
Systemic Theory for Software Teams: A Perspective

Sergey Masyagin, Giancarlo Succi and Ananga Thapaliya
Innopolis University, Innopolis, Russia

Keywords: Systemic Theory, Psychological Systemic Theory, Sociological Systemic Theory.

Abstract: Complex problems involve a concerted effort by the software team and can absorb vital resources, but our
understanding of how the software team forms and succeeds has been minimal. It is not possible to explain the
relationships between team achievement and scale, concentration, and especially team expertise by confound-
ing elements, such as age group, additional participation from other individuals who are not in the team, or
by team structures. This generates a need to understand software teams using systemic theory. This position
paper presents the efforts we have undertaken to study the impact of systemic factors on software development
teams and how systemic theory can be used to understand software teams. Our approach looks at the effect of
psychological and sociological systemic variables on software teams to identify a way to represent software
teams as systems.

1 INTRODUCTION

Systemic theory is an interdisciplinary field of science
that is associated with the concept of complex struc-
tures, whether physical, virtual, or entirely numerical
(Sheridan, 2010). The application of systemic the-
ory to the design and management of complex struc-
tures of various systems and their corresponding life
cycles can provide an important focus for emerging
approaches in software engineering systems.

A team is described as a position of authority, the
results of aggregate work, the inspiration for open-
minded debate, and critical thinking (Katzenbach and
Smith, 2008). This also refers to software develop-
ment teams where all developers collaborate to build
an application, provide assistance, or perform other
related tasks, and, indeed, the team’s coordination
and execution play a central role in the completion
of tasks in a project (Mahdieh, 2015). A team has
an distinct personality and ability to accomplish the
mission, like an individual. Therefore, software de-
velopment teams are also an imperative part of a soft-
ware firm. These are the ones that define the com-
pany’s success and lead the company towards its tar-
get. Inside the tech industry, the competitive land-
scape makes it more necessary for the organization
to encourage its software engineers ts software engi-
neers through various media such as promotions and
bonuses (Zahra and Bogner, 2000). For this cycle to
work it is crucial to understand the software teams,
for which systemic theory comes into play.

In the field of software development, it was
thought that recognizing systemic factors associated
with software engineering was important (Weinberg,
1971). In any case, much of the research and analy-
sis was concentrated largely on technical or process-
related factors in subsequent years, while analysis that
considered the organizational, sociological, or psy-
chological variables of the systemic theory was un-
common (Perry et al., 1994). Even though the use and
focus on agile methodologies have again shown the
significance of individuals, organizations, and their
network and collaboration over the last few years
(James, 2002), (Cockburn, 2006) these issues can still
not be considered in the conventional field of software
development. A few computer scientists have the
need to see how developers’ human factors form the
collective actions of software teams because the be-
havior of the team has a major effect on the progress
effort and nature of the items obtained (Beranek et al.,
2005), (Wellington et al., 2005). The current circum-
stances have opened up an entirely new line of re-
search in software development, which is designed to
understand these human components and their effects
on the outcomes of the undertaking.

This paper considers two specific applications of
systemic theory, namely, psychological systemic the-
ory and sociological systemic theory. The goal is to
assess their potential contribution to understanding
the operations of software teams. The specific hy-
pothesis is that these two applications of systemic the-
ories and additional strategies from multiple systemic

356
Masyagin, S., Succi, G. and Thapaliya, A.
Systemic Theory for Software Teams: A Perspective.
DOI: 10.5220/0010476803560361
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 356-361
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



approaches can explain how software teams operate
and achieve their goals and the goals of their organi-
zations.

2 SYSTEMIC THEORIES AND
FACTORS

Software teams may succeed or fail for reasons that
have nothing to do with the technology or the project
that is being built, but because of external systemic
factors. The systemic theory of psychology and soci-
ology is an essential external factor that affects soft-
ware teams and should not be ignored. The produc-
tion of software has been designed to be a scholar and
is recognized by cognitive and systemic processes of
psychology and sociology (Feldt et al., 2010), (Khan
et al., 2011), (Lenberg et al., 2014). In companies,
software design takes place in our minds first, then
in objects. We are people, and thus, as we experience
the world through them, our behavior depends on psy-
chological and sociological systemic variables. Soft-
ware production in companies is, thus, fundamentally
driven by such variables.

