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Abstract: In this contribution we develop and analyse intelligent control methods in order to optimise the energy 

efficiency of a modern residential building with multiple renewable energy sources. Because of alternative 

energy production options a non-convex mixed-integer optimisation problem arises. For the solution we first 

apply combined optimisation methods and integrate it into a model predictive controller (MPC). In 

comparison, a reinforcement learning (RL) based approach is developed and evaluated in detail. Both 

methods, in particular reinforcement learning approaches are able to decrease energy consumption and keep 

thermal comfort at the same time. However, in this paper RL can achieve better results with less computational 

resources than MPC approach. 

1 INTRODUCTION 

Since buildings still account for about ≈ 35%  of 

Germany's primary energy consumption, the field of 

building automation and energy management has 

increasingly become a focus of current research 

(BMWi, 2019). In addition to structural methods, 

such as improving building insulation, there is also a 

high saving potential that can be achieved by the 

building automation system itself. Considering the 

increasing use of varying renewable energy sources 

and storage systems, new methods such as model 

predictive control and machine learning based control 

approaches receive more and more attention (Renaldi, 

2017 and Oldewurtel 2012). Especially algorithms 

from the field of reinforcement learning are 

particularly attractive (Chen, 2018 and Mason, 2019), 

since they pursue the goal of independent learning 

strategies in order to maximise a certain profit, 

whereby the short-term profit can be weighed against 

the accumulating long-term profit.  

The central energy control system, also referred to 

as energy manager (EM), usually cannot access local 

controllers, such as control parameters of dedicated 

room controllers, in practice. Instead the EM should 

take higher-level, possibly binary, decisions. This 

includes the temporal on-off behaviour of certain 

energy consumers (demand-side management 

(Palensky and Dietrich, 2011)) or generators and 

distributors (e. g. pumps or heatpumps). 

Mathematically, this results in (mixed-) integer 

optimisation problems with a large number of 

decision variables, that often can not be solved in 

reasonable time. Thus, intelligent mathematical 

approaches are needed, that are also applicable to a 

large number of energy producers and consumers in 

practice. In the last years the authors have analysed 

and developed several approaches in order to design 

and implement energy saving control algorithms for 

both heat/energy consumption and generation system. 

These used methods include simulation-based design 

and optimisation (Seidel, 2015), model-predictive 

control (Paschke, 2016) as well as data analysis 

(Paschke, 2020) for predictive maintenance and 

condition monitoring.  

In this contribution we focus on the design of an 

energy management system for a modern residential 

building, with multiple renewable sources and storage 

systems. Thus, we will first introduce a model of the 

energy system of the building. In the subsequent 

section, for the design of the energy manager the 

decision variables and the constraints of the 

optimisation problem will be stated. Section 4 and 5 

describe the implementation details of a model 

predictive control and a reinforcement learning based 

control methods, respectively. Finally, both 

approaches will be compared in Section 6 and a 

summary and an outline of future work will be 
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presented. 

2 MODELING OF THE 

BUILDING ENERGY SYSTEM  

The model of the building energy system is used as 

the process model of the designed energy manager. It 

is based on a 2007-built residential building, but was 

simplified in order to reduce runtime for simulation 

and optimisation. The real-world building is a 

detached house with 2 floors and around 300m² living 

space. It is composed of the following subsystems 

(see Fig. 1) for heat generation, buffering and 

consumption: 

Solar Thermal System. A solar thermal system 

(STS) is installed on the roof of the building that can 

heat up the water in one of the two buffer tanks. The 

STS has a simple local control system that enables the 

pump of the collector if an adjustable temperature 

difference between the collector and the buffer tank 

is exceeded. The volume flow is controlled depending 

on the difference between the flow and return 

temperature. The STS can be activated and 

deactivated by the EM.  

Geothermal System. The base load of the heat 

supply is provided by a brine-water heat pump (HP) 

with a ground heat collector. The environmental heat 

extracted by the heat pump is buffered also in these 

two heat storage tanks. The temperature in the storage 

tanks is controlled by bang-bang control, thus the heat 

pump is switched on if the temperature in one of the 

tanks falls below its desired value. The tanks are filled 

alternately. 

