
Completeness of Knowledge in Models Extracted from Natural Text

Viktorija Gribermane a and Erika Nazaruka b
Department of Applied Computer Science, Riga Technical University, Setas Street 1, Riga, Latvia

Keywords: Natural-language Requirements, Domain Modeling, Model Extraction, Natural Language Processing.

Abstract: Requirements given in the form of text in natural language are a widely used way of defining requirements
for software. Various domain modeling approaches aim to extract domain models from the given natural
text with different goals and output models. The article focuses on evaluating 17 approaches for domain
model extraction based on the completeness of the extracted knowledge of the resulting target models.
Criteria for the evaluation have been defined and a comparison has been given, which highlights the
importance of including all three - functional, behavioral and structural information, in order to retain the
most complete extracted knowledge.

a https://orcid.org/0000-0002-8368-9362
b https://orcid.org/0000-0002-1731-989X

1 INTRODUCTION

During the requirements analysis phase of software
development, the system structure and behavior
usually need to be specified. These requirements are
often given in the form of text in natural language
(hereinafter “natural text”), which is time consuming
and costly to read, maintain and use.

Various methods exist for extraction of domain
models from software requirements given in natural
text. These output models can be used for various
goals, for example – for visualization of the defined
problem domain; further generation of source code
from the model; validation or assessment of the
quality of the requirements used as input (Ferrari et
al., 2014).

In the given article various approaches that
extract functional, behavioral and structural data
have been overviewed and compared based on
comparison criteria defined by the authors. These
criteria focus on evaluating the completeness of
extracted knowledge of the target domain models
according to the mentioned aspects with the goal of
finding approaches that retain the most knowledge in
the target model.

Section 2 introduces various approaches for
model extraction from natural text, section 3 defines
comparison criteria and the comparison itself with a
discussion of its outcome that is given in section 4.

The last section summarizes the results and future
research areas.

2 APPROACHES FOR DOMAIN
MODEL EXTRACTION

In this section we briefly introduce 17 different
approaches for domain model extraction from
natural text that show the advancements in this field
of research. These approaches were selected from
those of found in IEEE and ACM publication bases,
since they satisfy the following requirements:
natural language processing of text for constructing
the domain model for software development and a
publishing year from 2005 till 2020. Twelve of these
approaches deal with unrestricted natural language
text, the final five are suitable for controlled natural
language text. All of them will be used for
comparison.

In the scope of this overview, we mainly focus
on the source models used by the approaches
describing a domain AS-IS (today’s reality) and/or a
domain TO-BE (customer expected reality) as well
on whenever a mapping between them is created if
both are used; the form in what source models are
given; what is the target model; what is used for the
transition (intermediate) model and what techniques
are used for knowledge extraction.

114
Gribermane, V. and Nazaruka, E.
Completeness of Knowledge in Models Extracted from Natural Text.
DOI: 10.5220/0010454301140125
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 114-125
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2.1 Unrestricted Language

2.1.1 TFM4MDA

The Topological Functioning Model (TFM) for
Model Driven Architecture (MDA) is an approach
described in detail in (Asnina, 2006). The TFM is
represented in the form of a topological space (X,
Ө), where X is a finite set of functional
characteristics of the system under consideration,
and Ө is a topology among functional characteristics
of set X (Asnina, 2006; J. Osis, 1969; J Osis &
Asnina, 2011). Visually it can be represented in the
form of a directed graph.

The TFM4MDA approach uses textual
descriptions of functionality as a source of
knowledge for constructing the domain AS-IS model
and software requirements specification as a source
of knowledge for constructing the domain TO-BE
model. Conformity between the models is provided
by continuous mapping between them. Textual
description must be given in plain text form and be
pre-processed to avoid incompleteness of sentences.
Requirements could be declared in the form of “The
system shall do...”.

Text processing is manual and includes part of
speech recognition and determination of
dependencies between words in the sentences.

Target models are the Use Case model and
specifications, conceptual class diagram, and a set of
potential interfaces. The TFM is used as a transition
model, but can be used also as a target model.

2.1.2 TopUML

The approach presented in (Donins, 2012) and (J.
Osis & Donins, 2017) introduces a new modeling
language and approach called Topological UML
(TopUML). It is aimed at establishing traces
between artifacts of domains AS-IS and TO-BE. The
author considers that “without these traces the
acceptance process of developed software gets
meaningless since the customer cannot fully verify
the delivered solution” (Donins, 2012).

