
BloatLibD: Detecting Bloat Libraries in Java Applications

Agrim Dewan1, Poojith U. Rao2, Balwinder Sodhi2 and Ritu Kapur2 a

1Department of Computer Science and Engineering, Punjab Engineering College, Chandigarh, India
2Department of Computer Science and Engineering, Indian Institute of Technology Ropar, Punjab, India

Keywords: Third-party Library Detection, Code Similarity, Paragraph Vectors, Software Bloat, Obfuscation.

Abstract: Third-party libraries (TPLs) provide ready-made implementations of various software functionalities and are
frequently used in software development. However, as software development progresses through various iter-
ations, there often remains an unused set of TPLs referenced in the application’s distributable. These unused
TPLs become a prominent source of software bloating and are responsible for excessive consumption of re-
sources, such as CPU cycles, memory, and mobile devices’ battery-usage. Thus, the identification of such
bloat-TPLs is essential. We present a rapid, storage-efficient, obfuscation-resilient method to detect the bloat-
TPLs. Our approach’s novel aspects are i) Computing a vector representation of a .class file using a model
that we call Jar2Vec. The Jar2Vec model is trained using the Paragraph Vector Algorithm. ii) Before using
it for training the Jar2Vec models, a .class file is converted to a normalized form via semantics-preserving
transformations. iii) A Bloated Library Detector (BloatLibD) developed and tested with 27 different Jar2Vec
models. These models were trained using different parameters and >30000 .class files taken from >100
different Java libraries available at MavenCentral.com. BloatLibD achieves an accuracy of 99% with an F1
score of 0.968 and outperforms the existing tools, viz., LibScout, LiteRadar, and LibD with an accuracy
improvement of 74.5%, 30.33%, and 14.1%, respectively. Compared with LibD, BloatLibD achieves a re-
sponse time improvement of 61.37% and a storage reduction of 87.93%. Our program artifacts are available
at https://bit.ly/2WFALXf.

1 INTRODUCTION

The development of a non-trivial software application
invariably involves the use of Third Party Libraries
(TPLs), which provide ready-made implementations
of various functionalities, such as image manipula-
tion, data access and transformation, and advertise-
ment. According to (Wang et al., 2015), 60% of an
application’s code is contributed by TPLs. However,
the unused TPLs present in an application waste al-
most half of the CPU cycles and memory. Such un-
used TPLs have become a prominent source of soft-
ware bloat. We refer to such unused TPLs as bloat-
TPLs. Resource wastage is a critical problem for mo-
bile devices that possess limited computing resources
and significantly impact the performance by affect-
ing the execution time, throughput, and scalability of
various applications (Mitchell and Sevitsky, 2007; Xu
et al., 2010). Therefore, the identification and re-
moval of the bloat-TPLs present in an application
are desirable.

a https://orcid.org/0000-0001-7112-0630

Definition 1 (Bloat-TPL). We define a bloat-
TPL as the one bundled in the distributable
binary of a software application A but not rel-
evant to it. The examples of such TPLs would
be the Mockitoa or JUnitb Java ARchives
(JARs) that get packaged in the deployable re-
lease archive of a Java application.
The relevance of a TPL is application-specific.
For instance, relevant vs. irrelevant, reli-
able vs. unreliable, anomalous vs. non-
anomalous, etc. The idea is to compare with
a reference list of relevant libraries or white-
listed librariesc in an automated manner.

ahttps://site.mockito.org/
bhttps://junit.org/
cBlack libraries matter

126
Dewan, A., Rao, P., Sodhi, B. and Kapur, R.
BloatLibD: Detecting Bloat Libraries in Java Applications.
DOI: 10.5220/0010459401260137
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 126-137
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

1.1 Motivation

Our primary objective is to develop a technique for
detecting bloat-TPLs present in a software applica-
tion’s distributable binary. An essential task for
achieving this objective is to develop a robust tech-
nique for TPL-detection. The existing TPL-detection
methods (Backes et al., 2016; Ma et al., 2016) gen-
erally depend, directly or indirectly, on the package
names or the library’s structural details and code.
Thus, they are potentially affected by various obfus-
cations, such as package-name obfuscation and API
obfuscation. Also, most of the works are restricted to
Android applications (Zhang et al., 2018; Ma et al.,
2016; Li et al., 2017; Backes et al., 2016).

We propose an obfuscation-resilient tool that de-
tects the TPLs present in a given application by iden-
tifying the similarities between the source code of
the “available TPLs” and the TPLs used in the given
application. To obtain this set of “available TPLs,”
we leverage the TPLs present at MavenCentral repos-
itory2 that hosts TPLs for various functionalities,
which we assume to be a trustworthy source. An-
other important goal of our work is to evaluate the
Paragraph Vector algorithm (PVA) (Le and Mikolov,
2014) in computing a reliable and accurate represen-
tation of binary and textual code.

1.2 Basic Tenets Behind Our System

In this paper, we present a novel TPL-detection tech-
nique by creating a library embedding using PVA –
we named it Jar2Vec. The central idea underlying our
approach is illustrated in Figure 1 and stated as fol-
lows:
1. Each of the TPLs consists of a collection of binary

.class files.
2. Semantics-preserving transformations (such as

decompilation and disassembly) are applied to the
binary .class files to obtain their normalized tex-
tual form(s), viz., the textual forms of source code
and bytecode instructions.

3. With a large corpus of such text, we train Jar2Vec
models, using which a vector representation of
any .class file can be computed.

4. Further, the vector representations of a TPL can
be computed as a suitable function of the vector
representations of all the .class files contained in
that TPL.

5. If the vector representations of a TPL J in an ap-
plication, have a considerable cosine similarity3

2https://mvnrepository.com/repos/central
3http://bit.ly/2ODWoEy

with the vector representations of the set of “avail-
able TPLs,” we label J as likely-to-be-non-bloat-
TPL or else likely-to-be-bloat-TPL.