Thermal Storages. As mentioned previously, the 

energy system of the building has two buffer tanks. 

The tanks provide heat for the building and have a 

volume of 1250l each. Because of the small size a 

frequent recharge is necessary, especially in winter.  

Building and Automation System. The building 

model consists of one storey with two 100m2 

thermal zones that are oriented north and south, 

respectively. Occupancy and internal loads have been 

neglected. The zones are heated by a floor heating 

system that is controlled by two autonomous 

controllers. The temperature setpoints of 21 and 23°C 

are lowered by 1K depending on the daytime and 

weekday.  

2.1 Environment 

Weather data, such as outside temperature  and  solar 

radiation, from a test reference year (TRY) of 

Dresden has been used as input to the model. 

 

Figure 1: Structure of the building heating/energy 

system. 

2.2 Simulation 

The model of the building and the energy system was 

implemented and simulated with SimulationX of ESI. 

The energy system was modelled with the GreenCity-

Library, whereas the local controllers of the STS and 

HP where implemented with the Modelica Standard 

Library (MSL). The energy system was modelled 

such that no EM is necessary, meaning that the task 

of providing heating energy to the building can be 

accomplished by the local controllers as well. This 

scenario corresponds to a standard approach, where 

the heat demand is covered by the STS and HP 

together, which can be inefficient if for example the 

HP is switched on although the STS can provide 

enough heat. This inefficiencies are addressed by the 

subsequently described optimisation approaches that 

are validated using the described model. 

2.3 Implementation of MPC and RL 

The development of complex control algorithms, 

such as MPC and RL, is not possible within 

SimulationX. Hence, an export of the whole model is 

necessary so that it can be accessed by external 

software. Thus, using the FMI Standard (Blochwitz, 

2011), the model was exported into a Functional 

Mock-Up Unit (FMU). The implementation of the 

MPC and RL-based control algorithms was then done 

using Python and FMPy (Dassault Systems, 2017), 

that provides an interface for the import and 

execution of the FMU. 
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3 ENERGY MANAGER 

According to the model of the building energy 

system, the high level building energy manager which 

we design is going to make three decisions: 1. 

Selection of the appropriate heat source for energy 

production; 2. Selection of the thermal storage to save 

the produced energy; 3. Selection of the thermal 

storage for heating. More precisely, the following 

discrete control inputs need to be determined: 

- 𝛼𝐻𝑃 : Enable-signal for heat pump to use the 

geothermal system 

- 𝛼𝑆𝑜𝑙: Enable-signal for solar heat 

- 𝛽𝐻𝑝𝑆1, 𝛽𝐻𝑝𝑆2: Load thermal storage 1 or 2 with 

heat from heat pump 

- 𝛽𝑆𝑜𝑙𝑆1, 𝛽𝑆𝑜𝑙𝑆2: Load thermal storage 1 or 2 with 

solar heat 

- 𝛾1, 𝛾2: Signals to discharge thermal storage 1 or 

2 for heating.     

This leads to the control input vector 

𝒖 = (𝛼𝐻𝑃 , … , 𝛾2)
𝑇 . 

 For a given time horizon 𝑇, the energy manager 

has to propose a control input function 𝒖(𝑡),
where 0 < 𝑡 < 𝑇,  or 𝒖(𝑘), 𝑘 = 0,… , 𝐾 − 1, if 𝑇  is 

divided into 𝐾 discrete time samples. 

 Since each of the 8 control inputs are Boolean, for 

𝐾 time samples, there are 28𝑥𝐾  possible solutions for 

𝒖(𝑘). In addition, there are some constraints to be 

considered. They are based on the real system 

configuration and are listed in Table 1. 

Table 1: Constraints. 