2.1 Psychological Systemic Theory

In the field of psychology, where it is called a psycho-
logical systemic theory, the systemic theory has been
applied. To build a structure that works for all people,
it is important to think of the interests, needs, wants,
and practices of every person within it. At the stage
where difficulties occur, these are due to breakdowns
in basic interactions as opposed to one person’s inad-
equacy. Based on our position (psychological factor
affects the software teams and is necessary to under-
stand them) and related works, we have divided the
psychological factors into:

2.1.1 Effort Measurement

This is one of the important psychological variables
that can help to understand the software team. The
effort can be viewed as the work hours spent on com-
pleting their assigned tasks by the software team. The
hours may be technical (design, debug, coding, and
testing) or other forms of events, such as team meet-
ings, seminars, and consultation. Therefore, several
scholars (Canedo and Santos, 2019) clarify that in a
method of understanding the software team, it is im-
portant to characterize what efforts would be consid-
ered. All development efforts should be included in
the total hours reported and, thus, it is important to
characterize which activities would be correlated with

product improvement, both in terms of technical and
non-technical efforts.

2.1.2 Team Size

Another important quality of a work-group is its size.
It needs to be neither too big nor too small to be con-
vincing. There is a balance between increased team
competence and reduced participation and fulfillment
of team members as they grow. A very small com-
munity may not have the variety of skills it requires
to operate well. The optimal size depends somewhat
upon the enthusiasm of the team. A data sharing or
decision-making community may have to be larger
than one for critical thinking. There is a trend in var-
ious associations to remember delegates for all coun-
cils from each potential team in the belief that this
increases investment and profitability. There is also
the view (Pendharkar and Rodger, 2007) that placing
a delegate of a given team for each conceivably rel-
evant division helps smooth the project’s data stream
and progress. In reality, coordination is usually de-
creased in bigger groups. As the size of the team de-
velops, people feel less involved with the cycle, the
distance will generally increase, and the dedication to
the project will generally decrease.

Unfortunately, this rule cannot be regarded as a
universal rule for the size of teams. The division
of large teams into sub-teams can not help a team
achieve its goals. For a small team to deal with the
challenge and to welcome relevant participants to go
to specific departments, one way to keep large num-
bers of people informed about a project is for a small
team to handle the task. Then again, a smaller team
may arrange to offer a larger group of colleagues
information courses. Thus, for the reasons behind
achieving group goals, it is best to deliberately and
cautiously manage the process of rebuilding large
teams into more modest groups.

Considering these aspects discussed above, psy-
chological systemic theory helps to manage and un-
derstand the software teams and their size. Systemic
theory suggests that the number of individuals who
make up a group’s membership and the interactions
they have with each other has an exceptional effect on
the sustainability of the group (Adams, 2012). Indi-
viduals should all have the option to apply their ex-
pertise and ability to the goals of the community to
use the assets. If there is a chance to select our own
group, our objectives and the strategies for achieving
our goals should be defined. This will let us know the
capabilities, such as the attributes of team members
and their abilities. The least-sized team rule states that
optimal team size is the one that consolidates a wide
variety of viewpoints and evaluations but includes as

Systemic Theory for Software Teams: A Perspective

357



few individuals as possible (Hare, 1992). The rela-
tion between team works and the necessary abilities
to recognize differences and start recognizing tasks
and planning training and so on must be assessed as
consistently as possible.

Figure 1 shows the systemic way to manage and
understand teams. This is a helpful method of weigh-
ing up the combination of ‘responsibility’ and ‘indi-
viduals’ capacities of a group.

Figure 1: Systemic Way of representing team [modified
from (Lewis and Lawton, 1992)].