1.3 Handling Obfuscated Libraries

One of the significant issues faced in TPL-detection
is the obfuscation of the library code. The TPL-
detection techniques that rely on the obfuscation-
sensitive features of a library would fail to detect a li-
brary under obfuscation. The key idea underlying our
approach towards handling obfuscated libraries is to
produce a “normalized” textual representation of the
library’s binary .class files before using it to train the
Jar2Vec models and when checking an input .class us-
ing a Jar2Vec model. We perform the decompilation
and disassembly of .class files to obtain their “nor-
malized” textual forms, viz., source code and byte-
code instructions as text. These operations on a .class
file are obfuscation-invariant. For example, we trans-
form a .class file using a decompiler (Strobel, 2019)
(with suitable configuration), which produces almost
identical output for both obfuscated and unobfuscated
versions. The decompiler can emit either bytecode or
the Java source code for the .class files.

2 RELATED WORK

Most of the existing works that target TPL-detection
assume that “the libraries can be identified, either
through developer input or inspection of the applica-
tion’s code.” The existing approaches for TPLs detec-
tion can be categorized as follows:

1. Based on a “Reference List” of TPLs: The tech-
niques presented in (Chen et al., 2014; Liu et al.,
2015; Grace et al., 2012; Book et al., 2013) are
significant works in this category. A “reference
list” comprises libraries known to be obtained
from a trustworthy source and useful for software
development. The basic idea behind the approach
is first to construct a “reference list” of libraries
and then test the application under consideration
using the list. In this process, it is evaluated that
the application’s constituent libraries are present
in the “reference list” or not. All the constituent
libraries, which are not present in the list, are
deemed to be bloat-TPLs. In practice, this ap-
proach requires keeping the “reference list” up-to-
date. Since these methods require manually com-
paring the libraries with the “reference list” and a
periodic update of this list, they tend to be slower,
costly, and storage-inefficient.

BloatLibD: Detecting Bloat Libraries in Java Applications

127

Figure 1: Basic idea of our method.

2. Features-based Approaches: (Backes et al., 2016;
Ma et al., 2016; Li et al., 2017) are some of the
approaches that work by extracting individual li-
braries’ features and then use them to identify li-
braries that are similar to another. The feature-
based methods generally depend, directly or in-
directly, on the package names or the structural
details of the application and source code. A brief
description of these works is provided below:

(a) LibScout (Backes et al., 2016) presents a
TPL-detection technique based on Class Hier-
archical Analysis (CHA) and hashing mecha-
nism performed on the application’s package
names. Though the method has been proven
to be resilient to most code-obfuscation tech-
niques, it fails in certain corner cases. For ex-
ample, modification in the class hierarchy or
package names, or when the boundaries be-
tween app and library code become blurred.
Another recent work is (Feichtner and Raben-
steiner, 2019), which relies on the obfuscation-
resilient features extracted from the Abstract
Syntax Tree of code to compute a code finger-
print. The fingerprint is then used to calculate
the similarity of two libraries.

(b) LibRadar (Ma et al., 2016) is resilient to
the package name obfuscation problem of Lib-
Scout and presents a solution for large-scale
TPL-detection. LibRadar leverages the benefits
of hashing-based representation and multi-level
clustering and works by computing the similar-
ity in the hashing-based representation of static
semantic features of application packages. Li-
bRadar has successfully found the original
package names for an obfuscated library, gen-
erating the list of API permissions used by an
application by leveraging the API-permission
maps generated by PScout (Au et al., 2012).
Though LibRadar is resilient to package obfus-
cation, it depends on the package hierarchy’s
directory structure and requires a library candi-

date to be a sub-tree in the package hierarchy.
Thus, the approach may fail when considering
libraries being packaged in their different ver-
sions (Li et al., 2017). An alternate version of
LibRadar, which uses an online TPL-database,
is named as LiteRadar.

(c) LibD (Li et al., 2017) leverages feature hash-
ing to obtain code features, which reduces
the dependency on package information and
supplementary information for TPL-detection.
LibD works by developing library instances
based on the package-structure details extracted
using Apktool, such as the direct relations
among various constituent packages, classes,
methods, and homogeny graphs. Authors em-
ploy Androguard (Anthony Desnos, 2018) to
extract information about central relationships,
viz., inclusion, inheritance, and call relations.
LibD depends upon the directory structure of
applications, which leads to the possibility of
LibD’s failure due to obfuscation in the direc-
tory structure.

Limitations of the Current Works: While the TPL-
detection based on “reference list” methods tend to be
inefficient and costly, the feature-based methods are
potentially affected by various types of obfuscations
and are mostly developed for Android applications.
Therefore, it is desirable to develop TPL-detection
techniques that are resilient against such issues and
can be used for applications not-limited to the An-
droid platform.

3 PROPOSED APPROACH

Our system’s primary goal can be stated as follows:
Given a TPL J, determine if J is likely-to-be-bloat-
TPL or a non-bloat-TPL in the given application. Our
approach’s central idea is to look for source code sim-
ilarity and bytecode similarity between J and the set

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

128

Table 1: Table of Notations.

J , A TPL in its JAR file format.
C , The collection of JAR files fetched

from MavenCentral.
Z , The set of PVA tuning-parameter

variation scenarios, listed in Table-
4.

Fbc,Fsc , The collections of bytecode (bc)
and source code (sc) data obtained
by disassembling and decompila-
tion of .class files f , respectively,
such that f ∈ J, and J ∈C.

Mbc,Msc , The collections of Jar2Vec models
trained on Fbc and Fsc respectively,
for all the scenarios in Z.

M̂bc,M̂sc , The best performing Jar2Vec mod-
els among Mbc and Msc, respec-
tively.

φbc,φsc , The PVA vectors corresponding to
a .class file’s bytecode and source
code data, respectively.

φ
re f
sc ,φ

re f
bc , The reference PVA vectors for

source code and bytecode, respec-
tively.

