
Performance Analysis of Different Operators in Genetic Algorithm for
Solving Continuous and Discrete Optimization Problems

Shilun Song1, Hu Jin1 and Qiang Yang2,∗

1Department of Electrical and Electronic Engineering, Hanyang University, Ansan, 15588, South Korea
2School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China

Keywords: Genetic Algorithm, Nonlinear Optimization, Traveling Salesman Problem.

Abstract: Genetic algorithm (GA), as a powerful meta-heuristics algorithm, has broad applicability to different opti-
mization problems. Although there are many researches about GA, few works have been done to synthetically
summarize the impact of different genetic operators and different parameter settings on GA. To fill this gap,
this paper has conducted extensive experiments on GA to investigate the influence of different operators and
parameter settings in solving both continuous and discrete optimizations. Experiments on 16 nonlinear opti-
mization (NLO) problems and 9 traveling salesman problems (TSP) show that tournament selection, uniform
crossover, and a novel combination-based mutation are the best choice for continuous problems, while roulette
wheel selection, distance preserving crossover, and swapping mutation are the best choices for discrete prob-
lems. It is expected that this work provides valuable suggestions for users and new learners.

1 INTRODUCTION

Since Holland (Holland, 1992) came up with the first
generation of GA in 1975, GA and its variants have
been used in many fields, like traveling salesman
problems(Wang et al., 2020), wireless sensor net-
work(Zorlu et al., 2017), feature selection(Li et al.,
2009)(Huang et al., 2010), etc. However, few re-
search exists on discussing in detail the impact of dif-
ferent operators and parameters on the performance
of GA.

As shown in figure 1, there are mainly three types
of operators in GA: selection operator, crossover op-
erator, and mutation operator. The selection operator
mainly chooses promising parents for the crossover
operator. The crossover operator aims to exchange the
information of parent individuals to generate new off-
spring. The mutation operator is to generate new val-
ues of variables based on some rules. By repeatedly
applying these three operators, the optima of prob-
lems may be found.

To comprehensively investigate the performance
of different operators and parameters in GA, we con-
duct extensive experiments on both continuous and
discrete problems. Specifically, on continuous prob-
lems, we use the nonlinear optimization (NLO) prob-

∗Corresponding author.

Start

Initialization

Evaluation Selection

CrossoverMutation

End Condition

End

Yes

No

Figure 1: The overall framework of genetic algorithm (GA).

lems as the representatives to conduct experiments,
while on discrete problems we use the traveling sales-
man problems (TSP) as the representatives.

In the literature, there are some researches work-
ing on the comparison of selection operators (Zhong
et al., 2005) (Chen et al., 2020), crossover operators
(Pinho and Saraiva, 2020), and the combinations of
crossover and mutation operators (Hildayanti et al.,
2018) on NLO. For TSP problems, researchers have
also developed many variants of GA from different
perspectives, like improvement for selection opera-
tors (Yu et al., 2016), crossover operators (Freisleben

536
Song, S., Jin, H. and Yang, Q.
Performance Analysis of Different Operators in Genetic Algorithm for Solving Continuous and Discrete Optimization Problems.
DOI: 10.5220/0010494005360547
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 1, pages 536-547
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

and Merz, 1996), mutation operators (Zhou and Song,
2016), and the combination of the above two opera-
tors (Yu et al., 2011).

Different from existing studies, this paper aims to
give a full-scale introduction and analysis of different
operators and parameter settings on GA.

The remainder of this paper is organized as fol-
lows. In section 2, we discuss the continuous and
discrete optimization problems. Then, in section 3,
we show the involved genetic operators for the two
types of problems in detail. In section 4, numerical
experiments are conducted to show the performance
of different operators. Finally, we give the conclusion
in section 5.

2 CONTINUOUS AND DISCRETE
OPTIMIZATION PROBLEMS

2.1 Continuous Optimization Problem

In the real world, NLO widely exists in many fields
in different forms, like autonomous surface vehicles
(Eriksen and Breivik, 2017), optimal placement prob-
lems (Almunif and Fan, 2017), and signal source lo-
calization (Ma et al., 2017), etc. This kind of prob-
lems become considerably difficult to solve as the di-
mensionality increases (Yang et al., 2020). Except for
GA, there are also researches which apply other evo-
lutionary algorithms to solve this type of problems,
just like ant colony optimization (Yang et al., 2017b)
and estimation of distribution algorithms (Yang et al.,
2017a).

The target of NLO is expected to achieve the opti-
mal solution under some restrictions, and the feasible
solutions are taken from the continuous set. NLO can
be noted as

maximize/minimize f (x),
sub ject to x ∈X

where f (x) is a nonlinear objective function, and X
is the domain of the target function . For the conve-
nience of discussion, we note the feasible solution x
as an M-dimensional vector (x1,x2, . . . ,xM).

Based on the property that whether there are mul-
tiple optima in the solution space, NLO is roughly
categorized into two types: unimodal problems and
multimodal problems.

• Unimodal Problem. There is only one optimum,
namely the global optimum, for this kind of prob-
lems, as shown in figure 2. Such a property leads
to that this type of problems is relatively easy to
solve.

Figure 2: An example of unimodal functions.

• Multimodal Problem. As shown in figure 3,
there are more than one local optima around the
global one. This type of problems is more com-
mon and complex in the real world applications.
Thus, we pay more attention to this type of func-
tions.