Face 1 shows that climate adjustment and the use of
authoritative assets viably fulfill the criteria of the
support of the community, and Face 2 clarifies that
the concerns of clients or customers, whether within
or outside the organization, are properly handled by
individuals outside the group. Face 3 clarifies that
it is necessary to use structures and approaches to
complete objective arranged undertakings, and Face
4 clarifies operating in a way that makes people feel
part of a group.

2.2 Sociological Systemic Theory

In sociological systemic theory, there are aspects re-
lated to software development, especially concerning
the Internet, primarily with respect to the communi-
cation. Technology has had an immense impact on
society and how individuals convey and share cul-
ture. The dynamics of social institutions and pre-
vailing cultural configurations are emphasized by this
theory (Parsons, 1977). The sociological structural
theory is linked either to the internal surroundings of
other social institutions or to external non-social set-
tings. Furthermore, they vary in the way they relate
to time: they are either put towards realizations in the
future or compliance is involved in the present (Stich-
weh, 2011). Based on our position (sociological fac-
tor affects the software teams and is necessary to un-
derstand them) and related works, we have divided
the sociological factors into:

2.2.1 Team Cohesion and Collaboration

The way of understanding team members is affected
by cohesion between members of the software team.
Many findings explain that the effect of teamwork and
effectiveness among team members is positive. It is
important to appoint colleagues in a way that encour-
ages their cohesion (Kang et al., 2011). The produc-
tivity of the software development team (Bhardwaj
and Rana, 2016) is affected emphatically by team-
work. The program manager should strive to maintain
a workplace that promotes teamwork so that it is pos-
sible to achieve better productivity levels (Kang et al.,
2011). Collaboration between the various positions
associated with software engineering should be pro-
moted in a software team, which provides a system-
atic way of understanding the software team (Clincy,
2003).

2.2.2 Communication

Another systemic way to understand software teams
depend on communication activity. Therefore, com-
munication activity is a factor in the feasible elements
of social structures. Regardless of what assets are
accessible inside a system, without communication
operations, those assets will remain lethargic and no
benefits will be provided to individuals. Commu-
nication’s importance is expressed in the imaginary
meanings of small meetings and networks that con-
vey the significance of the association (Bonner, 1959;
Hare, 1994; Freeman, 1992; Stogdill, 1959; Locke
et al., 1981). Without some form of contact opera-
tion, effect, social support, collaboration, or informa-
tion sharing will not occur.

Communication flexibility affects the way a soft-
ware team works and how we can perceive them.
Quick collaboration impacts the productivity of soft-
ware teams (Yilmaz et al., 2016), (Nunamaker and
Chen, 1989), (Wagner and Ruhe, 2018). Under coop-
erative conditions, ease of communication is essential
for increasing the productivity of development(Lima
et al., 2015). The effectiveness of communication is
not limited to human facets. Components defined by
the software company with the communication sys-
tem and the workplace significantly affect all com-
munication facilities and various variables previously
explained such as cohesion and collaboration.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

358



3 SOFTWARE TEAMS AS
SYSTEM

The systemic theory approach to understanding soft-
ware teams is discussed in this section. Considering
all the systemic variables we discussed above, here
we will represent teams as systems. This approach
will motivate teams to understand the implications in
which they operate. Team measures are considered
in the approach, divided into three sections: problems
as inputs, transformational processes, and solutions as
outcomes. These highlights the numerous challenges
and roles that a team and leaders need to deal with or
supervise throughout a team’s life.

3.1 Systemic Approach to Understand
Software Teams

The systemic theory teaches us to think of teams as
part of an organization or the big established network.
Given the systemic theory, team leaders will discover
the means to help the teamwork efficiently. A sys-
temic theory asks: within and outside the team, what
should be regulated, observed, or affected? At the
same time, leaders need to understand the team, be-
ginning to end, with regard to their company phases
and cycles. This helps leaders to place a particular
team-related problem in the environment to better un-
derstand it. The role of a leader is to acquire, sched-
ule, and screen all of these different cycles. This
seemingly complicated and cumbersome job is sim-
pler to comprehend and handle when divided into its
components. Figure 2 shows the systemic manner to
represent and understand software teams.

