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Abstract: Analysis is an important part of the widely used streaming data processing.  The frequency of flow element 
occurrence and their values sum are calculated during analysis. The algorithms like Count-Min Sketch and 
others give a big error in restoring the aggregate with a large number of elements.  The article proposes 
application of a vector matrix.  Each vector has a length of 'n'.  If the number of different elements approaches 
'n', then the window size is automatically reduced. This allows accurate storage of the aggregate without 
element loss. The SELECT operator for searching in a vector array is also proposed.  It allows getting various 
slices of the aggregated data accumulated over the window. The comparison of the developed method with 
the Count-Min Sketch data processing method in the Analysis Layer was performed.  The experiment showed 
that the method based on the vector matrix more than twice reduces memory consumption.  It also ensures 
the exact SELECT statement execution.  An introduction of a floating window allows maintaining the 
calculation accuracy and avoiding losing records from the stream. The same query sketch-based execution 
error reaches 200%. 

1 INTRODUCTION 

High performance streaming processing is required 
for many applications such as financial trackers, 
intrusion detection systems, network monitoring, 
sensor networks, and others (Basat et al., 2018; Yan 
et al., 2018; Poppe et al., 2020; Zhang et al., 2018). 
These applications require time and memory efficient 
algorithms. This is necessary to cope with high-speed 
data streams (Basat et al., 2018). 

Source (Psaltis et al., 2017) proposes a holistic 
approach to organizing data streaming.  The 
corresponding architectural diagram includes the 
following layers: 

- data collection, 
- message queue, 
- analysis, 
- in-memory data storage, 
- data access. 

                                                                                                 
a  https://orcid.org/0000-0001-6128-9897 
b  https://orcid.org/0000-0001-6421-3353 
c  https://orcid.org/0000-0002-4080-8683 
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Below is a brief description of the data streaming 
layers. 

1. Data Collection Layer. The flow pattern is used 
here. The data comes from mobile devices (or media). 
They are preliminarily saved in logs in order to 
increase the system reliability (logging using RBML, 
SBML, HML methods). Then the data is transferred 
to the next layer input. 

2. Message Queue Layer. The messaging tool 
examples are: NSQ, ZeroMQ, Apache Kafka.  One of 
the most popular solutions is the Apache Kafka 
project.  It differs from peers in its reliability and the 
provision of exactly-once semantics (Narkhede et al. 
2017). It allows publishing and subscribing to 
message streams. 

There are three main components in this layer: 
producer (data collection layer), broker, consumer 
(analysis layer). Figure 1 shows the message 
exchange diagram. 
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Figure 1: Broker Schema. 

The broker component is designated with “B”. 
Messages are received from the data collection layer. 
The broker queues them up and then based on 
subscription (“pushes”) them to the receiving broker. 
It puts messages into the output queue. The analysis 
layer sends requests to the broker and reads ("pulls") 
messages from the queue. 

Depending on the broker implementation, “push” 
can be replaced with “pull” and vice versa.  Brokers 
are combined into a logical cluster.  The message 
queue layer parameters must be selected so that there 
is no queue overflow.  The work of brokers must be 
simulated using a queuing system (Wu et al., 2019; 
Kroß et al., 2016). 

3. Analysis Layer. There is a number of data 
analysis technologies. The most popular open source 
products are Spark Streaming, Storm, Flink and 
Samza (Quoc et al., 2017; Chintapalli et al., 2016; 
Noghabi et al., 2017).  They are all Apache projects.  
The listed systems have a number of common 
features (Psaltis, 2017) (Fig. 2). 

 
Figure 2: Analysis Layer Schema. 