Figure 3: An example of multimodal functions.

2.2 Discrete Optimization Problem

TSP is a typical and complex kind of discrete prob-
lems. Many optimization problems in real-world ap-
plications could be modeled as TSP, like multi-bridge
machining schedule (Li et al., 2017), 3-D printing
(Ganganath et al., 2016) and unmanned aircraft sys-
tems (Xie et al., 2019).

Let V = {v1,v2, . . . ,vM} be the city set, where vi
represents the city indexed by i. The cost from city
i to j is noted as ci j. For simplicity, the problems
in the following discussion are limited to symmetric
TSP, which means that ci j = c ji for ∀i, j.

Likewise, we note a route as x = (x1,x2, . . . ,xM),
whose total distance is noted as

f (x) =
M

∑
i=1

cxixi+1

where xM+1 = x1. The purpose is to search for the
optimal route which brings the minimal cost. Figure
4 shows the optimal route for the a280 instance. Our
example data comes from TSPLIB (http://elib.zib.de/
pub/mp-testdata/tsp/tsplib/tsp/index.html).

Performance Analysis of Different Operators in Genetic Algorithm for Solving Continuous and Discrete Optimization Problems

537

0 50 100 150 200 250 300

x

0

50

100

150

y
a280.tsp

Figure 4: The optimal route of a280.

3 GENETIC OPERATORS

In this part, related evolutionary operators are dis-
cussed. Suppose there are N individuals that get in-
volved in the evolution. The whole population is
noted as U = {u1,u2, . . . ,uN}. The fitness value of in-
dividual ui is noted as αi. All fitness values are listed
in the fitness value vector Θ = (α1,α2, . . . ,αN).

3.1 Encoding Method

3.1.1 NLO Encoding

For NLO, each dimension of the chromosome is
coded with a real number within the feasible range.
As a consequence, each chromosome represents a fea-
sible solution in the solution space.

3.1.2 TSP Encoding

The chromosome for TSP is set as a permutation of
the cities. For example, a feasible solution of 9-city
TSP is shown in figure 5.

9 4 7 5 3 6 1 8 2

Figure 5: A chromosome of GA when solving a TSP in-
stance with 9 cities.

3.2 Initialization Operator

3.2.1 NLO Initialization

As for NLO, the genes are randomly sampled in the
corresponding value ranges.

3.2.2 TSP Initialization

For TSP, the greedy method is used to initialize the
routes as shown in algorithm 1.

Algorithm 1: TSP Initialization.

Input: the number of cities M.
Output: a new route r1r2 . . .rM .

1: Initialization: an empty route
2: Randomly choose a city v′1
3: r1← v′1
4: for i = 2 to M do
5: Choose the city v′i that is the nearest to v′i−1

and not included in the route yet.
6: ri← v′i
7: end for

3.3 Selection Operator

Considering that the selection operators can be com-
monly used in both continuous and discrete problems,
there is no need to discuss them respectively. In this
paper, the following two selection operators are con-
cerned.

3.3.1 Roulette Wheel Selection (RWS)

This operator comes from the roulette game. In this
selection, the individuals with larger fitness values
have higher probabilities to be selected. The detailed
process of the roulette wheel selection is shown in al-
gorithm 2.

Algorithm 2: Roulette Wheel Selection (RWS).

Input: population U = {u1,u2, . . . ,uN}, fitness
value vector Θ = {α1,α2, . . . ,αN}.

Output: selected parents U ′.
1: for i = 2 to N do
2: αi← αi +αi−1
3: end for
4: for i = 1 to N do
5: αi← αi/αN
6: end for
7: α0← 0
8: r← rand(0,1). // Uniform[0,1]
9: Find k s.t. r ∈ (αk−1,αk]

10: Record individual uk as a selected parent.
11: Go back to 8 until N parents are selected.

3.3.2 Tournament Selection (TS)

The main process of the tournament selection is
shown in algorithm 3. Obviously, a larger nplayer
brings higher selection pressure to the population,
where individuals with poorer performance have
smaller probability to survive.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

538

Algorithm 3: Tournament Selection (TS).

Input: population U = {u1,u2, . . . ,uN}, fitness
value vector Θ = {α1,α2, . . . ,αN}.

Output: selected parents U ′.
1: for i = 1 to N do
2: Randomly select nplayer individuals.
3: Record the best individual as a selected

parent.
4: end for

3.4 Crossover Operator

The crossover operators are used for parents to gen-
erate their children from the microcosmic perspec-
tive. The combination of genes from parents brings
children different performance. We note px as the
probability that an individual is selected. For every
couple of selected parent individuals, a correspond-
ing crossover operator is applied.

3.4.1 NLO Crossover

The crossover operators for NLO generate child indi-
viduals by letting the two chosen parents swap some
corresponding genes.

Single Point Crossover (SPoC). For SPoC, a po-
sition of the chromosome except for the first one is
randomly chosen, and all of the genes from that posi-
tion to the end are swapped. The process in detail is
shown in algorithm 4.

Algorithm 4: Single Point Crossover (SPoC).

Input: two parent chromosomes x[1] and x[2].
Output: two child chromosomes.