Figure 2: Systemic Approach to understand Software
Teams [modified from (Schermerhorn et al., 1998)].

There are different models that also propose that it
is possible to accept teamwork as a three-stage ar-
rangement (Ingram et al., 1997), (Schermerhorn et al.,
1998). Teams are seen as systems that take prop-
erties, such as time, personnel, expertise, issues (in-
puts), and change them into outputs, such as work, so-
lutions, and completion, through transformative pro-
cesses, for example, decision-making and various be-
havioral traits (Ingram et al., 1997). Consequently,

Table 1: Input related questions.

Q1) What aims will the project satisfy?

Q2)

What assets will be accommodated
in the software project?
What others may be required?
Where might they be able to come from?

Q3) By what means will people dealing with
the project be remunerated?

Q4) What may they learn? What aptitudes would
they be able to want to develop?

Q5) What number of individuals will be expected
to perform this project/task?

Q6) What specialized aptitudes are required?

Q7) What training and workshop openings
are accessible?

Q8) What roles should be fulfilled?
Q9) Who may work in groups?

team success is the overall talents, experience, and be-
haviors of team members (Gribas et al., 2017).

3.2 Application of Systemic Framework

Problems as Inputs: Inputs are variables that the man-
agement regulates and affects. This may be the team’s
direct administrator or the outcome of senior admin-
istration planning and process. Practically speaking,
this means that the manner a team is assembled and
will work is affected by the characteristics, mission,
and philosophy of the association and its strategies
and methods.

Inputs include ‘atmospheric configuration’, the
setting in which the team operates, and ‘team design’,
how the team is assembled, who is selected to oper-
ate in it, and why. The board will also influence how
a team can operate by ensuring at the beginning that
the team approach is in accordance with the associ-
ation’s vision and organizational direction and that it
utilizes the favored work practices of the association;
for example, physical or remote working.

At this point, two fundamental elements to con-
sider are the communication atmosphere and team ar-
rangement. Communication arrangement refers to the
open guidelines for a work setting, which typically
highlights how eager or unwilling people are to dis-
cuss problems or complaints and speak uninhibitedly.
Team design refers to the roles played by teammates.
Some teams have a clear order (the leader agrees on
all decisions), while other groups disseminate choices
to all participants (i.e., majority rule). The commu-
nication atmosphere and members’ agreement deter-
mine how inputs should be used.
Transformational Processes: Transformational pro-
cesses refer to the activities and tasks that help to
transform inputs into outputs. They may have the
greatest influence on effective teamwork as they in-

Systemic Theory for Software Teams: A Perspective

359



Table 2: Process related questions.

Q1) What would you be able to do to fabricate
a sense of belonging among the colleagues?

Q2) By what method will the teams communicate?
Q3) Do any guidelines need setting up?
Q4) What strategies for decision-making are there?

Q5) Will there be a group leader? In what manner
will the individual be selected?

Q6) What tasks should be done to finish the product?

Q7)
What upkeep practices does the team need
to show to finish the work and to profit and
get from the experience?

Q8) Who will confirm that the various tasks
are performed?

Q9) Are there any structures and frameworks
to review at the end?

clude team processes such as developing and main-
taining cohesiveness and communication. They also
involve task activities that get the work done and
maintenance activities which support the develop-
ment and smooth functioning of the team.

Common transformational processes include:
• Team Measures: A feeling of solidarity is made

by expressing concrete objectives that are per-
ceived and acknowledged by the individuals.

• Cohesiveness: This includes facilitating feelings
of having a position, teamwork, accountability,
and dedication to the team.

• Communication: This includes being transparent,
specific, accessible, and legitimate.

• Dynamic: This involves ensuring that plans are
developed, that everyone is clear about manage-
ment, and that a climate of confidence is estab-
lished.

• Task and Maintenance Responsibilities: These in-
volve activities to guarantee that the task is effi-
ciently completed, such as organizing, accepting
techniques, and controls, for example. They of-
ten integrate practices that reduce risks to the pro-
cess, such as inspecting and surveying inner sys-
tems and resolving disputes.