Messages from the message queue layer are 
bundled into packets.  They accumulate in the system 
over a certain time interval Δ. The streaming 
dispatcher then distributes the packets to the stream 
processors, which are processed by analysis 
applications. It is important that the processing is 
completed in less than Δ. The stream processor is 
called differently: “Spark worker” in Spark 
Streaming, “supervisor” in Storm, “worker” in Flink, 
and “job worker Samza” in Samza.  The analysis 
applications can be different: 

- counting unique values based on bit 
combinations, for example, LogLog, HyperLogLog, 
HyperLogLog++ algorithms (Flajolet et al., 2017; 
Heule et al., 2013), or based on ordinal statistics, e.g. 
MinCount algorithm (Giroire, 2005), 

- counting the frequency and sum of element 
values in the stream, e.g. the Count-Min Sketch 
algorithm (Cormode et al., 2005), 

- determining whether the value was encountered 
in the stream earlier (Bloom filter-based algorithm 
(Bloom, 1970; Tarkoma et al., 2012)), 

- other algorithms. 
4. In-memory Data Storage. Hash functions are 

calculated for the incoming elements, and the 
resulting values are accumulated (or updated) in each 
streaming process table (Fig. 3). 

 
Figure 3: In-memory Data Store Schema. 

The analysis applications listed in item 3 have the 
property of linearity. The tables obtained in nodes can 
be sent to one node and merged there. The union 
consists in performing operations on the 
corresponding cells of the source tables (counting 
unique values, summing, etc.). The resulting table is 
often referred to as a sketch (Chen et al., 2017). Hash 
functions calculation, accumulating or updating 
tables is quick. Each table size is a few KB, so their 
network transfer is very quick. 

5. Data Access Layer. There are many interaction 
patterns between a streaming client (data receiver) 
and a data warehouse (Psaltis, 2017): data 
synchronization (Data Sync), remote method or 
procedure calls (RMI / RPC), simple messaging, 
publisher-subscriber. The protocol for sending data to 
clients (Psaltis, 2017) has to selected as well: web 
notifications (webhook), long HTTP polling, protocol 
of events sent by the server (Server-Sent Events, 
SSE), WebSocket. The WebSocket protocol (existing 
since 2011) outperforms other protocols. 

The main advantage of sketches is a relatively 
small amount of memory and a high speed of 
operations on table cells.  The values of these cells are 
used to restore the values of the required aggregates: 
sum, count, avg, etc. This is done by queries (see Fig. 
3). 
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As shown in the following sections, recovery 
errors can be large since the incoming stream values 
are summed with values of other elements.  This is 
performed with a matrix of a fixed size.  Sketches 
does not require attention to different elements 
quantity in a stream. The downside is an error of 
aggregates recovery. 

The article proposes a new implementation of the 
Analysis Layer. The layer includes a vector matrix 
(one-dimensional numeric arrays) instead of 
sketches. This enables accurate aggregate storage.  To 
avoid element loss with the growing intensity of their 
appearance a floating windows can be used.  This 
slightly increases the consumed memory size (see 
Section 4) and complicates the floating windows 
algorithm (see Section 3). 

2 RELATED WORK 

Counting the element frequency and sum in a stream 
is a fundamental problem in many data stream 
applications (Basat et al., 2018). This subject area 
includes tracking financial data, intrusion detection, 
network monitoring, processing messages from 
mobile devices, shopping centers, etc. 

The Count-Min Sketch algorithm solves this 
problem (Cormode et al., 2005).  It became one of 
founding algorithm for the whole class.  Source 
(Cormode et al., 2005) presents the theory of sketch 
distribution by nodes, taking into account their 
linearity. The general theory of sketches is presented 
in the book (Cormode et al., 2011). It also provides 
guidelines for choosing hash functions (p. 219). 

Let us consider the Count-Min Sketch algorithm 
in more detail (Cormode et al., 2005). 

1. Data Structure. 
A sketch is represented by a two-dimensional 

array (table) count[d,w], where d is the number of 
rows, w is the number of columns. The parameters (ε, 
δ) are given, and let w = e / ε and d = ln (1 / δ), e 
is the base of the natural logarithm. All array elements 
(table cells) are initially equal to zero.  In addition, d 
hash functions are declared: 

h1 . . . hd : {1 . . . n} → {1 . . . w}, (1)

Let hk(i) be a random integer value that is 
uniformly distributed on the segment [1,w] for each 
i=1...n. It is also assumed that {hk(i)}k are 
independent for each i. Independence is retained by i. 