1: Randomly choose a position k ∈ {2, . . . ,M}
2: for i = k to M do
3: Swap x[1]i and x[2]i
4: end for

Uniform Crossover (UC). For UC, the algorithm
checks every position and swaps the corresponding
genes with probability pswap. The process in detail is
shown in algorithm 5.

3.4.2 TSP Crossover

In TSP, the chromosome is a complete route, which
means the operators should not break the routing rule
of TSP. Two common operators called distance pre-
serving crossover (Freisleben and Merz, 1996) and
single piece crossover (Kaur and Murugappan, 2008)
are discussed as follow.

Algorithm 5: Uniform Crossover (UC).

Input: two parent chromosomes x[1] and x[2].
Output: two child chromosomes.

1: for i = 1 to M do
2: if rand()< pswap then
3: Swap x[1]i and x[2]i
4: end if
5: end for

Distance Preserving Crossover (DPC). DPC gen-
erates a set O where every element oi satisfies the fol-
lowing two conditions:

• oi is a sub-route of both parent routes.

• oi is not a sub-route of any common route piece in
both parent routes.

Then it completes the child routes via the greedy strat-
egy. The process of DPX is shown in figure 6

Parent 1 7 9 5 3 4 6 1 8 2

9 2 6 1 8 7 5 3 4Parent 2

9 2 6 1 8 7 5 3 4Set O

5 3 4 9 6 1 8 7 2

6 1 8 2 7 5 3 4 9

Child 1

Child 2

Figure 6: Distance preserving crossover.

Single Piece Crossover (SPiC). SPiC firstly selects a
corresponding continuous piece of the chromosomes
of the chosen parents, and then swaps the correspond-
ing piece, just as shown in figure 7.

Parent 1 9 4 7 5 3 6 1 8 2

9 2 6 1 8 7 5 3 4Parent 2

6 1 8 7
Swapping

9 4 1 8 2

9 2 5 3 4

Child 1

Child 2

6 1 8 7

7 5 3 6

7 5 3 6

Figure 7: Single piece crossover.

3.5 Mutation Operator

3.5.1 NLO Mutation

In the mutation process, the algorithm checks all
genes in all chromosomes and applies the mutation
operator with probability pm.

Uniform Mutation (UM). The chosen gene ran-
domly switches to another value within the corre-

Performance Analysis of Different Operators in Genetic Algorithm for Solving Continuous and Discrete Optimization Problems

539

sponding value range. This method is helpful for the
algorithm to jump out of the local optimal areas, but
might kill the good feasible solution.

Exponential Mutation (EM). It brings a mutation
according to the fitness value of the individual. The
main idea is that the individual with a higher fitness
value should get a smaller mutation to keep the good
property and the poor individuals should get a bigger
mutation.

Let Di be the value range of the chosen gene xi,
and ~ is a random value generator that generates 1
with probability 0.5 and generates -1 with probability
0.5. Besides we note f(λ) as a random value gener-
ator whose value follows the exponential distribution
with parameter λ. Obviously, with a higher λ, the fλ

is closer to 0 expectedly.
Algorithm 6 shows the process of the exponential

mutation operator for gene xi, where factor a and b
are parameters to control the mutation level.

Algorithm 6: Exponential Mutation (EM).

Input: gene xi, fitness value vector Θ.
Output: mutated gene x′i.

1: α̂←max(Θ)
2: λ← b(αi/α̂)a

3: δ← ~f(λ) s.t. xi +δ ∈ Di
4: x′i← xi +δ ∈ Di

Combination Mutation (CM). Basically, the expo-
nential mutation is a greedy strategy biased to good
individuals. However, the eliminated individuals with
poor performance may be also useful for the compu-
tation. Thus, we design a combination mutation op-
erator that applies the uniform mutation and the ex-
ponential mutation with the same probability. This is
supposed to decrease the influence of the greedy strat-
egy.

3.5.2 TSP Mutation

The mutation for TSP should not break the com-
pleteness of a route, and operators bringing overturn
are not supposed to be applied. In this paper, the
swap mutation (SM) and the simple inversion muta-
tion (SIM) are discussed.

Swap Mutation (SM). In this method, a probability
pm is used to select the mutation gene. The operator
swaps the cities on the chosen genes and their corre-
sponding nearest cities.

Simple Inversion Mutation (SIM). For every in-
dividual, once two positions on one of the route to
be mutated are chosen, the operator inverts the route
piece between the two positions, as shown in figure 8.

Before

Mutation
9 4 8 27 5 3 6 1

9 4 8 21 6 3 5 7
After

Mutation

Figure 8: Simple inversion mutation.

3.6 Accelerator: Elitist Strategy

This operator is set to get involved in every calcu-
lation as default. As is known, due to the random-
ness, the solution structure of every individual can
be changed with non-negligible probability, which
means that even the optimal individual may not be
kept and the searching speed of the algorithm gets
slow.

The elitist selection acts as follows: in every gen-
eration, the best individual is selected and gets com-
parison with the best one in the last generation. If
the current best individual performs better, it takes
place of the best one in the last generation. If not,
the best individual in the last generation takes place of
the worst individual in this generation. Thus, the best
individual until the current generation can always be
kept in the population.

Actually, it is checked that the number of kept
elites has no significant influence on the performance,
which means keeping the best one in every generation
is enough.