D , The database containing the .class
files’ vectors (φsc and φbc) for C.

β , The number of training iterations
or epochs used for training a PVA
model.

γ , The PVA vector size used for train-
ing a PVA model.

ψ , The number of training samples
used for training a PVA model.

α , The cosine similarity score between
two PVA vectors.

α̂ , The threshold cosine similarity
score.

of “available TPLs.” However, analyzing the detailed
usages of the TPLs in the application is currently out
of scope of this work. Our method can be considered
as similar to the “reference list” methods, but the sim-
ilarity here is determined on the basis of source code
present in the TPL, and not merely the TPL names or
package-hierarchial structure. Table-1 shows the no-
tation used for various terms in this paper.

3.1 Steps of Our Approach

The central ideas behind our approach were presented
in §1.2. Here we expand those steps in more detail
and highlight the relevant design decisions to be ad-
dressed while implementing each step.
1. Preparing the Dataset of “Available TPLs”.

(a) Download a set of TPLs C from MavenCentral.
Design decision: Why use MavenCentral to
collect TPLs? How many TPLs should be col-
lected from different software categories?

(b) For each TPL J ∈ C, obtain the Java source
code and bytecode collections (Fsc,Fbc) by per-
forming the decompilation and disassembly
transformation operations.
Design decision: Why are the decompilation
and disassembly transformations appropriate?

(c) Train the PVA models Msc and Mbc on Fsc and
Fbc, respectively, obtained in the previous step.
Design decision: Why use PVA, and what
should be the PVA tuning-parameters for ob-
taining optimal results in our task?

(d) For each source file f ∈ Fsc and the bytecode
record b ∈ Fbc, obtain the corresponding vec-
tor representations (φsc,φbc) using suitable PVA
models trained in the previous step. φsc and φbc
obtained for each source code and bytecode in-
stance are stored in the database D.

2. Determining if an Input TPL (J) is a Bloat-TPL
or not for a Given Application.

(a) Compute the vector representation 〈φ′bc,φ
′
sc〉 for

the bytecode and source code representations of
J.

(b) Obtain all the vectors 〈φbc,φsc〉 ∈ D, such
that the respective similarity scores between
〈φ′bc,φbc〉 and 〈φ′sc,φsc〉 are above specific
threshold values (α̂bc and α̂sc).
Design decision: What are the optimal values
of similarity thresholds (α̂bc and α̂sc)?

(c) Determine whether J is a bloat-TPL or not for
the given application.
Design decision: How is the nature of J deter-
mined?

3.2 Design Considerations in Our
Approach

In this section, we address the design decisions taken
while implementing our approach.

3.2.1 Collecting TPLs from MavenCentral

The libraries used for training our models (named
Jar2Vec) were taken from MavenCentral. We choose
MavenCentral as it is a public host for a wide variety
of popular Java libraries. MavenCentral categorizes
the Java libraries based on the functionality provided
by the libraries. However, our method is not depen-
dent on MavenCentral; the TPLs could be sourced

BloatLibD: Detecting Bloat Libraries in Java Applications

129

from reliable providers. To collect the Java libraries,
we perform the following steps:

1. Crawl the page https://mvnrepository.com/
open-source, and download the latest version of a
JAR file for each of the top k libraries listed under
each category. For our experiments, we choose
k=3.

2. Extract and save in a database table the metadata
associated with the downloaded JAR. The meta-
data includes details of the TPL, such as the cate-
gory, tags, and usage stats.

3.2.2 Rationale for Choosing PVA for Training
Models

We train Jar2Vec models using PVA on the source
code and bytecode textual forms of the .class files ob-
tained by the decompilation and disassembly of vari-
ous TPLs. The key reasons for choosing PVA are i) It
allows us to compute the fixed-length vectors that ac-
curately represent the source code samples. Keeping
the length of vectors same for every source code sam-
ple is critical for implementing an efficient and fast
system. ii) Recent works such as (Alon et al., 2019),
a close variant of PVA, have proven that it is possible
to compute accurate vector representations of source
code and that such vectors can be very useful in com-
puting semantic similarity between two source code
samples.
Tuning Parameters for PVA: Performance, in terms
of accuracy, efficiency, and speed of PVA, is deter-
mined by its input parameters such as β,γ, and ψ (see
Table-1). Therefore, one of the major tasks is to se-
lect the optimal values of β,γ, and ψ that can result in
the best performing Jar2Vec models (M̂bc and M̂sc).
The performance of the Jar2Vec models is evaluated
by measuring their accuracy in detecting the similar-
ity in TPLs. The experiments’ details to determine
β,γ, and ψ are provided in the Appendix.

3.2.3 Rationale for using the Decompilation and
Disassembly Transformations

It is necessary to derive a “normalized” and
obfuscation-resilient textual form of the .class files to
compute a reliable vector representation. The normal-
ization applies a consistent naming of symbols while
preserving the semantics and structure of the code.
We use the decompilation (giving a source code text)
and disassembly (giving a bytecode text) as transfor-
mations to extract such normalized textual forms of
.class files.

3.2.4 Employing the Use of Vector
Representations for Performing Similarity
Detection between TPLs

To determine the similarity between libraries effi-
ciently, we create a database (D) of vectors. These
vectors correspond to the .class files present in a tar-
get repository of libraries (such as MavenCentral, or
an in-house repository maintained by an organiza-
tion). We obtain the vector representations for both
the source code and bytecode of .class files present
in TPLs using suitably trained PVA models and store
them in D. The PVA vectors enable fast and efficient
detection of TPL similarity.

3.2.5 Computing the Threshold Similarity
Measure α̂

Our method detects two libraries’ similarity by infer-
ring the similarity scores for .class files contained in
those libraries. To check if two .class vectors are sim-
ilar or not, we compute their cosine similarity4. An
important design decision in this context is:

For reliably detecting a library, what is the accept-
able value of Jar2Vec similarity scores for decompiled
source code and bytecode inputs?