Solution as Outcomes: It refers to those results that
meet hierarchical or individual goals or other speci-
fied criteria. Different partners, including the associ-
ation itself and team members, and a number of other
shareholders, may examine the success of outputs.
Team outputs include the display of team activities
and the results of a single team member.

Outputs can be analyzed in terms of task execu-
tion, how each team member performs and other (sub-
sidiary) results.

• Task Performance: This may be determined by
different criteria, such as the nature of traditional

Table 3: Output related questions.

Q1) Has the group finished the task it was given?

Q2) Was the project completed in a given
budget and time?

Q3) What has the group gained from this
experience?

Q4) Should the group currently be separated or
would it be able to go on to another project?

Q5) What have the group members gained
from the experience?

Q6) Have individuals created adaptable cooperation
and different abilities?

Q7) Where can these abilities be utilized in the
association?

results or targets. A commodity (in this case a
newsletter) and the time needed to accomplish the
task are the requirements for this scenario.

• Performance of each Team Member: This incor-
porates individual fulfillment and self-awareness.

• Other Results: These refer to adaptable skills that
can contribute to other teamwork in later tasks.
They have knowledge of viable collaboration and
work-related skills.

4 CONCLUSION

We assume that the basis for the interpretation of mul-
tidisciplinary systems in systemic theory. When see-
ing multidisciplinary systems and their related prob-
lems, experts will benefit from the use of systemic
theory as a focal point. Systemic theory and the asso-
ciated systemic variables are important, enabling sys-
tems experts to understand software teams with ideas.

It is important to understate the actions of the em-
ployee and to maintain a proper atmosphere and con-
tact within the teams. This even goes for software en-
gineers in software firms. The knowledge of the soft-
ware developer’s needs and prerequisites assumes a
significant part of having optimum performance from
them to ultimately obtain a profit. Teamwork plays
an important role in software projects and it depends
on the human characteristics of team members. Sys-
tematic knowledge of the team helps to recognize el-
evated teams in firms and helps to reward and appre-
ciate teamwork.

This said, there’s not much to conclude, this early
in our work. We hope that a systemic look in soft-
ware teams would provide us with bits of information
on the best way to represent, express, coordinate, and
order software development processes, in strategies to
exploit the strength of the team.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

360



REFERENCES

Adams, K. M. (2012). Systems theory: a formal construct
for understanding systems. International Journal of
System of Systems Engineering, 3(3-4):209–224.

Beranek, G., Zuser, W., and Grechenig, T. (2005). Func-
tional group roles in software engineering teams. In
Proceedings of the 2005 workshop on Human and so-
cial factors of software engineering, pages 1–7.

Bhardwaj, M. and Rana, A. (2016). Key software metrics
and its impact on each other for software development
projects. ACM SIGSOFT Software Engineering Notes,
41(1):1–4.

Bonner, H. (1959). Group dynamics; principles and appli-
cations. New York: Ronald Press Company.

Canedo, E. D. and Santos, G. A. (2019). Factors affect-
ing software development productivity: An empirical
study. In Proceedings of the XXXIII Brazilian Sympo-
sium on Software Engineering, pages 307–316.

Clincy, V. A. (2003). Software development productivity
and cycle time reduction. Journal of Computing Sci-
ences in Colleges, 19(2):278.

Cockburn, A. (2006). Agile software development: the co-
operative game. Pearson Education.

Feldt, R., Angelis, L., Torkar, R., and Samuelsson, M.
(2010). Links between the personalities, views and
attitudes of software engineers. Information and Soft-
ware Technology, 52(6):611–624.

Freeman, L. C. (1992). The sociological concept of”
group”: An empirical test of two models. American
journal of sociology, 98(1):152–166.

Gribas, J., Gershberg, Z., DiSanza, J. R., and Legge, N. J.
(2017). in the study of communication. Narrative,
Identity, and Academic Community in Higher Educa-
tion.

Hare, A. P. (1992). Groups, teams, and social interaction:
Theories and applications. Praeger Publishers.