3.7 Local Search for TSP

As for TSP, local search is a necessary operator to
improve the solution accuracy. In this paper, we just
use 2-opt as the local search operator. It is also an
accelerator for the computation of TSP. The 2-opt op-
erator for an individual chromosome xk is shown in
algorithm 7.

3.8 The Complete GAs

Finally, we give the detailed process of the two com-
plete GAs: NLO-GA and TSP-GA.

Algorithm 8 shows the detailed process of GA for
NLO, and algorithm 9 shows the detailed process of
GA for TSP. GENMAX , as the end controller, is the
number of generations for evolution. Step 3 of both
algorithms is used to record the individual with the
highest fitness value. It is the preparation for the eli-
tist selection. The overall difference between the two

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

540

Algorithm 7: 2-opt.

Input: chromosome xk, repeating time K.
Output: improved chromosome xk.

1: Compute the total distance f (xk)
2: x′k← xk
3: for i = 1 to N do
4: Randomly select two cities vi and v j
5: Swap vi and v j on x′k
6: if f (x′k)< f (xk) then
7: xk← x′k
8: end if
9: end for

GAs is the local search for TSP. In the next section,
we use these two schemes to test the performance of
genetic operators.

Algorithm 8: NLO-GA.

Input: population size N, maximum generation
GENMAX , nplayer (if necessary), px, pswap (if
necessary), pm.

Output: best individual uopt .
1: Initialize the population
2: Evaluate
3: Keep the best
4: for generation = 1 to GENMAX do
5: Select
6: Crossover
7: Mutate
8: Evaluate
9: Keep the best and do the elitist strategy

10: end for

4 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments to
compare genetic operators. Actually, it is hard to do
the theoretical analysis on which is the best opera-
tor. Our purpose is to find the suitable operators that
can obtain the best result under identical computation
costs.

Firstly, we introduce the details about all of the
experiments in subsection 4.1. With the numeri-
cal results, the comparisons of selection strategies,
crossover strategies, and mutation strategies are given
in subsection 4.2, 4.3, and 4.4, respectively.

4.1 Experiment Details

All algorithms are implemented in C language and
run on PC with Windows 10, CPU Intel Core i7-
8086K and RAM 64 GB.

Algorithm 9: TSP-GA.

Input: population size N, maximum generation
GENMAX , nplayer (if necessary), px, pm (if
necessary).

Output: best individual uopt .
1: Initialize the population
2: Evaluate
3: Keep the best
4: for generation = 1 to GENMAX do
5: Select
6: Crossover
7: Mutate
8: Evaluate
9: Keep the best and do the elitist strategy

10: Local search
11: end for

4.1.1 Settings for NLO

For NLO, we select 4 functions shown in table 1
whose dimension can be easily expanded to high di-
mension.

Besides, for NLO-GA, parameter settings are
listed in table 2. Due to the randomness of the al-
gorithm, we use the average results over hundreds of
independent runs. The sample number in the table
means the repeating time.

4.1.2 Settings for TSP

For TSP, we select 9 instances of different sizes from
TSPLIB, which are listed in table 3. Besides, for TSP-
GA, some important and fixed parameter settings are
listed in table 4.

4.2 Selection Strategies Comparision

4.2.1 Selection Strategies in NLO

In this part, we mainly compare the performance of
RWS and TS on NLO. In the comparison, the SPoC
and UM are used as default crossover and mutation
operators. Under this setting, figures 18, 19, and 20
shows the performance of NLO-GA on 5, 15, and 30
dimensional problems.

4.2.2 Selection Strategies in TSP

In this part, we mainly compare the performance of
RWS and TS on TSP. In comparison, the DPC and
SM are used as default crossover and mutation oper-
ators. Under this setting, figures 9, 10, and 11 shows
the performance of TSP-GA on 50, 100, and 200 size
groups.

Performance Analysis of Different Operators in Genetic Algorithm for Solving Continuous and Discrete Optimization Problems

541

Table 1: NLO Instances.

Function Type Range Optima
f1 = 1+∑

D
i=1 x2

i Unimodal [−100,100]D 1

f2 = 1+20+ e−20exp
{
−0.2

√
∑

D
i=1 x2

i
D

}
− exp

{
∑

D
i=1 cos(sπxi)

D

}
Multimodal [−32,32]D 1

f3 = 1+D−∑
D
i=1
{

cos(2πxi)−0.01∗ x2
i
}

Multimodal [−5.12,5.12]D 1
f4 = 1+∑

D
i=1
{

y2
i −10cos(2πyi)+10

}
,

where yi = xi if |xi|< 0.5 and yi =
round(2xi)

2 if |xi| ≥ 0.5.
Multimodal [−5.12,5.12]D 1

Table 2: Parameter settings of NLO-GA.

Patameter Value
Population size 40

Tournament player 10
pswap for UC 0.5

Sample number 150

Table 3: TSP Instances.

Size Group Instance The Number of Cities

50
att48 48
eil51 51

berlin52 52

100
kroC100 100
eil101 101
lin105 105

200
rat195 195
d198 198

kroA200 200

4.2.3 Conclusion of Selection Strategies

According to the numerical results, we get the follow-
ing conclusions for solving NLO and TSP:

• For NLO, TS performs better than RWS. The
mutation probability pm makes significiant influ-
ence. With high dimension, TS needs a low pm to
achieve the best performance.

• For TSP, RWS is better, and it needs a small
crossover probability px to find a relatively short
route.