We deem two .class files as highly similar or iden-
tical when the similarity score for the files is higher
than a threshold value α̂. The value of α̂ is determined
by running several experiments to measure similarity
scores for independent testing samples. The details of
the experiments are discussed in the Appendix.

3.2.6 Determining the Nature of an Unseen JAR
File J for a Given Application A

To determine if a given JAR file (J) is “bloat-TPL”
for an application (A), we leverage the best perform-
ing Jar2Vec models (M̂bc and M̂sc) and the vectors
database D.

If J contains .class files depicting considerable
similarity (≥ α̂) with the “available TPLs,” it is
deemed to be as “likely-to-be-non-bloat” for A. If for
at least N .class files in J, the similarity scores are
≥ α̂, we label J as a likely-to-be-non-bloat TPL for
A, else a bloat-TPL. In our experiments, we take N as
half of the count of .class files present in J. For a more
strict matching, a higher value of N can be set. The
complete steps for the detection procedure are listed
in Algorithm 1.
Selection of the Top-similar “Available TPLs”: We
explain it with an example. Suppose we have four
“available TPLs”, with C := {M1.jar, M2.jar, M3.jar,

4https://bit.ly/2RZ3W5L

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

130

M4.jar}, such that these contain 15, 6, 10, and 10
.class files, respectively. Now, D will contain the PVA
vectors corresponding to the source code and byte-
code representations of all the .class files present in
all the JARs in C. Next, suppose we want to test a
JAR file Foo.jar that contains ten .class files, and that
we have the following similarity scenarios:

1. All ten .class files of Foo.jar are present in M1.jar.

2. All six .class files of M2.jar are present in Foo.jar.

3. Seven out of ten .class files of M3.jar are present
in Foo.jar.

4. For M4.jar, none of these files is identical to those
present in Foo.jar, but they have similarity scores
higher than the threshold.

Which of the JAR files (M1 – M4) listed above will
be determined as the most similar to Foo.jar?

Our approach determines the most-similar JAR
file by measuring the total number of distinct .class
file matches. So with this logic, the similarity order-
ing for Foo.jar is M1, M4, M3, M2.

In this setting, determining the similarity of two
JARs is akin to comparing two sets for similarity.
Here the items of the sets would be the PVA vectors
representing .class files. We apply the following ap-
proach to determine the TPL-similarity:

1. For each .class c in Foo.jar, find each record r ∈D
such that the similarity score between c and r is
higher than a threshold. Let R⊂ D denote the set
of all such matched records.

2. Find the set Y of distinct JARs to which each r ∈R
belongs.

3. Sort Y by the number of classes present in R.

4. Select the top-k items from Y as similar JARs to
Foo.jar.

Algorithm-1 presents the above logic in more detail.

3.3 Implementation Details

The logical structure of the proposed system is shown
in Figure 2. All components of the system have been
developed using the Python programming language.
Details of each of the components are as follows:

1. JAR File Collector: We developed a crawler pro-
gram to collect the JAR files and the metadata
associated with each JAR file. The files were
downloaded from www.mavencentral.com, a re-
puted public repository of Open Source Software
(OSS) Java libraries. MavenCentral has about
15 million indexed artifacts, which are classified
into about 150 categories. Some examples of
the categories include JSON Libraries, Logging

Algorithm 1: Steps for determining the nature of a TPL J.

1: Input: J := A TPL file provided as input by an end-
user.
M̂bc,M̂sc := The best performing Jar2Vec models.
α̂sc, α̂sc := Threshold similarity scores for source code
and bytecode.
φ

re f
sc ,φ

re f
bc := Reference PVA vectors for source code

and bytecode.
D := Database containing the vector representations of
.class files in C.

2: Output: d := Decision on the nature of J.
/*Please see Table 1 for notation*/

3: Ssc := Sbc := NULL
4: for all .class files f ∈ J do
5: Obtain the PVA vectors φ′sc and φ′bc using M̂bc and

M̂sc.
6: Query the database D for top-k most similar vectors

to φ′sc and φ′bc.
7: αsc,αbc := Compute the cosine similarity between

〈φ′sc,φ
re f
sc 〉 and 〈φ′bc,φ

re f
bc 〉.

8: Ssc := Ssc∪〈αsc〉
9: Sbc := Sbc∪〈αbc〉

10: end for
11:

d :=

non-bloat if for at least N .class file

records in both Ssc and Sbc in-
dividually, αsc > α̂sc and αbc >

ˆαbc respectively.
bloat otherwise

Figure 2: Logical structure of the proposed system.

Frameworks, and Cache Implementations. The
metadata about each JAR includes the follow-
ing main items: License, Categories, HomePage,
Date of Availability, Files, Used By (count, and
links to projects using a library). The JAR file
categories’ complete details, metadata collected,
and the specific JAR files chosen can be found at
https://bit.ly/2WFALXf .

2. Transformation Handler: This module pro-
vides the transformations and preprocessing of the
.class files present in the input JAR files. Two
types of transformations implemented are a) De-

BloatLibD: Detecting Bloat Libraries in Java Applications

131

compilation of the .class file to produce a corre-
sponding Java source and b) Disassembling the
.class files into human-readable text files contain-
ing Java Virtual Machine (JVM) bytecode instruc-
tions for the .class files.
We used the Procyon (Strobel, 2019) tool for per-
forming the decompilation and disassembling of
the .class files. The respective transformation out-
put is further preprocessed to remove comments
and adjust token whitespaces before storing it as
a text file in a local repository. The preprocess-
ing was done for decompiled Java source to en-
sure that the keywords and special tokens such
as parentheses and operators were delimited by
whitespace. The preprocessing provides proper
tokenization of the source into meaningful “vo-
cabulary words” expected by the PVA.

