structured
data or vice versa, then they would probably result in
the change of the structure of the data set. Hence, such
change must be processed as deletion and addition of
data items (see the changes 6.2.9 and 6.2.12).

Managing Evolution of Heterogeneous Data Sources of a Data Warehouse

113



6.2.8 Renaming a Data Set

This change is handled automatically as it only affects
metadata and possibly ETL processes. The adapta-
tion scenario consists of renaming the data set in the
table DataSet and transforming ETL processes to re-
flect the new data set name.

6.2.9 Addition of a Data Item

If a data item has been added to an existing data set
which is a part of a data highway level, the metadata
of the new data item must be created. If the developer
has made this change, he or she must specify a name,
type, and (if applicable) data warehouse role of the
new data item, the data set that contains the new data
item, mapping metadata, and metadata properties. If
an additional data source which was not previously
used in the system is required for data loading, it must
be added by implementing the change 6.2.1.

If a new data item has been added to a source data
set, such change must be processed automatically.
Metadata describing the new data item must be col-
lected by the adaptation component, and the new data
item must be added to the data set at the first level of
the data highway that corresponds to the source data
set.

6.2.10 Renaming a Data Item

This change only affects metadata and possibly ETL
processes, thus it is handled automatically. Similarly
as in the case of data set renaming, the adaptation sce-
nario consists of renaming the data item in the table
DataItem and transforming ETL processes to reflect
the new data item name.

6.2.11 Change of a Data Item Type

The change of a data item type can be handled auto-
matically if it is possible to redefine ETL processes
affected by the change to use another data item type.
In such as case, the mapping metadata are updated
to reflect the changed data type. To implement such
adaptation scenario, an additional information from
the developer on the modification of ETL processes
might be required.

6.2.12 Deletion of a Data Item from a Data Set

Several adaptation scenarios are possible for this
change type, depending on the origin of the deleted
data item.

If the deleted data item belonged to a source data
set, two adaptation scenarios can be applied:

• Replacement of a Deleted Data Item with Data
from Other Sources or Data Sets. In order to
implement this adaptation scenario, the developer
must provide additional information on an alter-
native data item or a formula that calculates the
deleted data item from other data items. Since the
alternative data item of other data items used in
the formula might not be present in the system, it
may be necessary to add metadata about the struc-
ture and properties of the new data items (see the
change 6.2.9).

• Data Item Skipping. If the deleted data item can
not be replaced by others or calculated by any for-
mula, it is necessary to determine data items of the
data highway affected by the change and modify
ETL processes along with the mapping metadata
to skip these affected data item.

If the developer has deleted a data item from a data
set that is a part of a data highway level, any other
data items that have been obtained from the deleted
data item must be identified by analysing the map-
ping metadata. If such data items exist, the deleted
data item should be replaced in the mapping metadata
and ETL processes. Such replacement is performed
automatically if a data source from which the deleted
data item was extracted is still available. If the data
source is not available any more, the change must be
proocessed by one of the above described scenarios.

6.2.13 Addition of a Relationship

This change may be required for processing other
changes, such as addition of a new data set (see sub-
section 6.2.5). This change may also affect ETL pro-
cesses. If a new relationship between data items is
defined in the data source, this information should be
recorded in the metadata. The developer must be in-
formed of the change so that he or she decides on the
further use of this information.

6.2.14 Deletion of a Relationship

If a relationship between data items has been deleted,
the adaptation scenarios of this change depend on the
type of the relationship.

• If the deleted relationship is a foreign key, it must
be determined which ETL processes use that for-
eign key to connect data. The developer must be
notified of the change. The information on the
mapping metadata where the foreign key is used is
included in the notification. Further change han-
dling must be performed manually.

• There is a special case of a relationship with
the type Composition that is handled differently.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

114



Such relationships may exist between data items
in XML or JSON documents. Deleting a rela-
tionship with the type Composition means that the
structure of XML or JSON elements has changed
and one of the data items has been moved else-
where in the document structure. Thus, such in-
formation must be determined and, in order to
handle the deletion of a composition relation-
ship, a new relationship with the type Composi-
tion needs to be established according to the new
document structure.