4.3 Crossover Strategies Comparision

4.3.1 Crossover Strategies in NLO

In this part, we mainly compare the performance of
SPoC and UC on NLO. Actually, it is checked that
pswap does not make obvious influence on the compu-
tation. In the comparison, the TS and UM are used as
default selection and mutation operators. Under this

Table 4: Parameter settings of TSP-GA.

Patameter Value
Population size 60

Tournament player 15
pm for SM 0.1
2-opt time 10

Sample number (group 50&100) 300
Sample number (group 200) 100

setting, figures 21, 22, and 23 shows the performance
of NLO-GA on 5, 15, and 30 dimensional problems.

4.3.2 Crossover Strategies in TSP

In this part, we mainly compare the performance of
DPC and SPiC on TSP. In comparison, the RWS and
SM are used as default selection and mutation opera-
tors. Under this setting, figures 12, 13, and 14 shows
the performance of TSP-GA on 50, 100, and 200 size
groups.

4.3.3 Conclusion of Crossover Strategies

According to the numerical results, we get the follow-
ing conclusions for solving NLO and TSP:

• For NLO, the difference with respect to the per-
formance between the two crossover strategies is
not obvious.

• For TSP, DPC works better, and it also needs a
small crossover probability px to find a relatively
short route.

4.4 Mutation Strategies Comparision

4.4.1 Mutation Strategies in NLO

In this part, we mainly compare the performance of
UM and CM on NLO. In the comparison, the TS and
SPoC are used as default selection and crossover op-
erators. Under this setting, figures 24, 25, and 26
shows the performances inperformance of NLO-GA
on 5, 15, and 30 dimensional problems.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

542

4.4.2 Mutation Strategies in TSP

In this part, we mainly compare the performance of
SM and SIM in TSP. In comparison, the RWS and
DPC are used as default selection and crossover oper-
ators. Under this setting, figure 15, 16, and 17 shows
the performance of TSP-GA on 50, 100, and 200 size
groups.

4.4.3 Conclusion of Mutation Strategies

According to the numerical results, we get the follow-
ing conclusions for solving NLO and TSP:

• For NLO, the combination mutation makes a mar-
vel contribution to the computation, which also
means that controlling the mutation level accord-
ing to the fitness value is an efficient way to ac-
celerate the computation. With a high dimen-
sion, the CM needs a low pm to achieve the
best performance. But, it always needs a high
crossover probability to obtain promising no mat-
ter on low-dimensional problems or on high-
dimensional problems.

• For TSP, the SM is proved to be an efficient op-
erator to find a better route. And with a lower
crossover probability, it works better.

5 CONCLUSIONS

In this paper, we mainly introduce the common ge-
netic operators for typical continuous and discrete op-
timization problems. In addition, we come up with a
combination mutation for NLO. Then for NLO and
TSP, we use the numerical experiment to compare the
performance of different types of operators. Accord-
ing to the results, we summarize some conclusions
about the better usage of these operators, which can
directly be used to solve the related problems.

ACKNOWLEDGEMENTS

This research was supported in part by Brain
Pool program funded by the Ministry of Science
and ICT through the National Research Founda-
tion of Korea(NRF-2019H1D3A2A01101977) and in
part by ’5G based IoT Core Technology Develop-
ment Project’ grant funded by the Korea govern-
ment(MSIT) (No. 2020-0-00167, Core technolo-
gies for enhancing wireless connectivity of unlicensed
band massive IoT in 5G+ smart city environment).

0 0.5 1

PX

3.6

3.65

3.7

3.75

T
o

ta
l

D
is

ta
n

c
e

10
4100 Gens

RWS

TS

0 0.5 1

PX

3.5

3.6

3.7

T
o
ta

l
D

is
ta

n
c
e

10
4200 Gens

RWS

TS

(a) att48

0 0.5 1

PX

450

460

470

480

T
o

ta
l

D
is

ta
n

c
e

100 Gens

RWS

TS

0 0.5 1

PX

450

460

470

480

490

T
o

ta
l

D
is

ta
n

c
e

200 Gens

RWS

TS

(b) eil51

0 0.5 1

PX

7600

7800

8000

8200

T
o

ta
l

D
is

ta
n

c
e

100 Gens

RWS

TS

0 0.5 1

PX

7600

7800

8000

8200

T
o

ta
l

D
is

ta
n

c
e

200 Gens

RWS

TS

(c) berlin52

Figure 9: Performance comparison between two selection
strategies (namely, RWS and TS) on TSP instances with
about 50 cities.

0 0.5 1

PX

2.15

2.2

2.25

2.3

2.35

T
o

ta
l

D
is

ta
n

c
e

10
4100 Gens

RWS

TS

0 0.5 1

PX

2.15

2.2

2.25

2.3

2.35

T
o

ta
l

D
is

ta
n

c
e

10
4200 Gens

RWS

TS

(a) kroC100

0 0.5 1

PX

710

720

730

T
o

ta
l

D
is

ta
n

c
e

100 Gens

RWS

TS

0 0.5 1

PX

700

710

720

T
o

ta
l

D
is

ta
n

c
e

200 Gens

RWS

TS

(b) eil101

0 0.5 1

PX

1.5

1.55

1.6

1.65

T
o

ta
l

D
is

ta
n

c
e

10
4100 Gens

RWS

TS

0 0.5 1

PX

1.5

1.55

1.6

T
o

ta
l

D
is

ta
n

c
e

10
4200 Gens

RWS

TS

(c) lin105

Figure 10: Performance comparison between two selection
strategies (namely, RWS and TS) on TSP instances with
about 100 cities.