3. Jar2Vec Trainer-cum-tester: We use an open-
source implementation of the PVA – called Gen-
sim (Dai et al., 2015), to train our Jar2Vec models.
The Jar2Vec trainer-cum-tester module’s primary
task is to:

(a) Train the Jar2Vec models using bytecode and
Java source files produced by disassembling
and decompiling the .class files.

(b) Infer the vectors for unseen .class files’ byte-
code and source code by using the respective
models.

4. Metadata and the Vectors’ Database: The in-
formation about libraries fetched from Maven-
Central is stored in a relational database. The fol-
lowing are the essential data items stored in the
database:

(a) Name, category, version, size, and usage count
of the library.

(b) Location of the library on the local disk as well
as a remote host.

(c) For each .class file f in a JAR:
i. The fully qualified name of the f .

ii. Sizes of f , and the textual form of its decom-
piled Java source code (fsc) and the disassem-
bled JVM bytecode (fbc).

iii. Inferred PVA vectors 〈φsc,φbc〉 for the above
files.

iv. Cosine similarity scores α
re f
sc and α

re f
bc be-

tween 〈φsc,φ
re f
sc 〉 and 〈φbc,φ

re f
sc 〉, respectively.

The values α
re f
sc and α

re f
bc are scalar.

5. BloatLibD’s GUI: The user interface of
BloatLibD is a web-based application. End-user
uploads a TPL using this GUI, which is then
processed by our tool at the server-side. The tool

Bloated Library Detector (BloatLibD)
Upload Jar File Choose File aws-java-sdk-core-1.8.10.jar Submit

File nature: likely-to-be-non-bloat-library

Libraries most-similar to aws-java-sdk-core-1.8.10.jar:

Library Similarity score

aws-java-sdk-core-1.8.10.jar 0.9998567

easymock-2.0.jar 0.999789

geronimo-jta_1.1_spec-1.0.jar 0.99975768

maven-dependency-plugin-2.0-alpha-4.jar 0.99974987

commons-validator-1.0.1.jar 0.99974625

Figure 3: Top similar TPLs detected by BloatLibD.

requires the TPLs in JAR format as input. Figure
3 displays the results for a test file5 submitted
to our tool. As shown by the figure, BloatLibD
displays the input file’s nature and the top-k
(k=5) similar essential libraries along with the
corresponding similarity scores. As we achieve
higher accuracy with the source code Jar2Vec
models than the bytecode models (discussed in
the Appendix), we use the best performing source
code Jar2Vec model for developing our tool.

4 EXPERIMENTAL EVALUATION

The primary goal of our experiments is to validate
the correctness and accuracy of our tool – BloatLibD.
The efficacy of our tool depends on its accuracy
in performing the task of detecting similar TPLs.
BloatLibD achieves this by detecting the similarity
between the PVA vectors of the .class files present in
the TPLs. The Jar2Vec models used by BloatLibD
are responsible for generating different PVA vectors.
Therefore, we perform various parameter-tuning ex-
periments to obtain the best performing Jar2Vec mod-
els (discussed in the Appendix). To evaluate the per-
formance of BloatLibD, we develop a test-bed using
the TPLs collected from MavenCentral (discussed in
§4.1) and perform the following experiments:

1. Test the performance of Jar2Vec models (and thus
BloatLibD) in performing the TPL-detection task
(discussed in the Appendix).

2. Compare the performance of BloatLibD with the
existing TPL-detection tools (discussed in §4.2).

5https://bit.ly/2yb2eHY

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

132

Table 2: TPL Data summary.

Item Count

Downloaded JAR files 450
JAR files selected for experiments 97
JAR files used for training 76 + 1 (rt.jar)
JAR files used for testing 20
.class files used for training 30427
.class files used for generating test
pairs of bytecode and source code

4033

Unique pairs of bytecode files used
for testing

20100

Unique pairs of source code files
used for testing

20100

4.1 Test-bed Setup

We crawled https://mvnrepository.com/open-source?
p=PgNo, where PgNo varied from 1 to 15. Each page
listed ten different categories from the list of most
popular ones, and under each category, the top-three
libraries were listed.

We started by downloading one JAR file for each
of the above libraries. That is, a total of 15× 10×
3 = 450 JAR files were fetched. In addition to the
above JAR files, we also included the JDK1.8 runtime
classes (rt.jar). After removing the invalid files, we
were left with 97 JAR files containing 38839 .class
files.

We chose random 76 JAR files out of 97 plus the
rt.jar for training the Jar2Vec models, and the re-
maining 20 JAR files were used for testing. We used
only those .class files for training whose size was at
least 1kB since such tiny .class files do not give suffi-
cient Java and byte code, which is necessary to com-
pute a sufficiently unique vector representation of the
.class contents. The training JARs had 33,292 .class
files, out of which only 30427 were of size 1kB or
bigger. We chose the minimum file size as 1kB be-
cause we observed that the files smaller than 1kB did
not significantly train an accurate Jar2Vec model. The
testing JARs had 4,033 .class files. A summary of
the TPL data is shown in Table 2. Note: the training
and testing of Jar2Vec models were performed on the
source code and bytecode extracted from the respec-
tive number of .class files.

4.2 Performance Comparison of
BloatLibD with the Existing
TPL-detection Tools

To the best of our knowledge, no work leverages the
direction of using code similarity (in TPLs) and the
vector representations of code to detect the bloat-
TPLs for Java applications. We present our tool’s

performance comparison (BloatLibD) with some of
the prominently used tools, viz., LiteRadar, LibD, and
LibScout. The details about these tools have been dis-
cussed in §2.

4.2.1 Objective

To compare the performance of BloatLibD with the
existing TPL-detection tools. Through this experi-
ment, we address the following:
How does BloatLibD perform in comparison to the
existing TPL-detection tools? What is the effect on
storage and response time? Is BloatLibD resilient to
the source code obfuscations?