6.2.15 Addition of a Mapping

A new mapping may only be added manually by the
developer using the metadata management tool. To
handle this change type, a transformation function
that calculates a data item from other data items must
be specified. Data items must be previously created in
the data highway and metadata describing them must
already be available.

6.2.16 Deletion of a Mapping

If a mapping has been deleted, there are two possible
adaptation scenarios:

• Replacement of a Transformation Function. A
data item obtained using a transformation func-
tion included in the deleted mapping should be
replaced by another function, if it is possible. In
this case, the developer adds information about
the mapping replacement and the adaptation com-
ponent adds a new mapping by performing the
change 6.2.15. If necessary, new data items or
data sets are also added.

• Deletion. If it is not possible to replace the map-
ping by another mapping, the adaptation compo-
nent marks the mapping as deleted and removes
the deleted mapping from ETL processes.

6.2.17 Addition of a Metadata Property

If a new property has been added to an element in the
schematic metadata, the developer must be notified
about the change and must make a decision regarding
further usage of the new property. Hence, this change
is processed manually.

6.2.18 Deletion of a Metadata Property

If a change discovery algorithm detects a deletion
of a metadata property, it is necessary to determine
whether any ETL procedures use the missing prop-
erty. In this case, it must be assessed whether the ETL

processes can be automatically adapted or whether
additional information from the developer is required.

6.2.19 Update of an Attribute Value

If a value of an attribute has been updated and that
modification has not been recorded as another change
type (for example, as a change of data set format
or data item type), it must be checked whether the
changed attribute has been used in ETL procedures.
In this case, all dependent ETL procedures must be
adapted to utilize the new value of the attribute.

6.3 Change Propagation

In order to successfully propagate any change to the
data highway, the change handling mechanism an-
alyzes schematic and mapping metadata as well as
adaptation scenarios and operations predefined for
each change type. Based on the analysis results, the
mechanism populates tables ChangeAdaptationPro-
cess and CaManualConditionFulfillment included in
the adaptation metadata and tries to apply automatic
conditions and operations. There are two stages of the
change handling mechanism described in detail in the
following sections.

6.3.1 Initial Change Processing

The goal of this stage is to determine potential change
adaptation scenarios and create initial records in the
tables ChangeAdaptationProcess and CaManualCon-
ditionFulfillment.

The high-level pseudocode of the initial change
processing stage implemented as a procedure Creat-
eChangeAdaptProcess is presented as Algorithm 1.
First, the procedure selects data on changes with the
status New. Then for each new change, the change
type is determined by the function GetChangeType
by analyzing data in the table Change. After
that, all scenario steps predefined for the change
type are selected in the correct order and the func-
tion InsertChangeAdaptationProcess inserts records
that correspond to each scenario step into the table
ChangeAdaptationProcess. Then, manual conditions
for the current scenario step are selected from the ta-
ble ChangeAdaptationCondition, linked with the cur-
rently processed change and saved in the table Ca-
ManualConditionFulfillment with the status Not ex-
ecuted. Finally, the status of the change is updated
to In progress so that handling of this change can be
considered as initiated.

Managing Evolution of Heterogeneous Data Sources of a Data Warehouse

115



Algorithm 1: Initial change processing.

Procedure CreateChangeAdaptProcess()
while exists Change C where C.status =
’New’ do

vProcessCreated← false;
vChangeType← GetChangeType(C);
if vChangeType is not null then

foreach scenario step S that exists
for vChangeType do

P← InsertChangeAdaptation-
Process(S,C);

InsertManualCondition-
Fulfillment(P,S,C);

vProcessCreated← true;
end
if vProcessCreated then

UpdateChangeInProgress(C);
end

end
end

end

6.3.2 Scenario Execution

After initial change processing, the second stage of
the change handling mechanism - scenario execu-
tion is run. Scenario execution is based on condi-
tion checks and execution of operations. Change han-
dling steps can be both automatic and manual, and
the developer can make decisions about the change
handling process. If the execution of the scenario re-
quires the intervention of the developer, the algorithm
is stopped and resumed only when the developer has
made his or her decision regarding manual conditions
or performed the specified operation.