Only one storage shall be used for 

heating.  
𝛾1! = 𝛾2 

Solar heat can be used to load both 

thermal storages 

𝛼𝑆𝑜𝑙  XAND  

(𝛽𝑆𝑜𝑙𝑆1⋁𝛽𝑆𝑜𝑙𝑆2) 

Thermal storage 1 shall not be 

charged via heat pump. 

𝛼𝐻𝑃 ∧ 𝛽𝐻𝑝𝑆2
∧ 𝛽𝐻𝑝𝑆1̅̅ ̅̅ ̅̅ ̅ 

* For particularly cold days, both 

storages can be charged via heat 

pump and both can be used for 

heating at the same time. 

𝛼𝐻𝑃 ∧ 𝛽𝐻𝑝𝑆1  

∧ 𝛽𝐻𝑝𝑆2  

∧ 𝛾1 ∧ 𝛾2 

3.1 Optimisation Problem  

For a concrete cost function 𝐽 , we can note the 

following general discrete optimisation problem: 

min
𝒖(0),…,𝒖(𝐾−1)

𝐽 (𝒙) 

with 𝐹(𝒙, 𝒖(𝑘), 𝑡) = 0 (Model) 

𝒈(𝒖(𝑘)) ≥ 𝟎 

𝒉(𝒖(𝑘)) = 𝟎 

𝒖(𝑘) ∈ 𝑈 = {0, 1}8, 𝑘 = 0,… , 𝐾 − 1. 

(1) 

 

Here 𝐹  describes the model of the building energy 

system, 𝒈  and 𝒉  represent the constraints to be 

considered where according to Table 1 their concrete 

functions only depend on 𝒖, not on 𝒙.   

 For the cost function two main factors are taken 

into account:  

1. Comfort violation.  
In this paper comfort violation is indicated by the 
deviation of the room temperature 𝑇  from the set 
temperature 𝑇𝑠𝑒𝑡 . The set temperature values depend 
on the hour of the day and the weekday. A simple 
choice for cost calculation is:  
 

𝑏𝑖 = (𝑇𝑖 − 𝑇𝑖,𝑠𝑒𝑡)
2
= 𝑒𝑖

2, 𝑖 = 1,2, (2) 

 

where 𝑇𝑖  is the temperature of the i-th thermal zone. 
Considering the concept of thermal comfort (Gao, 

Li and Wen, 2019), which subjectively reflects the 
satisfaction of people under certain thermal 
conditions, such as too cold, cold, neutral, warm and 
too warm, the extent of temperature deviation 𝑒𝑖 can 
also be punished differently as follows: 

 

𝑏𝑖 =

{
  
 

  
 
0,                                    𝑒𝑖 ≥ 0
1,                  − 0.1 < 𝑒𝑖 < 0
 2,           − 0.3 < 𝑒𝑖 ≤ −0.1 
3,           − 0.5 < 𝑒𝑖 ≤ −0.3
4,              − 1 < 𝑒𝑖 ≤ −0.5
5,                 − 2 < 𝑒𝑖 ≤ −1
6,                            − 2 ≤ 𝑒𝑖

. (3) 

    
In particular, we do not punish the case where the 

temperature is above the set temperature, since the 

building energy system does not have active cooling.  

 For both kind of cost definition, if temperature is 

given as vectors 𝑻1 and 𝑻2 of length 𝑁, the comfort 

cost can then be calculated as the sum of all 𝑁 𝑏𝑖-
elements: 
 

𝐵𝑖 =∑𝑏𝒊,𝒋(𝒆𝒊,𝒋)

𝑁

𝑗

, 𝑖 = 1,2, (4) 

 

or be calculated from the average value 𝑇�̃�  of the 

vector 𝑻𝑖: 
 

𝐵𝑖 = 𝑏𝑖(�̃�𝑖),   �̃�𝑖 = �̃�𝑖 − 𝑇𝑖,𝑠𝑒𝑡  ,   𝑖 = 1,2. (5) 
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2. Electrical energy 𝐸𝑒𝑙 . 
Here we consider the electrical power consumed by 

the pumps (e.g. heat pump and pump of solar thermal 

system) for heating. This contradicts the first target of 

minimizing comfort violation. So for optimisation a 

trade-off of both targets is pursued.  