4.2.2 Procedure

To perform this experiment, we invited professional
programmers and asked them to evaluate our tool.
One fundred and nine of them participated in the ex-
periment. We had a mixture of programmers from fi-
nal year computer science undergraduates, postgrad-
uates, and the IT industry with experience between
0-6 years. The participants had considerable knowl-
edge of Java programming language, software engi-
neering fundamentals, and several Java applications.
The experiment was performed in a controlled indus-
trial environment. We provided access to our tool
for performing this experiment by sharing it at https:
//bit.ly/2V80NCT. The tools’ performance was eval-
uated based on their accuracy, response time, and the
storage requirement in performing the TPL-detection
task. We compute the tool’s storage requirement of
the tools by measuring the memory space occupied
in storing the relevant “reference TPLs.” The TPL-
detection tools – LibD, LibScout, and LibRadar, re-
quire the inputs in an Android application PacKage
(APK) format. Therefore, APK files corresponding
to the JAR versions of the TPLs were generated us-
ing the Android Studio toolkit6 (listed in Step 12 of
Algorithm 2).

The programmers were requested to perform the
following steps:

1. Randomly select a sample of 3-5 JAR files from
the test-bed developed for the experiments (dis-
cussed in §4.1).

2. Test the JAR file using Algorithm 2.

3. Report the tools’ accuracy and response time, as
observed from the experiment(s).

6https://developer.android.com/studio

BloatLibD: Detecting Bloat Libraries in Java Applications

133

Algorithm 2: Steps for performing the comparison.

1: Input: L = Set of TPLs downloaded as JAR files (J)
randomly from MavenCentral.
X = Set of XML files required as input by LibScout.
M̂bc,M̂sc := The best performing Jar2Vec models.
φ

re f
sc ,φ

re f
bc := Reference PVA vectors for source code

and bytecode.
/*Please see Table 1 for notation*/

2: Output: Terminal outputs generated by LibD, LiteR-
adar, and LibScout.

3: F ′sc := F ′bc := NULL
4: for all JAR files J ∈ L do
5: for all .class files fu ∈ J do
6: f u

bc, f u
sc := Obtain the textual forms of the byte-

code and source code present in fu.
7: f ′bc, f ′sc := Modify f u

bc and f u
sc using various trans-

formations listed in §4.1.
8: F ′sc := F ′sc∪〈 f ′sc〉
9: F ′bc := F ′bc∪〈 f

′
bc〉

10: end for
11: end for
12: Y := Convert F ′sc into the corresponding APK files us-

ing Android Studio.
13: Test with LiteRadar, LibD, LibScout using X and Y .
14: Test Fsc and Fbc with BloatLibD using Algorithm 1.

4.2.3 Evaluation Criteria

In the context of the TPL-detection task, we define the
accuracy as:

Accuracy =
Number o f T PLs correctly detected

Total number o f T PLs tested
(1)

4.2.4 Results and Observations

Table 3 lists the accuracy, response time, and storage
space requirement values observed for the tools. We
now present a brief discussion of our results.
Accuracy of the TPL-detection Tools: Some of the
key observations from the experiments are:

1. LiteRadar cannot detect the transformed versions
of the TPLs and fails in some cases when tested
with the TPLs containing no transformations. For
instance, it cannot detect exact matches in the case
of zookeeper-3.3.0.jar library7 and kotlin-reflect-
1.3.61.jar library8.

2. LibScout detects the TPLs without any transfor-
mations but suffers from package-name obfusca-
tions as it cannot detect the modified versions of
TPLs containing package-name transformations.

3. LibD substantially outperforms LibRadar and
LibScout in capturing the similarity between

7http://bit.ly/2VymUmA
8http://bit.ly/32MvkZe

the TPLs but does not comment on their na-
ture, i.e., 〈likely-to-be-bloat-TPL, likely-to-be-
non-bloat-TPL〉. It also comes with an additional
cost of manually comparing the TPLs with the
“reference set.”

4. For a given input file, BloatLibD labels it as
〈 likely-to-be-bloat-TPL, likely-to-be-non-bloat-
TPL〉, and lists the top-k similar libraries and the
respective similarity scores shown in Figure 3.

5. BloatLibD detects the TPLs for 99% of the
test cases. As observed from the table values,
BloatLibD outperforms LiteRadar, LibScout, and
LibD with the improvement scores of 30.33%,
74.5%, and 14.1%, respectively. As BloatLibD
performed equally well on the obfuscated test-
inputs, the results validate that it is resilient to the
considered obfuscation types.

Table 3: Performance comparison of various TPL-detection
tools.

TPL
detection

tools

Performance Metrics values
Accuracy

(in %)
Response Time

(in seconds)
Storage requirement

(in MBs)

LiteRadar 68.97 12.29 1.64
LibScout 25.23 6.46 3.93

LibD 85.06 100.92 12.59
BloatLibD 99 38.98 1.52

Response Time of the TPL-detection Tools:
BloatLibD achieves 61.37% improvement in the re-
sponse time over LibD while delivering higher re-
sponse times than LiteRadar and LibScout.
Storage Requirement of the TPL-detection Tools:
BloatLibD leverages the PVA vectors to detect the
similarity among the TPLs, while the tools used for
comparison, viz., LibD, LibScout, and LiteRadar, use
the “reference lists” of TPLs. These tools contain
the “reference lists” of TPLs as files within their tool
packages. As observed from the storage requirement
values, BloatLibD has the lowest storage requirement
due to the vector representation format. BloatLibD
reduces the storage requirement by 87.93% compared
to LibD, 61.28% compared to LibScout, and 7.3%
compared to LiteRadar.