The Algorithm 2 demonstrates the pseudocode
of the procedure RunChangeAdaptationScenario that
executes an adaptation scenario for the specific
change. First, the function GetChangeAdaptation-
ProcessSteps retrieves the adaptation process steps
defined during the initial change processing and
stored in the table ChangeAdaptationProcess. Then
for each step that has not been previously executed
and has a status Not adapted, the adaptation process
is continued only if it is necessary to perform an au-
tomatic operation, as well as the corresponding con-
ditions are met. Manual conditions are checked us-
ing the table CaManualConditionFulfillment. For au-
tomatically executable conditions, a procedure name
is obtained from the column Condition of the table
ChangeAdaptationCondition. By running the cor-
responding procedure it is possible to evaluate the
condition fulfillment. Following the same princi-

Algorithm 2: Scenario execution.

Procedure
RunChangeAdaptationScenario(C: Change)

Steps←
GetChangeAdaptationProcessSteps(C);

foreach process step S in Steps do
if S.StatusType = Not adapted then

O← GetProcStepOperation(S);
if O.OperationType = Automatic

and ConditionsFulfilled(C, S)
then

ExecuteAdaptationProc(C,O);
SetProcessStepAdapted(S);

end
exit;

end
end

end

ple, the procedures for performing the steps of the
change adaptation process are also executed. Their
names are stored in the column Operation of the table
ChangeAdaptationOperation.

6.4 Running Example

The change described in Section 4.2 corresponds to
the atomic change type Addition of a Data Item to an
existing source data set. For the running example, the
change occured was discovered automatically by the
change discovery algorithm during the execution of
ETL process. The information about the change was
registered in metadata as shown in the table 2.

According to the scenario described in Section
6.2.9 for the case of a data source extension, this
change is propagated automatically. The metadata
describing the structure of a new element was al-
ready gathered by the change discovery algorithm,
so the change handling mechanism must just copy
the metadata describing structure of the new element
citeScoreYearInfoList from the source metadata to the
metadata describing the corresponding data set at the
first level of the data highway and inform the devel-
oper about new data became available. Such change
does not affect the operation of the system, so the de-
veloper may anytime decide how to use new data.

7 CONCLUSIONS

In this paper, we presented our approach to dealing
with changes in heterogeneous data sources caused
by their evolution as well as development of infor-

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

116



mation requirements. We proposed a data warehouse
architecture that includes data acquisition from vari-
ous sources, as well as ETL processes for transform-
ing data into an integrated structure so that it can be
loaded into a data warehouse. The operation of the
system is based on metadata that describe schema
of all data sets involved in the system as well as all
changes identified by the change discovery algorithm.

The main contribution of this paper is the mech-
anism for processing of discovered changes and
changes performed manually. As a proof of concept,
the proposed solution has been successfully applied
to the publication data warehouse.

There are several benefits of the proposed ap-
proach comparing to manual processing of changes in
data sources and information requirements. Changes
of certain types are discoverable automatically and
comprehensive information about changes occurred is
available to the developer. Management of evolution
is ensured with less human participation. Change pro-
cessing is transparent as all operations performed and
conditions verified are available to the developer. The
proposed approach is flexible and may be extended
by defining additional operations and conditions in
the corresponding metadata tables, then building new
change adaptation scenarios from them and assigning
these scenarios to change types.

Possible directions of future work include defini-
tion of preferences regarding adaptation scenarios for
various change types that are expressed by the devel-
oper to be used to choose scenarios automatically.

ACKNOWLEDGEMENTS

This work has been supported by the European
Regional Development Fund (ERDF) project No.
1.1.1.2./VIAA/1/16/057.