 Therewith, we have 

𝐽 = 𝑤1𝐵1 + 𝑤2𝐵2 +𝑤𝑒𝐸𝑒𝑙  (6) 

where 𝑤1 and 𝑤2 and 𝑤𝑒 are the weighting factors.  

 Since the general optimisation problem 

formulated in eq. (1) is discrete with integer 

optimisation variables, we have a so-called 

constrained integer nonlinear problem, which belongs 

to the class of mixed integer nonlinear problem 

(MINLP).  

3.2 Solution Approach  

For a general MINLP there are different state-of- the-

art solution approaches, e.g. the use of regularisation 

techniques where the exact knowledge of model 

equations is required (Mynttinen, 2015), optimisation 

methods combining constraint programming and 

nonlinear optimisation programs especially for 

scheduling problems (Wigström and Lennartson, 

2012 and 2014), and complex heuristic optimisation 

methods (Schlüter et Al, 2009).   
In this paper, based on the concept from 

(Wigström and Lennartson, 2014), we designed a 
solution approach which at first simplifies problem 
(1) using constraint programming technique, such 
that at the second step, a less complex optimisation 
strategy can be applied.  

Constraint programming (CP) is generally used to 
find solutions of a problem with declarative stated 
constraints. It can be applied in our case as a first step 
to find those solutions of 𝒖(𝑘)  satisfying the 
nonlinear constraint equations. Here we take 
advantage of the fact that the constraint functions 𝒈 
and 𝒉 according to Table 1 do not depend on internal 
states 𝒙  of the building. With an appropriate CP-
solver, the solution space of problem (1) can be 
reduced: 𝒖(𝑘) ∈ 𝑈 ⊂ 𝑈 . Without regard to last 
constraint (*) only 16 feasible solutions instead of 
28𝑥𝐾  remain. The case (*) can be taken into account 
if the charge of both storages via heat pump and the 
simultaneous discharge of both is allowed. This 
additional solution can be added to 𝑈.  

As a result, problem (1) can be simplified to an 
integer optimisation problem without constraints:  

min
𝒖(0),…,𝒖(𝐾−1)

𝐽 (𝒙, 𝒖(0), … , 𝒖(𝐾 − 1)) 

𝒖(𝑘) ∈ 𝑈, 𝑘 = 0,… , 𝐾 − 1 

(7) 

where 𝐽 summarizes 𝐽 and the building model 𝐹. This 
remaining problem needs to be linked with an 
appropriate solver and integrated into the energy 
manager for the control of the active building heating 
system.  
 In this paper we investigate two control strategies. 
The first is to integrate the optimisation problem 
stated above into a classic model predictive control 
where problem (7) can be solved by an appropriate 
heuristic optimisation method. The second is to use 
machine learning approaches, in particular, we have 
our focus on reinforcement learning. Both approaches 
are presented in the following sections.  
 To evaluate the benefits of these approaches, we 
compare their results with the behaviour of the basic 
building automation system where constraints from 
Table 1 are neglected. In that case the heat pump is 
activated according to the temperature level of each 
of the storages (here storage 1 can always be loaded 
via heat pump) and both storages are simultaneously 
and equally used for heating. This basic building 
control configuration will be subsequently denoted as 
NC (for no high level control).  

4 MODEL PREDICTIVE 

CONTROL  

4.1 Implementation 

In case of MPC the optimisation problem (7) needs to 

be solved repeatedly at each time step for upcoming 

time horizon. In this paper, a simple form of genetic 

algorithm (GA) is applied as the optimisation solver. 

In order to determine appropriate optimisation 

parameters, e.g. population size, number of 

generations and weighting factors, a parameter 

variation study has been conducted.  