2. Sketch Update. 
Let the pair (i, ci) come from the stream, where i 

is the element number, ci ≥ 0 is its value (if ci=1, then 
the sketch is used to count the number of the element 

in the stream, i.e. the frequency). The value ci is added 
to some cell of each row of the table (Fig. 4). 

count[k, hk(i)]← count[k, hk(i)]+ ci, k=1...d. (2)

i

+ci

hd(i)

+ci

+ci

+ci

h1(i)

 
Figure 4: Sketch Update Schema. 

3. Reading (restoring) the accumulated values ci 
of element i (ai

*). 
The restored value is calculated using the 

formula: 

ai* = min k count[k, hk(i)]. (3)

4. Estimation of the accuracy of the reconstructed 
value ai*. 

The obtained estimate ai
* bounds have the 

following values (Cormode et al., 2005): 

ai ≤ ai* is guaranteed, here ai is the exact 
value of accumulation, 

ai* ≤ ai + ε||a|| with probability at least 1- 
δ, here ||a||1 is the L1 metric. 

(4)

The Markov’s inequality was used to obtain the 
right boundary ai* in (Cormode et al., 2005).  It can 
be large, everything depends on the accumulated 
values L1=Σai (see (4)). Source (Chen et al., 2017) 
proposes to decrease the value of the L1 metric by 
subtracting from a some vector β with the same 
values of the elements. Determining β requires 
estimating the median of the exact values {ai} from 
some random sample. The source (Chen et al., 2017) 
does not shown how to obtain this sample. Similarly, 
the right boundary ai

* can be large for some 
distributions {ai}. 

Let us estimate the accuracy of the restored value 
differently.  It is clear that if n ≤ w⋅d, then it makes no 
sense to use a sketch.  In this case, it is more 
advantageous to use a vector of length n, since the 
required memory is smaller and the exact 
accumulation values {ai} are stored. Therefore, we 
will assume that n > w⋅d. 

Let us first estimate the probability that the 
recovered value of ai

* will not coincide with the exact 
value of ai. This is the probability that ∀k ∃(i1≠i) 
(hk(i1)= hk(i)): 

p=(1 – (1 – 1/w)n-1)d. (5)
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The expression in the outer brackets corresponds 
to the quantifier ∃, and the degree d corresponds to 
the quantifier ∀. 

Further using (5) we derive: 

( 1)/ ( 1)/ ( 1)/

1 2
( 1)/ ( 1)/

3
( 1)/ / /

(1 ((1 1 / ) ) ) (1 )

((1 1 / ) )
n w n w n w

w n w d n w d

n w e d e d e

p w e

e e
− − −

− − − − −

− − − −

= − − = − =

− =
(6)

The Second Remarkable Limit was used in 
transforms 1 and 3, 

1) usually w≥128 (for transformation 1) and 
2) e(n-1)/w>>1 due to n> w⋅d and d≥8 (for 

transformation 3). 
Let n = w⋅d+1 и d=8.  Then we get p = 0.997 from 

(6). Let n > w⋅d and w≥128 and d≥8.  Then the 
reconstructed value ai

* will not coincide with the 
exact value ai with probability almost equal to 1. Let 
us estimate the reconstruction error. 

Due to the hash function (1) property, the 
accumulated d⋅Σai values evenly fill the cells of the 
sketch matrix (see Fig. 4).  On average, one cell has 
(d⋅Σai)/(w⋅d)= Σai/w of accumulated values. 
Therefore, any recovered value can be estimated as 
follows: 

ai
* = Σai/w = (n⋅a∧)/w, (7)

where a∧  is {ai} average. 
The relative recovery error ai is: 

(ai
* -ai)/ai = (n/w)⋅(a∧/ai) - 1. (8)

But n/w>d, d is the number of hash functions 
(usually more than 8).  Let ai not to exceed the 
average.  It follows from (8) that the relative recovery 
error can be very large (hundreds of percent). 