The approach uses textual descriptions of
functionality as a source of knowledge for
constructing the domain AS-IS model, software
requirements as a source of knowledge for
constructing the domain TO-BE model and
establishes a continuous mapping between the
models. Similarly to the TFM4MDA, requirements
descriptions must be given in plain text form and be
manually pre-processed to avoid incompleteness of
sentences, as well as software requirements can be

given in the form of “The system shall do...”. The
target model is TopUML and UML models. The
TFM is used as a root model for further
transformations, i.e. as an intermediate model.

Text processing is manual and uses the same
activities as TFM4MDA.

2.1.3 Ilieva and Ormandjieva’s Approach

The approach described in (Ilieva & Ormandjieva,
2006) uses plain text descriptions of software
requirements in unlimited natural language as a
source of knowledge for constructing the domain
TO-BE model with the aim to obtain requirements
engineering models such as a Use Case Path model,
a Hybrid Activity diagram model and a domain
model. Tabular presentation and Semantic Networks
are used as transition models. For extraction, the
approach uses the feature of the Natural Language
Processing (NLP) called Part of Speech (POS)
recognition and semantic analysis of text.

The target model is presented as three models:

 Use Case Path (UCP) model presents the route
of one action through the different actors
responsible for its implementation. UCP can
be transformed to Hybrid Activity Diagram;

 Hybrid Activity Diagram (HAD) model
presents a use case scenario and the notation
of this diagram. HAD can be transformed to
UCP;

 Domain model has structural relations among
concepts in Semantic Network, where
“different elements are presented only once”.

2.1.4 Relative Extraction Methodology

The approach presented in (Krishnan & Samuel,
2010) uses user requirements or problem statements
as a source of knowledge for constructing the
domain TO-BE model and UML Class diagram as
the target model. A dependency graph is used as the
transition model. For the extraction NLP (POS) is
used with Breadth First Search (BFS) and Depth
First Search (DFS) algorithms for processing the
graph as well as algorithmic structures for concept,
value and action identification and class diagram
generation.

Their obtained class diagram lacks advanced
relationships like aggregation and dependency
between classes, as well as multiplicities between
the classes.

Completeness of Knowledge in Models Extracted from Natural Text

115

2.1.5 DAA4BPM

The Description Analysis Approach for Business
Process Management (DAA4BMP) presented in
(Friedrich et al., 2011) uses informal textual
descriptions of processes (the domain AS-IS model)
for Business Process Model and Notation (BPMN)
models creation as a target model. The approach
uses a dependency graph as a transition model.

The approach uses the following NLP techniques
for knowledge extraction: syntax parsing (factored
model of Stanford Parser, action filtering by
example indicators), semantic and flow analysis
(FrameNet and WordNet; lists of indicators -
Condition, Parallel, Exception and Sequence) as
well as a custom anaphora resolution algorithm.

The four main elements of their World Model
are Actor, Resource, Action, and Flow.

2.1.6 DAA4BPM v.2

The authors of DAA4BMP have modified the
approach and present it in (Leopold et al., 2017). In
the second version information is taken from
business process models given in BPMN or Event-
driven Process Chain (EPC) notations together with
corresponding informal textual descriptions in plain
text. This information is used as a source of
knowledge for constructing the domain AS-IS
model. Resource Description Framework (RDF)
notation is used as the target model. The approaches
use the following NLP techniques: syntax parsing
(Stanford Parser) and semantic analysis (Stanford
Parser, WordNet and predicates).

They identify the grammatical entities (subject,
object, predicate and adverbial) and the relations
between them. As the result they identify the
behavioural pair-wise relations.

2.1.7 DoMoRe

Domain Modeling Recommender (DoMoRe)
introduced in (Agt-Rickauer, 2020) is author’s own
implementation of the DoMoRe system that
“generates context-sensitive modeling suggestions
using SemNet Nad OntoConnector”.

The approach uses a large text corpus in plain
text as input and Semantic Term Network as the
target model. N-Grams constructs are used as an
intermediate model. It employs Stanford NLP
toolkit, syntactic POS patterns for 5-Grams; and
statistics of term occurrence.

As the result this approach allows identification
of concepts and semantic relationships between
them on a conceptual level.

2.1.8 Mirończuk’s Approach

The approach described in (Mirończuk, 2020) uses
fire service reports as the source model, which were
given in the combination of structured data and
unrestricted text. The target model was a database
with structured data as the records in it.

The author employed the following techniques
for the approach: classification by using supervised
machine learning, creation of terms DB, manually
created taxonomy, and extraction rules based on
manually created patterns.

As the result the author extracts concept values
from text using predefined extraction patterns.