Hare, A. P. (1994). Types of roles in small groups: A bit
of history and a current perspective. Small Group Re-
search, 25(3):433–448.

Ingram, H., Teare, R., Scheuing, E., and Armistead, C.
(1997). A systems model of effective teamwork. The
TQM Magazine.

James, A. (2002). Highsmith. agile software development
ecosystems.

Kang, D., Jung, J., and Bae, D.-H. (2011). Constraint-based
human resource allocation in software projects. Soft-
ware: Practice and Experience, 41(5):551–577.

Katzenbach, J. R. and Smith, D. K. (2008). The discipline
of teams. Harvard Business Press.

Khan, I. A., Brinkman, W.-P., and Hierons, R. M. (2011).
Do moods affect programmers’ debug performance?
Cognition, Technology & Work, 13(4):245–258.

Lenberg, P., Feldt, R., and Wallgren, L.-G. (2014). Towards
a behavioral software engineering. In Proceedings of
the 7th international workshop on cooperative and hu-
man aspects of software engineering, pages 48–55.

Lewis, R. and Lawton, J. (1992). The four functions of orga-
nizations—where does the individual fit in? Strategic
Change, 1(3):147–152.

Lima, A. M., Reis, R. Q., and Reis, C. A. L. (2015). Em-
pirical evidence of factors influencing project context
in distributed software projects. In 2015 IEEE/ACM
2nd International Workshop on Context for Software
Development, pages 6–7. IEEE.

Locke, E. A., Shaw, K. N., Saari, L. M., and Latham, G. P.
(1981). Goal setting and task performance: 1969–
1980. Psychological bulletin, 90(1):125.

Mahdieh, O. (2015). Interaction between communication
and organizational conflict and its relationship with
performance. Interaction, 1(2):6–12.

Nunamaker, J. F. and Chen, M. (1989). Software productiv-
ity: a framework of study and an approach to reusable
components. In Proceedings of the Twenty-Second
Annual Hawaii International Conference on System
Sciences. Volume II: Software Track, volume 2, pages
959–960. IEEE Computer Society.

Parsons, T. (1977). Social systems and the evolution of ac-
tion theory. Free Press.

Pendharkar, P. C. and Rodger, J. A. (2007). An empirical
study of the impact of team size on software devel-
opment effort. Information Technology and Manage-
ment, 8(4):253–262.

Perry, D. E., Staudenmayer, N. A., and Votta, L. G.
(1994). People, organizations, and process improve-
ment. IEEE Software, 11(4):36–45.

Schermerhorn, J. R., Hunt, J. G., and Osborn, R. N. (1998).
Basic organizational behavior. J. Wiley.

Sheridan, T. B. (2010). The system perspective on hu-
man factors in aviation. In Human factors in aviation,
pages 23–63. Elsevier.

Stichweh, R. (2011). Systems theory. International Ency-
clopedia of Political Science. New York: Sage.

Stogdill, R. M. (1959). Individual behavior and group
achievement: A theory; the experimental evidence.

Wagner, S. and Ruhe, M. (2018). A systematic review of
productivity factors in software development. arXiv
preprint arXiv:1801.06475.

Weinberg, G. M. (1971). The psychology of computer pro-
gramming, volume 29. Van Nostrand Reinhold New
York.

Wellington, C. A., Briggs, T., and Girard, C. D. (2005). Ex-
amining team cohesion as an effect of software en-
gineering methodology. In Proceedings of the 2005
workshop on Human and social factors of software
engineering, pages 1–5.

Yilmaz, M., O’Connor, R. V., and Clarke, P. (2016). Ef-
fective social productivity measurements during soft-
ware development—an empirical study. International
Journal of Software Engineering and Knowledge En-
gineering, 26(03):457–490.

Zahra, S. A. and Bogner, W. C. (2000). Technology strategy
and software new ventures’ performance: Exploring
the moderating effect of the competitive environment.
Journal of business venturing, 15(2):135–173.

Systemic Theory for Software Teams: A Perspective

361