So, the following conclusions are made: 
1. If the number of different elements in the 

stream is n ≤ w⋅d, then it makes no sense to use a 
sketch.  In this case, it is more advantageous to use a 
vector (one-dimensional numeric array) of length n. 

2. If n > w⋅d, then the error in recovering the 
accumulated values {ai} can be very large. 

3 ANALYSIS LAYER 
IMPLEMENTATION METHOD 
IN A STREAMING DATA 
PROCESSING SYSTEM 

So, applying a sketch can lead to a large error in 
restoring the accumulated values of elements coming 
from the stream. Therefore, it is proposed to use a 

vector (one-dimensional numeric array) of n length 
instead of a sketch. 

First, a matrix of such vectors is created (Fig. 5). 
Each matrix vector corresponds to an indicator (Yi) 
and a key (Xj) or some combination of keys (Xk = Xj, 
Xm, ...). A hash table is also created for each key or 
key combination. 

 
Figure 5: Vector X.Y. update schema. 

The next entry <keys X, indicators Y> comes 
from the Queue Layer.  There can be several keys. 
The number nXi is read by the key or their 
combination from the corresponding i-th hash table. 
It is used to update all vectors in the i-th column of 
the matrix (by nXi-1 offset).  The value of the k-th 
indicator extracted from the record is added to nXi 
element of the vector (i, k). 

A SELECT-like operator is used to read the 
values accumulated in vectors inside a window 
(frequencies, time, etc.).  Trends of these values can 
be displayed on the screen and/or accumulated in the 
dataset.  They can help a human operator to identify 
critical system loads. 

The SELECT statement specifications can be 
represented as follows: 

SELECT {[Xi][,][E][{[A]Xi.< Yj|*>}]} 
FROM {vector (<i|*>,< j|*>)} 

[WHERE {[Xi in Ai] [AND] [<Xi|*>.Yj in Bj]}];
(9)

The brackets {...} denote a list of items or a single 
item. Brackets [...] indicate optional constructs. The 
brackets <...> indicate that the separator | is used. The 
indices i, j in different constructs of the select-
statement are independent. Xi is a key or combination 
of keys, Yj is an indicator. Ai and Bj are lists of values 
or a single value, E is an arithmetic expression over 
the elements in a list, A is an aggregate, | stands for 
OR. The ‘in’ keyword can be replaced with the 
arithmetic comparison operator (=,>, <, etc.). 

The following attributes are used as keys and their 
combinations (X): 

X1 - driver - key, 
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X2 - pick-up area - key, 
X3 - (driver, pick-up area) – key combination, 
X4 - car class - key, 
X5 - car number - key, 
X6 - (driver, car number) - key combination. 

The following attributes act as indicators (Y) 
(possible values are indicated in brackets): 

Y1 - order served (1 or 0), 
Y2 - delivery time (time interval of the car 

delivery from the moment the order is received), 
Y3 - passenger refusal (1 or 0), 
Y4 - driver refusal (1 or 0), 
Y5 - the car got into a road accident (1 or 0), 
Y6 - the car was stopped by the police (1 or 0), 
Y7 - negative feedback from the passenger (1 

or 0). 
The flow receives a completed order <keys, 

indicators>. Key values are extracted from it: driver, 
pick-up area, car class, car number (X1, X2, X4, X5). 
Two key combinations are built: (driver, pick-up 
area) and (driver, car number) (X3, X6). The number 
nXi is read from each hash table i. The nХi number is 
used to update the cells (by offset nХi-1) of all vector 
i.j (j = 1..7). In this case, the value of the indicator Yj 
is added (summed up) to the cell. If there is no 
corresponding record in the hash table i, then it is 
included and the number nXi is assigned to it. 

Below are examples of select statements that 
conform to specifications (9). 