0 0.5 1

PX

2550

2600

2650

T
o

ta
l

D
is

ta
n

c
e

100 Gens

RWS

TS

0 0.5 1

PX

2500

2550

2600

2650

T
o

ta
l

D
is

ta
n

c
e

200 Gens

RWS

TS

(a) rat195

0 0.5 1

PX

1.7

1.75

1.8

T
o

ta
l

D
is

ta
n

c
e

10
4100 Gens

RWS

TS

0 0.5 1

PX

1.7

1.75

1.8

T
o

ta
l

D
is

ta
n

c
e

10
4200 Gens

RWS

TS

(b) d198

0 0.5 1

PX

3.25

3.3

3.35

3.4

3.45

T
o

ta
l

D
is

ta
n

c
e

10
4100 Gens

RWS

TS

0 0.5 1

PX

3.2

3.3

3.4

T
o
ta

l
D

is
ta

n
c
e

10
4200 Gens

RWS

TS

(c) kroA200

Figure 11: Performance comparison between two selection
strategies (namely, RTW and TS) on TSP instances with
about 200 cities.

Besides, this work was supported in part by the Na-
tional Natural Science Foundation of China under
Grant 62006124 and 61873097, in part by the Nat-
ural Science Foundation of Jiangsu under Project

Performance Analysis of Different Operators in Genetic Algorithm for Solving Continuous and Discrete Optimization Problems

543

BK20200811, in part by the Natural Science Founda-
tion of the Jiangshu Higher Education Institutions of
China under Grant 20KJB520006, and in part by the
Startup Foundation for Introducing Talent of NUIST.

0 0.5 1

PX

3.6

3.65

3.7

3.75

T
o

ta
l

D
is

ta
n

c
e

10
4100 Gens

DPiC

SPC

0 0.5 1

PX

3.5

3.6

3.7

T
o
ta

l
D

is
ta

n
c
e

10
4200 Gens

DPiC

SPC

(a) att48

0 0.5 1

PX

460

470

480

T
o

ta
l

D
is

ta
n

c
e

100 Gens

DPiC

SPC

0 0.5 1

PX

450

460

470

480

T
o

ta
l

D
is

ta
n

c
e

200 Gens

DPiC

SPC

(b) eil51

0 0.5 1

PX

7600

7800

8000

8200

T
o

ta
l

D
is

ta
n

c
e

100 Gens

DPiC

SPC

0 0.5 1

PX

7600

7800

8000

8200

T
o

ta
l

D
is

ta
n

c
e

200 Gens

DPiC

SPC

(c) berlin52

Figure 12: Performance comparison between two crossover
strategies (namely, DPiC and SPC) on TSP instances with
about 50 cities.

0 0.5 1

PX

2.15

2.2

2.25

2.3

2.35

T
o

ta
l

D
is

ta
n

c
e

10
4100 Gens

DPiC

SPC

0 0.5 1

PX

2.15

2.2

2.25

2.3

2.35

T
o

ta
l

D
is

ta
n

c
e

10
4200 Gens

DPiC

SPC

(a) kroC100

0 0.5 1

PX

710

720

730

T
o

ta
l

D
is

ta
n

c
e

100 Gens

DPiC

SPC

0 0.5 1

PX

700

710

720

730

T
o

ta
l

D
is

ta
n

c
e

200 Gens

DPiC

SPC

(b) eil101

0 0.5 1

PX

1.55

1.6

1.65

T
o

ta
l

D
is

ta
n

c
e

10
4100 Gens

DPiC

SPC

0 0.5 1

PX

1.5

1.55

1.6

T
o

ta
l

D
is

ta
n

c
e

10
4200 Gens

DPiC

SPC

(c) lin105

Figure 13: Performance comparison between two crossover
strategies (namely, DPiC and SPC) on TSP instances with
about 100 cities.

0 0.5 1

PX

2500

2550

2600

2650

T
o

ta
l

D
is

ta
n

c
e

100 Gens

DPiC

SPC

0 0.5 1

PX

2500

2550

2600

2650

T
o

ta
l

D
is

ta
n

c
e

200 Gens

DPiC

SPC

(a) rat195

0 0.5 1

PX

1.7

1.75

1.8

T
o

ta
l

D
is

ta
n

c
e

10
4100 Gens

DPiC

SPC

0 0.5 1

PX

1.7

1.75

1.8

T
o

ta
l

D
is

ta
n

c
e

10
4200 Gens

DPiC

SPC

(b) d198

0 0.5 1

PX

3.3

3.35

3.4

3.45

T
o

ta
l

D
is

ta
n

c
e

10
4100 Gens

DPiC

SPC

0 0.5 1

PX

3.2

3.3

3.4

T
o
ta

l
D

is
ta

n
c
e

10
4200 Gens

DPiC

SPC

(c) kroA200

Figure 14: Performance comparison between two crossover
strategies (namely, DPiC and SPC) on TSP instances with
about 200 cities.