4.3 Threats to Validity

For developing our Jar2Vec models and D, we utilize
a subset of Java TPLs (i.e., JAR files) present in the
MavenCentral repository. We assume that these TPLs
cover a reasonably wide variety of Java code such
that the Jar2Vec models that we train on them will
be accurate. However, there could still be many other

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

134

Java code types that could have improved the Jar2Vec
models’ accuracy. The approach’s efficacy also de-
pends on the completeness and update status of the
reference libraries. For training the Jar2Vec models,
we obtain the normalized textual forms of the source
code and bytecode representations of the .class files
present in the JAR files. We obtain the source code
and bytecode by using the decompilation and disas-
sembly operations. Therefore, our Jar2Vec models’
accuracy is subject to the accuracy of the decompila-
tion and disassembly operations.

Next, we treat an unseen TPL that shows con-
siderable similarity with the set of “available TPLs”
as likely-to-be-non-bloat-TPLs. Thus, the labeling of
a TPL as likely-to-be-non-bloat-TPL or bloat-TPL is
strongly dependent on its use in the considered ap-
plication. We do not consider the TPL-usage as per
now, but have included it as part of our future work.
While training the Jar2Vec models, we consider only
the .class files of size 1kB or larger. However, there
may exist Java libraries where the average class size is
lower than this limit. Excluding such a group of TPLs
from the training might give inaccurate results when
the input TPL being checked happens in such a group.
The main reason for excluding such tiny .class files is
that they do not give sufficient Java and byte code,
which is necessary to compute a sufficiently unique
vector representation of the .class contents.

By reviewing the literature (Ma et al., 2016;
Backes et al., 2016; Li et al., 2017), we realized that
there are a significant amount of TPL-detection tools
designed for Android Applications, requiring the in-
put file in an APK format. To the best of our knowl-
edge, no tool performs the TPL-detection for software
applications existing in JAR formats. Therefore, we
converted our TPLs present from JAR to APK format
using the Android Studio toolkit and choose LibD,
LibRadar, and LibScout – some of the popular TPL-
detection tools for our comparison. However, due to
the fast advances of research in this area, we might
have missed some interesting TPL-detection tool that
works with the JAR file formats.

5 CONCLUSIONS

We have proposed a novel application of the well-
known PVA to train the Jar2Vec models to detect the
similarity of JAR files. The uses of the PVA have been
mostly in the domain of natural language processing.
To the best of our knowledge, we are the first to ap-
ply it for detecting the similarity of Java libraries and
leverage it to build our tool – BloatLibD. Our work’s
significant insight is that the PVA can compute de-

pendable vector representations of various software
code forms.

Our experiments with a large corpus of .class
files have demonstrated that Java binaries’ similar-
ity can be reliably detected using Jar2Vec. Another
key idea that we have successfully leveraged in our
approach is using the modern, semantics-preserving
Java decompilers to transform the binary .class files
into an obfuscation-invariant textual form. This trans-
formation allowed us to leverage PVA for detect-
ing binary code similarity while also allowing our
method to be resilient against the obfuscated input.
We have verified our approach’s efficacy by testing
it with more than 30000 .class files, where we have
achieved detection accuracy above 99% and an F1
score of 0.968. BloatLibD outperforms the exist-
ing TPL-detection tools, such as LibScout, LiteR-
adar, and LibD, with an accuracy improvement of
74.5%, 30.33%, and 14.1%, respectively. Compared
with LibD, BloatLibD achieves a storage reduction of
87.93% and a response time improvement of 61.37%.

As part of the future work, we plan to extend our
idea of utilizing the source code similarity to detect
software bloat for software written in other program-
ming languages. Further, we plan to explore the di-
rection of actual TPL-usage within the application to
detect the unused parts of TPL-code. The idea can be
leveraged to develop various software artifacts for au-
tomating the SDLC activities, such as software code
review, source code recommendation, and code clone
detection.

REFERENCES

Alon, U., Zilberstein, M., Levy, O., and Yahav, E. (2019).
Code2vec: Learning distributed representations of
code. Proc. ACM Program. Lang., 3(POPL):40:1–
40:29.

Anthony Desnos, Geoffroy Gueguen, S. B. (2018). Wel-
come to androguard’s documentation!

Au, K. W. Y., Zhou, Y. F., Huang, Z., and Lie, D. (2012).
Pscout: analyzing the android permission specifica-
tion. In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 217–
228. ACM.

Backes, M., Bugiel, S., and Derr, E. (2016). Reliable third-
party library detection in android and its security ap-
plications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 356–367. ACM.

Book, T., Pridgen, A., and Wallach, D. S. (2013). Longitu-
dinal analysis of android ad library permissions. arXiv
preprint arXiv:1303.0857.

Chen, K., Liu, P., and Zhang, Y. (2014). Achieving accu-
racy and scalability simultaneously in detecting appli-

BloatLibD: Detecting Bloat Libraries in Java Applications

135

cation clones on android markets. In Proceedings of
the 36th International Conference on Software Engi-
neering, pages 175–186. ACM.

Dai, A. M., Olah, C., and Le, Q. V. (2015). Document em-
bedding with paragraph vectors. In NIPS Deep Learn-
ing Workshop.

Feichtner, J. and Rabensteiner, C. (2019). Obfuscation-
resilient code recognition in android apps. In Proceed-
ings of the 14th International Conference on Avail-
ability, Reliability and Security, page 8. ACM.

Grace, M. C., Zhou, W., Jiang, X., and Sadeghi, A.-R.
(2012). Unsafe exposure analysis of mobile in-app ad-
vertisements. In Proceedings of the fifth ACM confer-
ence on Security and Privacy in Wireless and Mobile
Networks, pages 101–112. ACM.

Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In International confer-
ence on machine learning, pages 1188–1196.

Li, M., Wang, W., Wang, P., Wang, S., Wu, D., Liu, J.,
Xue, R., and Huo, W. (2017). Libd: scalable and pre-
cise third-party library detection in android markets.
In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), pages 335–346. IEEE.

Liu, B., Liu, B., Jin, H., and Govindan, R. (2015). Efficient
privilege de-escalation for ad libraries in mobile apps.
In Proceedings of the 13th annual international con-
ference on mobile systems, applications, and services,
pages 89–103. ACM.