 The model predictive control is implemented in 

Python where the building model is integrated as 

FMU. For first analysis the FMU serves not only as 

the prediction model within MPC, but also as 

simulation model for obtaining building state. The 

time horizon is set to 24h and the time step is set to 

3h in order to reduce the optimisation effort. This is 

acceptable insofar that the energy system is 

sufficiently slow. However, for dealing with fast 

changing environmental changes, the time step needs 

to be reduced in future.  
 Moreover, we compare the results using different 
comfort calculations given by eq. (2) denoted as R1 
and eq. (3) denoted as R2, using eq. (4).   
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4.2 Simulation Result 

In Fig. 2 – 4 the power consumption and the tempe-

rature of both thermal zones for 7 days in februrary 

(starts from Thursday) are presented for MPC and NC. 

Both versions of MPC with different comfort cost 

calculation can reduce the power consumption of the 

energy system of around 8% for R1 and 6,29% for 

R2. Also the comfort level can be improved.  
 

 

Figure 2: Comparison of total electric power consumption 

between NC, MPC_R1 and MPC_R2. 

 

Figure 3: Temperature in zone1 (Z1) and zone 2 (Z2). top: 

MPC_R1, below: NC. 

The energy saving is due to less charging of both 

thermal storages by heat pump while still covering the 

energy demand of both thermal zones. In particular, 

the average soc of both storages has been reduced 

compared to soc-level from NC. In case of R2, the soc 

for storage 1 and 2 are 19% and 6% less compared to 

NC (see Fig. 5). 
 

 

Figure 4: Temperature in zone1 (Z1) and zone 2 (Z2). top: 

MPC_R2, below: NC. 

 

Figure 5: State of charge in 𝑆1and 𝑆2, top: MPC, below: 

NC. 

This result is of course based on the ideal setting that 

the prediction model is exact. Moreover, eventhough 

the potential of such a high level energy manager with 

MPC is obvious, the computational effort and 

hardware demand of online optimisation cannot be 

neglected, especially when dealing with more 

complex energy systems. Therfore, in the next section, 

we will analyse and evaluate the application of 

reinforcement learning where such an online 

optimisation is not needed.    

5 MACHINE LEARNING 

APPROACHES  

As a subset of artificial intelligence (AI) machine 
learning (ML) is concerned with how to construct 
computer programs that automatically improved with 
experience (Jordan and Mitchell, 2015). Unlike the 
conventional rule-based programming these 
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approaches use sufficient data and algorithms to 
“train” the machine and make it capable to complete 
tasks by themselves. 

5.1 Reinforcement Learning 

Reinforcement learning (RL) is a form of ML, which 
is appropriate in solving complex optimal control 
problems above through the interaction between 
controller (AI agent) and system (environment). The 
agent learns by trial and error and is rewarded for 
taking desirable actions in a dynamic environment so 
as to maximize cumulative rewards (Sutton and 
Barton, 2018). Among all the perspectives on RL 
algorithms we focus on the commonly used model-
free algorithms Q-learning and SARSA. 

5.1.1 Markov Decision Process 

We formulate the thermal comfort control and energy 
optimisation of the building as Markov Decision 
Process (MDP), which consists of a set of states 𝑆 and 
actions 𝐴, transition probability function 𝑃 , reward 
function 𝑅  and the discount factor γ. Since the 
interaction involves a sequence of actions and 
observed rewards in discrete time steps 𝑡 =
0, 1, 2 , …𝑇 (the sequence is fully described by one 
episode), the agent observes at each step the current 
state (𝑠𝑡 ∈ 𝑆) of the environment and decides on an 
action (𝑎𝑡 ∈ 𝐴) to take next according to a selection 
policy 𝜋(𝑎𝑡|𝑠𝑡). Which state the agent will arrive in 
is decided by 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡). Once an action is taken, 
the environment delivers an immediate reward 𝑟𝑡 =
𝑅(𝑠𝑡 , 𝑎𝑡) as feedback. These steps will be iterated 
during the learning phase and the control policy will 
be updated until it is converged. Our purpose is to find 
the maximum of the future reward over the episode, 
which can be typically represented by the optimal Q 
value (Szepesvári, 2010).  
State. The relevant state of the MDP in this case is 
occupation of the room, state of charge of the thermal 
storage tank 𝑆1 and 𝑆2 and ambient temperature 𝑇𝑜𝑢𝑡 
at each time slot, represented as: 

 

𝑠𝑡 = (𝑂𝑃𝑡 , 𝑇𝑡
𝑜𝑢𝑡 , 𝑆𝑜𝐶𝑡

𝑆1 , 𝑆𝑜𝐶𝑡
𝑆2)

𝑇
. (8) 

  

Action. The action of the MDP is equivalent to the 
inputs signals 𝑢 of the system in section 3.  