0 0.5 1

PX

3.6

3.7

3.8

T
o
ta

l
D

is
ta

n
c
e

10
4100 Gens

SIM

SM

0 0.5 1

PX

3.5

3.6

3.7

T
o
ta

l
D

is
ta

n
c
e

10
4200 Gens

SIM

SM

(a) att48

0 0.5 1

PX

460

480

500

T
o

ta
l

D
is

ta
n

c
e

100 Gens

SIM

SM

0 0.5 1

PX

450

460

470

480

490

T
o

ta
l

D
is

ta
n

c
e

200 Gens

SIM

SM

(b) eil51

0 0.5 1

PX

7600

7800

8000

8200

T
o

ta
l

D
is

ta
n

c
e

100 Gens

SIM

SM

0 0.5 1

PX

7600

7800

8000

8200

T
o

ta
l

D
is

ta
n

c
e

200 Gens

SIM

SM

(c) berlin52

Figure 15: Performance comparison between two mutation
strategies (namely, SIM and SM) on TSP instances with
about 50 cities.

0 0.5 1

PX

2.15

2.2

2.25

2.3

2.35

T
o

ta
l

D
is

ta
n

c
e

10
4100 Gens

SIM

SM

0 0.5 1

PX

2.15

2.2

2.25

2.3

2.35

T
o

ta
l

D
is

ta
n

c
e

10
4200 Gens

SIM

SM

(a) kroC100

0 0.5 1

PX

710

720

730

740

T
o

ta
l

D
is

ta
n

c
e

100 Gens

SIM

SM

0 0.5 1

PX

700

720

740

T
o

ta
l

D
is

ta
n

c
e

200 Gens

SIM

SM

(b) eil101

0 0.5 1

PX

1.5

1.6

1.7

T
o
ta

l
D

is
ta

n
c
e

10
4100 Gens

SIM

SM

0 0.5 1

PX

1.5

1.6

1.7

T
o
ta

l
D

is
ta

n
c
e

10
4200 Gens

SIM

SM

(c) lin105

Figure 16: Performance comparison between two mutation
strategies (namely, SIM and SM) on TSP instances with
about 100 cities.

0 0.5 1

PX

2500

2550

2600

2650

T
o

ta
l

D
is

ta
n

c
e

100 Gens

SIM

SM

0 0.5 1

PX

2500

2550

2600

2650

T
o

ta
l

D
is

ta
n

c
e

200 Gens

SIM

SM

(a) rat195

0 0.5 1

PX

1.7

1.75

1.8

T
o

ta
l

D
is

ta
n

c
e

10
4100 Gens

SIM

SM

0 0.5 1

PX

1.7

1.75

1.8

T
o

ta
l

D
is

ta
n

c
e

10
4200 Gens

SIM

SM

(b) d198

0 0.5 1

PX

3.3

3.4

3.5

T
o
ta

l
D

is
ta

n
c
e

10
4100 Gens

SIM

SM

0 0.5 1

PX

3.2

3.3

3.4

3.5

T
o

ta
l

D
is

ta
n

c
e

10
4 200 Gens

SIM

SM

(c) kroA200

Figure 17: Performance comparison between two mutation
strategies (namely, SIM and SM) on TSP instances with
about 200 cities.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

544

(a) f1,D = 5 (b) f2,D = 5 (c) f3,D = 5 (d) f4,D = 5

Figure 18: Performance comparison between two selection strategies (namely, RWS and TS) on 5-D NLO functions.

(a) f1,D = 15 (b) f2,D = 15 (c) f3,D = 15 (d) f4,D = 15

Figure 19: Performance comparison between two selection strategies (namely, RWS and TS) on 15-D NLO functions.

(a) f1,D = 30 (b) f2,D = 30 (c) f3,D = 30 (d) f4,D = 30

Figure 20: Performance comparison between two selection strategies (namely, RWS and TS) on 30-D NLO functions.

(a) f1,D = 5 (b) f2,D = 5 (c) f3,D = 5 (d) f4,D = 5

Figure 21: Performance comparison between two crossover strategies (namely, SPoC and UC) on 5-D NLO functions.

Performance Analysis of Different Operators in Genetic Algorithm for Solving Continuous and Discrete Optimization Problems

545

(a) f1,D = 15 (b) f2,D = 15 (c) f3,D = 15 (d) f4,D = 15

Figure 22: Performance comparison between two crossover strategies (namely, SPoC and UC) on 15-D NLO functions.

(a) f1,D = 30 (b) f2,D = 30 (c) f3,D = 30 (d) f4,D = 30

Figure 23: Performance comparison between two crossover strategies (namely, SPoC and UC) on 30-D NLO functions.

(a) f1,D = 5 (b) f2,D = 5 (c) f3,D = 5 (d) f4,D = 5

Figure 24: Performance comparison between two mutation strategies (namely, UM and CM) on 5-D NLO functions.

(a) f1,D = 15 (b) f2,D = 15 (c) f3,D = 15 (d) f4,D = 15

Figure 25: Performance comparison between two mutation strategies (namely, UM and CM) on 15-D NLO functions.

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

546

(a) f1,D = 30 (b) f2,D = 30 (c) f3,D = 30 (d) f4,D = 30

Figure 26: Performance comparison between two mutation strategies (namely, UM and CM) on 30-D NLO functions.

REFERENCES
Almunif, A. and Fan, L. (2017). Mixed integer linear

programming and nonlinear programming for optimal
pmu placement. In North Amer. Power Symp., pages
1–6.