Ma, Z., Wang, H., Guo, Y., and Chen, X. (2016). Libradar:
fast and accurate detection of third-party libraries in
android apps. In Proceedings of the 38th international
conference on software engineering companion, pages
653–656. ACM.

Mitchell, N. and Sevitsky, G. (2007). The causes of bloat,
the limits of health. In Proceedings of the 22nd an-
nual ACM SIGPLAN conference on Object-oriented
programming systems and applications, pages 245–
260.

Strobel, M. (2019). Procyon: A suite of java metaprogram-
ming tools focused on code generation, analysis, and
decompilation.

Wang, H., Guo, Y., Ma, Z., and Chen, X. (2015). Wukong:
A scalable and accurate two-phase approach to an-
droid app clone detection. In Proceedings of the
2015 International Symposium on Software Testing
and Analysis, pages 71–82. ACM.

Xu, G., Mitchell, N., Arnold, M., Rountev, A., and Sevitsky,
G. (2010). Software bloat analysis: Finding, remov-
ing, and preventing performance problems in modern
large-scale object-oriented applications. In Proceed-
ings of the FSE/SDP workshop on Future of software
engineering research, pages 421–426.

Zhang, Y., Dai, J., Zhang, X., Huang, S., Yang, Z., Yang,
M., and Chen, H. (2018). Detecting third-party li-
braries in android applications with high precision and
recall. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 141–152. IEEE.

APPENDIX

Objective: The objective here is to seek an answer to
our questions:

1. For reliably detecting a library, what is the ac-
ceptable value of Jar2Vec similarity scores for
source code and bytecode inputs?

2. Does the threshold similarity score (α̂) vary with
the input parameters (β,γ, and ψ) of PVA?

3. What are the optimal values for the PVA tuning-
parameters β,γ, and ψ?

Please refer to Table-1 for notation definitions.

Table 4: Scenarios for training Jar2Vec models using PVA.
Parameters varied

Epochs β Vector size γ Training samples ψ Models
Fixed

at
10

Fixed
at
10

Vary 5000 to-
CorpusSize in-

steps of 5000

CorpusSize
÷

5000
Vary 5-
to 50 in-
steps of 5

Fixed
at
10

Fixed at-
CorpusSize 10

Fixed
at
10

Vary 5-
to 50 in-
steps of 5

Fixed at-
CorpusSize 10

Test-bed Setup: Using the test partition of the test-
bed developed in §4.1, we generate a test dataset (Y)
containing same,di f f erent file pairs in 50:50 ratio.
Further, to check if our tool is resilient to source code
transformations, we test it for the following three sce-
narios:

1. Package-name Transformations: Package names
of the classes present in TPLs are modified.

2. Function (or Method) Transformations: Func-
tion names are changed in the constituent classes’
source code, and function bodies are relocated
within a class.

3. Source Code Transformations: Names of various
variables are changed, source code statements are
inserted, deleted, or modified, such that it does
not alter the semantics of the source code. For
instance, adding print statements at various places
in the source file.

We test Jar2Vec models’ efficacy in detecting similar
source code pairs (or bytecode pairs) using Y .
Procedure: The salient steps are:

1. Fbc,Fsc := Obtain the textual forms of bytecode
and source code present in source files of training
JARs of the test-bed (developed in §4.1).

2. For each parameter combination π ∈ Z (listed in
Table-4):

(a) Sπ
sc := Sπ

bc := NULL

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

136

Figure 4: Variation of average similarity with PVA tuning-parameters.

Figure 5: Performance metrics with different PVA models trained on source code.

(b) Mπ

bc,M
π
sc := Train the Jar2Vec models using

Fbc,Fsc.
(c) Save Mπ

bc and Mπ
sc to disk.

(d) For each file pairs 〈pi, p j〉 ∈ Y :
i. φi,φ j := Obtain PVA vectors for pi, p j using

M(π)

ii. αi, j := Compute cosine similarity between
〈φi,φ j〉

iii. if pi == p j: Ssame = Ssame∪〈αi, j〉
iv. else: Sdi f f erent = Sdi f f erent ∪〈αi, j〉

(e) α̂π

bc, α̂
π
sc := Obtain the average similarity scores

using Sπ

bc and Sπ
sc and save them.

(f) Using the α̂π

bc, α̂
π
sc as thresholds, compute the

accuracy of Mπ

bc and Mπ
sc.

(g) Plot the variation of α̂bc, α̂sc, the accuracy of
PVA models for different values of β,γ, and ψ

used in the experiment, and analyze.

Results and Observations: Figure 4 and 5 show the
effect of PVA tuning-parameters on the average sim-
ilarity and the model performance metrics values, re-
spectively. The legend entry BC-Ep-Diff represents
the similarity variation w.r.t epochs for bytecode case
when two samples were different. SC-Vec-Same in-
dicates the variation w.r.t vector size for source code
case when two samples were identical. The following
are the salient observations:

1. Effect of increasing the epochs beyond 10 seems

to have a diminishing improvement in the accu-
racy scores.

2. A noticeable decrease in similarity scores was ob-
served by increasing the vector count beyond 5,
and the epochs count beyond 10.

3. As anticipated, the accuracy (indicated by F1
scores9) improves with the size of training sam-
ples.

Therefore, we take α̂sc = 0.98359 and α̂bc = 0.99110
as the similarity threshold values for source code data
and bytecode data, respectively. Further, the best ac-
curacy (99.48% for source code and 99.41% for byte-
code) is achieved with the Jar2Vec model trained us-
ing 30427 samples, 10 epochs, and the vector size of
10. The precision and recall values, in this case, were
99.00% and 99.00%, respectively, resulting in an F1
score of 99% for the source code case. As we achieve
the highest accuracy scores at β = γ = 10, we take
these as the optimal input parameter values for PVA.

9https://bit.ly/3kHqkNg

BloatLibD: Detecting Bloat Libraries in Java Applications

137