Reward. The reward of the MDP can be calculated 

as the opposite of the cost function 𝐽 in section 3: 
 

𝑅 = −𝐽 = −(𝑤𝑒𝐸𝑒𝑙 + 𝑤1𝐵1 + 𝑤2𝐵2). (9) 
 

In the following, the reward function resulted from 
comfort cost definition (eq. (3)) will be noted as 𝑅1, 
and from temperature difference definition (eq. (2)) 
as 𝑅2, with eq. (5) for vectors. 

Value Function. The estimated future reward in a 
given state, also known as return, is a total sum of 
discounted rewards going forward, mathematically 
represented as follow: 

 

𝐺𝑡 =∑ 𝛾𝑘 ∙ 𝑟𝑡+𝑘+1
∞

𝑘=0
. (10) 

 

The discount factor 𝛾 ∈ [0, 1] penalizes the rewards 
in the future, that may have a higher uncertainty and 
does not provide immediate benefits. 

The expected return can be represented as an 
state-action value function/Q-function: 

 

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑠, 𝑎], 
(11) 

 

which can be decomposed into the immediate reward 
plus the discounted future values by Bellmen 
equations, and further by following the policy 𝜋: 
 

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[𝑟𝑡+1 + 𝛾 ∙ 𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)]

= 𝑟𝑡+1 + 𝛾 ∙∑ 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)
𝑠𝑡+1

∙∑ 𝜋(𝑎𝑡+1, 𝑠𝑡+1)
𝑎𝑡+1

𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1). 

(12) 

 
Temporal-Difference Learning. Since the agent 
doesn’t know the state transition function 𝑃  before 
the learning phase, we can’t solve the MDP directly 
applying Bellmen equations, but using temporal 
difference (TD) learning, which provides the agent 
with a method to learn the optimal policy implicitly. 
The value function Q will be updated towards the 
estimated return 𝑟𝑡+1 + 𝛾 ∙ 𝑄(𝑠𝑡+1, 𝑎𝑡+1), 
mathematically represented as follow: 

 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 ∙ 
𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)], 

(13) 

 
where 𝛼 ∈ [0, 1] is the learning rate, which controls 
the extent of the update.  
Selection Policy. The state transition in this case is 
stochastic and the optimal policy in current state 𝑠 
will select whichever action maximizes the expected 
return from starting in 𝑠. As a result, if we have the 
optimal value 𝑄∗, we can directly obtain the optimal 
action 𝑎∗(𝑠) : 

 

𝑎∗(𝑠) = 𝜋∗ = argmax
𝑎∈𝐴

𝑄∗(𝑠, 𝑎). (14) 

 

It’s common to balance the frequency of 

exploring and exploiting actions with the ε-greedy 

strategy, which chooses a randomly selected action 

with probability 𝜀 ∈ [0, 1] and otherwise according 

to eq. (14). 
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5.1.2 Control Strategy 

SARSA (eq. (15)) and Q-learning (eq. (16)) are two 
of the classic algorithms using TD learning (eq. (13)). 
 