Chen, J. C., Cao, M., Zhan, Z. H., Liu, D., and Zhang, J.
(2020). A new and efficient genetic algorithm with
promotion selection operator. In IEEE Trans. Cybern.,
pages 1532–1537.

Eriksen, B. H. and Breivik, M. (2017). Mpc-based mid-
level collision avoidance for asvs using nonlinear pro-
gramming. In Proc. IEEE Conf. Control Technol.
Appl., pages 766–772.

Freisleben, B. and Merz, P. (1996). A genetic local search
algorithm for solving symmetric and asymmetric trav-
eling salesman problems. In Proc. IEEE Int. Conf.
Evol. Comput., pages 616–621.

Ganganath, N., Cheng, C., Fok, K., and Tse, C. K. (2016).
Trajectory planning for 3d printing: A revisit to trav-
eling salesman problem. In Proc. Int. Conf. Control.
Autom. Robot., pages 287–290.

Hildayanti, I. K., Soesanti, I., and Permanasari, A. E.
(2018). Performance comparison of genetic algo-
rithm operator combinations for optimization prob-
lems. In Proc. Int. Seminar Res. Inf. Technol. Intell.
Syst., pages 43–48.

Holland, J. H. (1992). Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications
to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge, MA, USA.

Huang, B., Buckley, B., and Kechadi, T.-M. (2010). Multi-
objective feature selection by using nsga-ii for cus-
tomer churn prediction in telecommunications. Expert
Syst. Appl., 37(5):3638 – 3646.

Kaur, D. and Murugappan, M. M. (2008). Performance en-
hancement in solving traveling salesman problem us-
ing hybrid genetic algorithm. In Proc. Biennial Conf.
North Amer. Fuzzy Inform. Process. Soc., pages 1–6.

Li, J., Meng, X., Zhou, M., and Dai, X. (2017). A two-
stage approach to path planning and collision avoid-
ance of multibridge machining systems. IEEE Trans.
Syst. Man Cybern. Syst., 47(7):1039–1049.

Li, Y., Zhang, S., and Zeng, X. (2009). Research of multi-
population agent genetic algorithm for feature selec-
tion. Expert Syst. Appl., 36(9):11570 – 11581.

Ma, F., Xu, Y., and Xu, P. (2017). A nonlinear program-
ming based universal optimization model of tdoa pas-

sive location. In Proc. Int. Conf. Intell. Syst. Knowl.
Eng., pages 1–3.

Pinho, R. and Saraiva, F. (2020). A comparison of crossover
operators in genetic algorithms for switch allocation
problem in power distribution systems. In Proc. IEEE
Congr. Evol. Comput., pages 1–8.

Wang, Z., Fang, X., Li, H., and Jin, H. (2020). An improved
partheno-genetic algorithm with reproduction mecha-
nism for the multiple traveling salesperson problem.
IEEE Access, 8:102607–102615.

Xie, J., Carrillo, L. R. G., and Jin, L. (2019). An inte-
grated traveling salesman and coverage path planning
problem for unmanned aircraft systems. IEEE Control
Syst, 3(1):67–72.

Yang, Q., Chen, W., Gu, T., Zhang, H., Yuan, H., Kwong,
S., and Zhang, J. (2020). A distributed swarm op-
timizer with adaptive communication for large-scale
optimization. IEEE Transactions on Cybernetics,
50(7):3393–3408.

Yang, Q., Chen, W., Li, Y., Chen, C. L. P., Xu, X., and
Zhang, J. (2017a). Multimodal estimation of distribu-
tion algorithms. IEEE Transactions on Cybernetics,
47(3):636–650.

Yang, Q., Chen, W., Yu, Z., Gu, T., Li, Y., Zhang, H., and
Zhang, J. (2017b). Adaptive multimodal continuous
ant colony optimization. IEEE Transactions on Evo-
lutionary Computation, 21(2):191–205.

Yu, F., Fu, X., Li, H., and Dong, G. (2016). Improved
roulette wheel selection-based genetic algorithm for
tsp. In Proc. Int. Conf. Netw. Inf. Syst. Comput., pages
151–154.

Yu, Y., Chen, Y., and Li, T. (2011). A new design of genetic
algorithm for solving tsp. In Proc. Int. Joint Conf.
Comput. Sci. Optim., pages 309–313.

Zhong, J., Hu, X., Zhang, J., and Gu, M. (2005). Compari-
son of performance between different selection strate-
gies on simple genetic algorithms. In Proc. IEEE Int.
Conf. Comput. Intell. Modelling Control Automat. Int.
Conf. Intell. Agents Web Technol. Internet Commerce,
volume 2, pages 1115–1121.

Zhou, H. and Song, M. (2016). An improvement of
partheno-genetic algorithm to solve multiple travel-
ling salesmen problem. In Proc. IEEE/ACIS Int. Conf.
Comput. Inf. Sci., pages 1–6.

Zorlu, O., Dilek, S., and Özsoy, A. (2017). Gpu-based par-
allel genetic algorithm for increasing the coverage of
wsns. In Proc. IEEE Int. Conf. Parallel Distrib. Syst.,
pages 640–647.

Performance Analysis of Different Operators in Genetic Algorithm for Solving Continuous and Discrete Optimization Problems

547