1. Find the average time for a taxi driver arrival in 
some area: 

SELECT X3, X3.Y2/ X3.Y1 
FROM  vector  3.1, vector  3.2; 

(10)

All records of hash table 3 are scanned (see Figure 
5). For each key X3 = (driver, pick-up area) number 
nX3 is read.  This number is used to read the values Y2 
= (delivery time) (from vector 3.2) and Y1 = (order 
served) (from vector 3.1). Division of these values is 
performed. This is analogous to grouping by the X3 
composite key. 

2. Display the performance indicators of all 
drivers involved in a road accident: 

SELECT X1.* 
FROM vector  1.* 
WHERE X1.Y5>0; 

(11)

All records of hash table 1 are viewed.  For each 
key X1 = (driver) number nX1 is read.  This number is 
used to read the value of the Y5 indicator. If it is 
greater than 0, then all performance indicators of this 
driver are output from vector 1.j, j = 1 ... 7. 

Queries are executed when the window is moved.  
The indicator values collected over the window time 
interval are read.  The following algorithm is applied: 

1) put T=0, W=W0 - the initial size of the window 
(over time it can be floating), 

2) reset all hash tables and vectors "vector i.j", 
3) set the size of the current floating window 

equal to W=t-T when the element number in the 
stream is greater than n, 

4) at time t =T+W, activate the program which: 
- executes queries, displays current window 

results, these values are added to the previous results 
to obtain trends, 

5) put T=t, W=W0, go to step 2 of the algorithm. 
Web sockets can be used to access the in-memory 

data store (see Data Access Layer). Upon receiving 
the "slow down" command from the client (i.e. the 
client is overloaded), the window size can be 
automatically increased (this will reduce the λ load on 
the client).  The element number quantity in the 
stream shall be controlled as it may become larger 
than the size of the vector n (see the previous 
algorithm). 

Sliding window application is not feasible here. 
The maintenance of hash tables and vectors on the 
sliding window interval becomes much more 
complicated.  It would require figuring out each time 
what you want to delete in hash tables and vectors 
after the next sliding interval. 

The vector linearity should certainly be used here. 
Vectors can be updated on different servers, and then 
combined on the coordinating server at the end. 

The volume of vectors that are stored in the node 
RAM is small.  Suppose n=w⋅d=27⋅23=210 (one sketch 
size). One vector volume is v1=n⋅4 (bytes) = 4KB.  
Let the number of hash tables be 6 (the number of 
keys and their combinations), and the number of 
indicators is 7. Then the volume of all vectors in the 
RAM of the node is V = 4 (KB) · 6 · 7 = 168 KB. 

The proposed approach for the Analysis Layer 
implementation has the following advantages: 

- Select statement (9) provides greater search 
capabilities than ordinary sketches (Psaltis et al., 
2017; Cormode et al., 2005; Cormode et al., 2011; 
Chen et al., 2017). 

- New Y parameter vectors can be included (or 
excluded) dynamically. 

- Hash tables with new keys or their combinations 
(X) can be included (or excluded) dynamically. 

- It is possible to build key combinations, which 
allows executing select operators on these 
combinations. 

- Floating window can be used if the number of 
different elements in the stream exceeds n. This saves 
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memory and vector updating time, since there is no 
need to increase its size.  The vector size should only 
be dynamically increased if (1) there is an overload 
on the client accessing the dataset in memory and (2) 
the number of elements in the stream becomes more 
than n when the window size increases. 

4 EXPERIMENT 

Let us compare two options for implementing the data 
Analysis Layer. It is 1) a proposed vector matrix 
(VM) method and 2) sketches (SK) using the Count-
Min Sketch algorithm. 

Let us consider for example the “Served Taxi 
Orders” subject area from Section 3. 

The experiment system configuration is provided 
below: 

- message stream enters the system from the 
Apache Kafka topic partitions; 

- client-handler, coded in Go, subscribes to the 
topic, processes messages, and updates the distributed 
cache (Redis); 

- the Redis caches are combined on one computer 
with 16Gb of RAM. 