REFERENCES

Ahmed, W., Zimányi, E., and Wrembel, R. (2014). A logi-
cal model for multiversion data warehouses. In Data
Warehousing and Knowledge Discovery, pages 23–34,
Cham. Springer International Publishing.

Bentayeb, F., Favre, C., and Boussaid, O. (2008). A
user-driven data warehouse evolution approach for
concurrent personalized analysis needs. Integrated
Computer-Aided Engineering, 15(1):21–36.

Chen, S. (2010). Cheetah: A high performance, custom data
warehouse on top of mapreduce. Proc. VLDB Endow.,
3(1–2):1459–1468.

Cuzzocrea, A., Bellatreche, L., and Song, I.-Y. (2013). Data
warehousing and olap over big data: Current chal-

lenges and future research directions. In Proceedings
of the 16th International Workshop on Data Ware-
housing and OLAP, DOLAP ’13, page 67–70, New
York, NY, USA. ACM.

Golfarelli, M., Lechtenbörger, J., Rizzi, S., and Vossen, G.
(2006). Schema versioning in data warehouses: En-
abling cross-version querying via schema augmenta-
tion. Data & Knowledge Engineering, 59(2):435 –
459.

Holubová, I., Klettke, M., and Störl, U. (2019). Evolu-
tion management of multi-model data. In Heteroge-
neous Data Management, Polystores, and Analytics
for Healthcare, pages 139–153, Cham. Springer In-
ternational Publishing.

Kaisler, S., Armour, F., Espinosa, J. A., and Money, W.
(2013). Big data: Issues and challenges moving for-
ward. In 2013 46th Hawaii International Conference
on System Sciences, pages 995–1004.

Kimball, R. and Ross, M. (2019). The data warehouse
toolkit: The definitive guide to dimensional modeling,
ed. wiley.

Malinowski, E. and Zimányi, E. (2008). A conceptual
model for temporal data warehouses and its transfor-
mation to the er and the object-relational models. Data
& Knowledge Engineering, 64(1):101 – 133.

Nadal, S., Romero, O., Abelló, A., Vassiliadis, P., and Van-
summeren, S. (2019). An integration-oriented ontol-
ogy to govern evolution in big data ecosystems. Infor-
mation Systems, 79:3 – 19.

Quix, C., Hai, R., and Vatov, I. (2016). Metadata extraction
and management in data lakes with gemms. Complex
Systems Informatics and Modeling Quarterly, (9):67–
83.

Solodovnikova, D. and Niedrite, L. (2018). Towards a
data warehouse architecture for managing big data
evolution. In Proceedings of the 7th International
Conference on Data Science, Technology and Ap-
plications, DATA 2018, page 63–70, Setubal, PRT.
SCITEPRESS - Science and Technology Publications,
Lda.

Solodovnikova, D. and Niedrite, L. (2020). Change discov-
ery in heterogeneous data sources of a data warehouse.
In Databases and Information Systems, pages 23–37,
Cham. Springer International Publishing.

Solodovnikova, D., Niedrite, L., and Niedritis, A. (2019).
On metadata support for integrating evolving hetero-
geneous data sources. In New Trends in Databases
and Information Systems, pages 378–390, Cham.
Springer International Publishing.

Sumbaly, R., Kreps, J., and Shah, S. (2013). The big data
ecosystem at linkedin. In Proceedings of the 2013
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’13, page 1125–1134, New
York, NY, USA. ACM.

Wang, Z., Zhou, L., Das, A., Dave, V., Jin, Z., and Zou, J.
(2020). Survive the schema changes: Integration of
unmanaged data using deep learning. arXiv preprint
arXiv:2010.07586.

Wojciechowski, A. (2018). Etl workflow reparation by
means of case-based reasoning. Information Systems
Frontiers, 20(1):21–43.

Managing Evolution of Heterogeneous Data Sources of a Data Warehouse

117