𝑄𝑛𝑒𝑤(𝑠𝑡 , 𝑎𝑡) ← 𝑄𝑜𝑙𝑑(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 

𝛾.max
𝑎∈𝐴

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄
𝑜𝑙𝑑(𝑠𝑡 , 𝑎𝑡)] 

(15) 

𝑄𝑛𝑒𝑤(𝑠𝑡 , 𝑎𝑡) ← 𝑄𝑜𝑙𝑑(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 

𝛾.max
𝑎′∈𝐴

𝑄(𝑠𝑡+1, 𝑎
′) − 𝑄𝑜𝑙𝑑(𝑠𝑡 , 𝑎𝑡) 

(16) 

 

The key difference between SARSA and Q-
learning is that Q-learning is an off-policy but 
SARSA an on-policy. It means that the Q-learning 
agent doesn’t follow the current policy to pick the 
next action. It estimates the optimal 𝑄∗, but the action 
𝑎∗  which leads to this maximal value may not be 
followed in the next step.  

5.2 Implementation 

The proposed RL algorithms were implemented in 
Python. The complete multivalent building energy 
system was integrated as FMU.  

At the beginning of each episode, the FMU model 

will be instantiated anew and the initial states and as 

well as all variables and parameters required by the 

RL agent from the building environment will be 

obtained. The state-action space is represented as a 

𝑆 × 𝐴 matrix, i.e. Q table, which starts with a zero 

matrix. During the training procedure the RL agent 

can improve the control strategy based on the update 

of the Q value in this table.    

5.3 Simulation Result 

5.3.1 Experimental Setup 

In order to make all possible situations during the 

training occur, in other words, to fill the blank initial 

Q table, we train the model for a period of the whole 

year (from 1st January until 31th December), and the 

training episodes are set to 100. The first 7 days in 

February are used to test the performance of the 

energy management. The simulation step size for the 

model internal is set to 5 minutes and the duration of 

each time slot for the RL algorithm within one 

training episode is 30 minutes. Additionally, the 

hyperparameters settings such as learning rate α, 

discount factor γ, exploration rate ε and the weighting 

factors are varied between Q-learning and SARSA. 

The adjustment of these hyperparameters is 

performed manually and the final selection is listed in 

Tab.2.   

Table 2: Selection of the hyperparameters. 

 ε γ ε 𝑤𝑒 𝑤1 𝑤2 

Q-learning 0.95 0.9 0.6 1 150 150 

1 20 25 

SARSA 0.5 0.8 0.6 1 150 150 

 
Besides that, the performance of our RL 

algorithms is compared respectively with a default 
scenario using static control/baseline approach, 
precisely, a dummy agent with fixed action/control 
inputs that are all set to true.     

5.3.2 Performance Comparison 

As mentioned before, the main objective of RL agent 

is to maximize the obtained rewards, however the 

stability of the control policy is also essential. This 

means that once the algorithm has converged the 

reward should level off within a range. Figure 6 

shows for example the rewards of the Q-learning 

algorithm throughout the learning phase within 200 

episodes. We can observe that the received reward 

gradually increases in the first 100 episodes and keeps 

relatively stable thereafter. 

 

Figure 6: Reward during the training phase. 

The comparison of total electricity cost of Q-

learning and SARSA algorithms as well as the 

baseline approach/normal control (marked as NC in 

the figures) for the whole year and for one week are 

illustrated in Fig. 7 and Fig. 8. The percentage of cost 

reduction is also annotated. We can see that Q-

learning with the reward function 𝑅1  achieves the 

most effective saving 26.72% of the electrical energy 

consumption over the test week and 30.28% over the 

year. The reduction of the energy consumption 

distribute mainly in spring and autumn, because the 

sufficient solar thermal energy is available during 

these seasons. Thus it will be used more often than 

the heat pump. Furthermore, the saving is mainly 

achieved by a lower charge of the both thermal 
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storage tanks. Figure 9 shows that the average charge 

level of the thermal storage tank 𝑆1  and 𝑆2  ist for 

exmaple under Q-learning 26.88% and 30.01%, while 

without RL algorithm, namely with the normal 

control this argument is 34.44% and 33.94%, 

respectively. 

In addition, the indoor temperature in the two-

zone building under RL and NC approaches are 

illustrated in Fig. 10 - Fig. 12. We can see that our RL 

approaches ensures that the presets thermal comfort 

level is maintained and the difference between set 

point and actual temperature is minimal. 