2.1.9 AR2AA

Automated Requirements to Assertions Analyzer
(AR2AA) uses plain text Requirement specifications
as a source of knowledge for constructing the
domain TO-BE model (Anwar et al., 2020). The
target model for the approach is a triplet
<Requirements, Actions, Conditions>. The approach
employs the following techniques: NLP for
identification of nouns, verbs and adjectives, and
rules to identify actions and conditions.

2.1.10 Kashmira and Sumathipala’s
Approach

The approach introduced in (Kashmira &
Sumathipala, 2018) is targeted at generation of
Entity Relationship (ER) diagrams from
requirements specification using NLP. The domain
TO-BE model is Use case specifications that are
given in plain text form, but must be specifically
semi-structured with keywords, and ER diagram as
the target model. The approach uses NLP, machine
learning, ontology, and web-mining to achieve its
goals.

As the result this approach identifies entities,
attributes, and relationships from a text, as well as
relationships between entities/sub entities-attributes,
entities-entities (association), entities-sub entities
(generalization), attributes-attributes, cardinalities
(One to One, One to Many, Many to Many).

2.1.11 AnModeler

AnModeler is a tool for generating domain models
from textual specifications (Thakur & Gupta, 2017).
The domain TO-BE model is Use case specifications
given in semi-structured unrestricted plain text. The
target models are UML Class and Sequence

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

116

diagrams. The approach employs NLP, sentence
structure and transformation rules.

As the result this approach allows discovering
the following domain elements: domain objects,
their attributes and operations, and interactions
between objects.

2.1.12 A Domain Model Extractor

The authors of the Domain Model Extractor (Arora
et al., 2016) indicate that it is capable of extracting
UML Class diagrams as a target model from
software requirements given in unrestricted natural
language form. It uses NLP features and extraction
rules.

As the result this approach allows extracting
concepts, associations and generalizations,
cardinalities, and attributes.

2.2 Controlled Language

2.2.1 IDM

The Integrated Domain Modeling (IDM) approach
explained in (Slihte, 2015) uses Use Case
specifications as the domain TO-BE model. The
specification must be given as plain text with steps
in the form of “subject verb object” (SVO). The
approach produces a TFM as the target model,
employing NLP features and ontology bank for this
task.

The result of text processing is a TFM. The
approach allows determining such elements as
functional features (action, object, actor,
preconditions) and causal dependencies between
them (according to a sequence of steps a text
specification). However, this approach provides only
manual adding of logical operators AND, OR, XOR
and manual detection of cycles of functionality.

2.2.2 Nassar and Khamayseh’s Approach

Research described in (Nassar & Khamayseh, 2015)
targets the construction of Activity diagrams from
Arabic user requirements using NLP tools. Authors
believe that the UML Activity diagram is the most
important diagram to be generated from user
requirements. The domain TO-BE model is given as
user requirements in Arabic that must follow strict
writing rules (formal short statements SVO and
VSO – “subject, verb, object” and “verb, subject,
object”). The approach uses manually detected tag
patterns to generate UML Activity diagrams as the
output model.

As the result this approach allows extracting
actions, domain objects without additional details
and actors.

2.2.3 AGER

The authors of the research (Ghosh et al., 2018)
propose an Automated E-R diagram Generation
System that can generate ER diagram from plain
text. User statements are given in VSO (“verb,
subject, object”) form. It uses E-R diagrams as the
target model and employs NLP, detection of
Entities, Attributes and Relations for this task.

As the result this approach allows extracting
actions, domain objects and attributes and
relationships between objects without cardinalities.

2.2.4 Shweta, Sanyal and Ghoshal’s
Approach

The approach introduced in (Shweta et al., 2018)
uses Use Case specifications as a source of
knowledge for constructing the domain TO-BE
model. The source software requirements must be
given in a semi-structured plain text form with
keywords specified. The target model is UML Class
diagrams. The approach uses NLP features and rules
for extraction of classes, attributes, and methods.

As the result this approach allows extracting
actions, domain objects and attributes and
relationships between objects without additional
information.

2.2.5 ReDSeeDS

Requirements Driven Software Development
System (ReDSeeDS) introduced in 2010-2012 by
the international researchers teams (Kalnins, 2010;
Kalnins et al., 2011; Smialek & Straszak, 2012) is a
project that uses domain vocabulary and use case
specifications in the Requirements Specification
Language (RSL) as a source of knowledge for
constructing the domain TO-BE model. The source
model type is Semi-formal equivalent of the domain
class model with links to WordNet entries, use cases
for scenarios in controlled language. The source
model format is plain text with hyperlinks.

The target model is a platform independent
model based on UML profile, which includes static
structure as classes, components and interfaces. The
target model does not represent the final version, the
authors call it “draft”. Draft behavior is represented
as a sequence diagram.