Below is a record fragment example from a 
stream: 
 
{ 
 "driver": "aa3bbae6-7c02-451f-abdc-
738c70d1544d",  

 … 
 "params": { 

  "time": 100, 
  "served": 1, 

  } 
} 

where  
“driver” field – X1 (driver) key from section 3, 

“time” field – indicator Y2 (delivery time), “served” 
field –indicator Y1 (order served). 

The Y2 value was uniformly distributed in the 
range from 1 to 100 during the experiment. 

For the VM method, an array of vectors was used 
(see Fig. 5). To implement the SK method, the vectors 
"vector i.j" in Fig. 5 was replaced with "sketch i.j". 

The following query was investigated: to 
determine the average time of car delivery for all 
trips. Let us represent it in the form of a select 
statement (see (9)): 

SELECT sum X1.Y2/sum X1.Y1 AS avg 

FROM  vector  (1.2), vector (1.1); 
(12)

The following parameters were changed within 
the experiment: 

- dc is the number of unique drivers with trips in 
the time window W=1 day (key power X1); 
- d, w is the size of one sketch; 
- n is the vector size. 
The VM and ES methods were evaluated 

according to two criteria: 
- accuracy of query execution (12); 

- the amount of stored data in one sketch and 
vector. 
1. Query execution accuracy. 
The VM method always gives an accurate result. 
The SK method gives a high query execution 

error (Fig. 6). With increasing ‘dc’, the error reaches 
hundreds and thousands percent. 

2. The volume of data stored in one sketch and 
vector. 

The sketch size does not depend on the cardinality 
of the X1 key (the number of different ‘dc’ values). 
But with an increase in the values of the d and w 
sketch parameters its volume increases (Fig. 7). 

The vector size increased in proportion to the 
number of unique drivers (n=dc) in the experiment. 

With dc = 640,000, the amount of stored data in 
the vector is less than the sketch size (d=14 
w=100,000) by 5.34 / 2.44=2.2 times. At the same 
time, the query execution error using a sketch reaches 
200% (see Figure 6). 

 
Figure 6: The relative error of avg recovery from a sketch. 
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Figure 7: Storage Size Dependencies. 

5 DISCUSSION 

The developed VM method always wins in terms of 
the query execution accuracy, but in some cases it 
loses in terms of the required memory (see Fig. 7).  
Section 3 suggests a way to avoid unlimited memory 
growth.  A floating window can be used for this.  For 
example, the vector size can be fixed at 2.44 MB (see 
the horizontal section of the Vector row in Fig. 7).  
The loss of new drivers can be avoided by reducing 
the window size.  At the same time, the calculations 
accuracy is preserved.  With dc=700,000, the window 
size will automatically become equal to 
W=640,000/700,000 = 0.91 days. With dc = 
1,280,000, the window size will be ~50% less: W = 
640,000 / 1,280,000 = 0.5 days.  At the end of each 
window, vectors and hash tables (see Fig. 5) are 
cleared.  The window size is automatically restored 
and becomes equal to W=1 day.  A decrease in the 
window size signals an increase in the load on the 
system. The human operator can track this on a 
screen.  

6 CONCLUSION 

The sketch method was demonstrated to produce a 
large error in restoring accumulated values for a 
sufficiently large number of elements in a stream. 

The stream data Analysis Layer structure is 
proposed. It uses vectors for accumulating an 
element. Unlike sketches vector arrays store accurate 
aggregated values.  

Vector manipulation method is proposed. It 
allows dynamically include/exclude vectors and 
hash-tables for new Y indicators and X keys.  It is 
possible to dynamically build key combinations. 

A select-operator is proposed that allows 
obtaining data slices by indicators and/or keys. This 
increases processing flexibility compared to 
traditional methods. 

Floating windows size calculation algorithm is 
proposed.  It allows avoiding overflow of any vector 
with the load increase.  This increases the load λ on 
the client which is processing requests to the in-
memory dataset. 

The volume of vectors stored in the node RAM is 
small. This allows vectors to be quickly transmitted 
over the network and combined by the coordinating 
server using the linearity property. 

Future work includes application of the developed 
data analysis tool as an Acceleration Layer in lambda 
architecture systems. 
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