 

Figure 7: Comparison of total electrical Consumption one 

week. 

 

Figure 8: Comparison of total electrical consumption over 

the year. 

 

Figure 9: State of charge in 𝑆1and 𝑆2. 

 

Figure 10: Temperature in zone 1 and zone 2 (Q_R1 vs. 

NC). 

 

Figure 11: Temperature in zone 1 and zone 2 (Q_R2 vs. 

NC). 
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Figure 12: Temperature in zone 1 and zone 2 (SARSA vs. 

NC). 

6 CONCLUSION  

The simulation results presented in the sections above 
show that both control approaches MPC as well as RL 
are able to provide acceptable output for the energy 
manager. Both are capable of saving energy while 
maintaining comfort compared to the standard control 
algorithms. In particular, RL achieved better results. 
Compared to the results presented in (Seidel and 
Huang, 2020) the performance of the RL was 
improved. Further, compared with the successful 
applications of RL to home management systems 
mentioned from Mason, K. (Mason and Grijalva, 
2019), our result of electrical energy saving are in 
accordance with the results from other researches.   

In case of MPC, the heuristic optimisation method 

which is suited to this kind of discrete problems 

require much computational effort in order to get 

close to the optimal solution. Thus, corresponding 

resources such as powerful PC hardware are required. 

If the energy system grows and new system 

components or functions are added, the optimisation 

task would also become increasingly complex to 

solve. Further investigations are therefore needed to 

ensure the real-time capability of this control 

algorithms and to improve the cost-benefit ratio.  

In contrast, RL with Q-table requires a learning 

phase before being commissioned as EM. During the 

online operation phase the required resources are 

relatively low and real-time capability is not critical 

since no simulation runs are required. Therefore, for 

the presented task of the energy manager, RL 

algorithm is a much more attractive approach. 

However, implementing the RL agent and especially 

the tuning of the hyperparameters during the learning 

phase is not straightforward. Thus, strategies for 

setting the optimal hyperparameters need to be 

analysed in future works.  

On the other hand, the teaching of the RL agent 

with the aforementioned models can be processed 

offline. Learning can also be continued during 

operation with sensor data from the real energy 

system so that an adaptation of the RL agents 

behaviour to the real energy system can be achieved 

and thus, further improvements of the results are 

possible. However, real-world learning must be done 

much more carefully since exploring new state-action 

combination could result in discomfort or waste of 

energy.  

On the contrary, in case of MPC, a change within 

the energy system would require an adaption of the 

prediction model in order to obtain optimal results. 

Otherwise the output of the energy manager may not 

be acceptable. However, in order to achieve very 

good results right at the beginning of operation phase, 

an accurate system model is indispensable for both 

MPC and RL.  

Another important difference between the two 

methods is the weighting of long-term gains. For the 

classic MPC optimisation, the time horizon in which 

an optimal solution must be found is fixed in general. 

The actions and the cost at each time step within the 

time horizon are equally weighted. For RL, the profit 

of the next action step has the biggest impact, while 

profits of future actions are weighted less according 

to the discount factor. Therefore the greater 

uncertainty of long-term forecasts can be taken into 

account.  

In this paper, Q-Learning yields very good results 

for the energy system. In case of more complex 

systems and control tasks, it may be necessary to use 

more advanced methods of RL, such as deep learning 

with neural networks, which require much more 

training. For Q-tables, however, a few hundred 

episodes are sufficient to achieve good control 

results.  

7 SUMMARY AND OUTLOOK 

Classic MPC and RL were tested and compared for 

the high-level control of the energy system of a 

single-family house. In this paper RL can achieve 

better results than MPC with much less computational 

resources and is therefore suited for the online control 

of the building energy system.  
Reinforcement learning thus offers attractive 

possibilities which the authors will continue to 
analyse in future works.  
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Moreover, we will take a deeper look at the 
optimization problem itself and especially the 
potential of multi-objective optimisation in the 
context of RL and MPC, since for complex energy 
systems, different and more conflicting goals will 
arise.  
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