Kapenieks, A., Žuga, B., Vītoliņa, I., Kapenieks, K. ... &, 
Balode, A. 2014. Piloting the eBig3: A Triple-screen e-
Learning App. Proc. of the 6th International Conference 
on Computer Supported Education. pp. 325.-329. 
Kuhn, M., & Johnson, K., 2013. Applied predictive model-
ing (Vol. 26). New York: Springer. 
Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G., 
2018.  Learning  under  concept  drift:  A  review.  IEEE 
Transactions on Knowledge and Data Engineering, 
31(12), 2346-2363. 
Maskey,  M. et al.,  2019. Machine Learning Lifecycle  for 
Earth Science Application: A Practical Insight into Pro-
duction Deployment, IGARSS 2019 - 2019 IEEE Inter-
national Geoscience and Remote Sensing Symposium, 
Yokohama, Japan, pp. 10043-10046 
Miteva, D., & Stefanova, E., 2020. Design of Learning An-
alytics Tool:  The  Experts' Eyes View.  In  CSEDU (2) 
(pp. 307-314). 
Moodle, 2020, https://stats.moodle.org/ 
Nafukho, F. M., Alfred, M., Chakraborty, M., Johnson, M., 
& Cherrstrom, C. A., 2017. Predicting workplace trans-
fer of learning. European Journal of training and De-
velopment, 
Nissen,  M.,E.,  2006.  Harnessing knowledge dynamics: 
Principled organizational knowing & learning. p. 278. 
Pachler, N.; Cuthell, J. P.; Preston, C.; Allen, A; Pin-
heiro−Torres, C. (2010) ICT CPD Landscape Review: 
Final report. Becta ICT CPD RR.  
Paleyes, A., Urma, R. G., & Lawrence, N. D., 2020. Chal-
lenges  in  Deploying  Machine  Learning:  a  Survey  of 
Case Studies. arXiv preprint arXiv:2011.09926. 
Seliya, N. et al., 2009. A study on the relationships of clas-
sifier performance metrics. In 21st IEEE International 
Conference on Tools with Artificial Intelligence. New-
ark, NJ, pp. 59-66. 
Schelter, S., Biessmann, F., Januschowski, T., Salinas, D., 
Seufert, S., & Szarvas, G., 2018. On challenges in ma-
chine learning model management. 
Silic, M., & Cyr, D., 2016. Colour arousal effect on users’ 
decision-making  processes  in  the  warning  message 
context. In International Conference on HCI in Busi-
ness, Government, and Organizations  (pp.  99-109). 
Springer, Cham.  
Testers, L., Gegenfurtner, A., & Brand-Gruwel, S.,  2020. 
Taking  Affective  Learning  in  Digital  Education  One 
Step  Further:  Trainees’ Affective  Characteristics Pre-
dicting Multicontextual Pre-training Transfer Intention. 
Frontiers in Psychology, 11. 
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A., 2018. 
The current  landscape of  learning analytics in higher 
education. Computers in Human Behavior, 89, 98-110. 
Vitolina, I.,  &  Kapenieks, 2013. A. E-inclusion measure-
ment by e-learning course delivery. In: Procedia Com-
puter Science, 26, (pp. 101-112). 
Vitolina, I., & Kapenieks, 2014 A. User analysis for e-in-
clusion in a blended learning course delivery context. 
In Proceeding of the International Scientifical Confer-
ence May 23th–24th (Vol. 2). 
Vitolina,  I.,  Kapenieks  A.  (2020).  E-inclusion  Prediction 
Modelling in Blended Learning Courses (accepted pa-
per), 23rd International Conference on Interactive Col-
laborative Learning. 
Vitolina, I., Kapenieks A. (2020a). Comparision of E-inclu-
sion  Prediction  Models  in  Blended  Learning Courses 
(accepted paper), 19th International Conference e-Soci-
ety. 
Yadav, S., & Shukla, S., 2016. Analysis of k-fold cross-val-
idation over hold-out validation on colossal datasets for 
quality classification. In 2016 IEEE 6th International 
conference on advanced computing (IACC) (pp. 78-83). 
IEEE.