Completeness of Knowledge in Models Extracted from Natural Text

117

2.3 Summarization of Findings

As it can be seen from the approach descriptions,
most of them use BMPN, UML Class and Sequence
diagrams as well as TFM as output. NLP is most
often used for processing the system requirements.
The main aim of this processing is syntactical
analysis of sentences and extraction rules application
to the outcome. The extraction rules are defined by
the authors themselves and vary from the simplest
(as noun or verb processing) to the complex (as
semantical analysis of sentences). The complex
processing may include also using ontologies and
machine learning models. A use of simple and
complex rules does not depend from the approach
publishing year.

3 COMPARISON CRITERIA

Section 2 illustrates various approaches and methods
for extraction of domain models from natural text. In
this section criteria are defined for evaluating the
domain knowledge completeness of target models
extracted by these approaches.

From the target models of the overviewed
approaches it can be noted that UML Class diagrams
focus mostly on structural information, BPMN and
UML Sequence diagrams on behavioral information,
and TFM-based TopUML on structural, behavioral
and functional information. We grouped criteria
(Figure 1) accordingly to these three types of
information. Additionally, as we speak about models
and modeling, ability to determine levels of
abstraction is also included as a criteria group.

The criteria are defined based on understanding
of necessary conformity between problem and
solution domain models, as well as, the more
complete domain knowledge are extracted, the
closer IT industry is to automatic creation of source
code from domain models.

Figure 1: Criteria Categories for Comparison of
Completeness of Extracted Target Models.

3.1 Functional Characteristics

Functional characteristics come from the system
theory and are important for understanding the
process of functioning of the system (where

functioning is holistic representation of system's
dynamic properties):
 Signal (stimulus, input) from the external

environment, which provokes the system
reaction;

 Reaction of the system to the external
environment;

 Functioning cycle is the main causal cycle in
the system and its structure joins functional
parts of the system those of vital for its
successful and long life;

 Holistic view (systemic) indicates whether the
model represents the domain holistically (“+”)
as a space of functional parts without any
isolated functionality or fragmentary (“-”) as
just an isolated part of the whole functional
space;

 Affiliation to the system indicates to which
system in the domain functional part element
belongs to. If the approach considers only a
system without the external environment then
value is “-”;

3.2 Behavioral Characteristics

Behavioral characteristics are based on interaction of
the system’s elements caused by a signal or signals
from the external environment:
 Causal dependencies between behavioral

characteristics link a cause (which generates
the effect) and its effects (generated by the
cause). The cause-and-effect relations describe
causal implication between system’s
functional parts and allow introducing a
chronology as well as following up a process
of functionality;

 Logical dependencies (sequential) indicate a
fact that one action happened before another
according to a business or logical rule. Logical
dependencies not always match the causal
dependencies;

 Action (Operation or Method) name,
parameter, and result. An action represents
an activity that may occur in the domain under
certain conditions;

 Object is a domain entity that is responsible
for the action execution;

 Control flow is an order in which actions are
processed;

 Logical operation between control flows
indicates branching, i.e. whether AND, OR,
XOR relations exist between the flows;

 Preconditions are obstacles which satisfaction
allows starting execution of the action;

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

118

 Post-conditions are system's characteristics
that must be set after the execution of the
action.

3.3 Structural Characteristics

Structural characteristics are based on relationships
between domain objects or concepts:
 Actor is an entity that initiates an action;
 The role of object in relation (beneficiary, for

attitude, affected, changing, disappear);
 Object name (Class) is a unique identifier of

the object in the domain;
 Attribute name is a unique identifier of the

object's structural property;
 Object cardinality is a number of objects

participating (optionally or mandatory) in
relations;

 Attribute type is an attribute classifier;
 State of object encompasses all properties

and their current values;
 Structural relations consist of aggregation

or is-part-of relation (UML aggregation or
attribute as a separate class);
generalization/specification or is-a (UML
generalization); and association (other types
of relations).

3.4 Levels of Abstraction

Levels of abstraction include separation into detailed
or simplified actions, processes, systems and sub-
systems:
 Action is an atomic activity;

 Process defines a part of system functionality
(e.g. scenario of execution) as a set of linked
actions;

 Sub-system is a finite part of the system.

4 APPROACH COMPARISON

In this section criteria defined in section 3 are used
for the comparison of approaches introduced in
section 2.

Extracted knowledge on functional, behavioral,
structural characteristics and levels of abstraction is
analyzed in the considered approaches

During comparison it is possible only to note the
fact that needed knowledge is extracted. It is
impossible to analyze the quality of this extraction.
Therefore, the presence of such facts are denoted as
“+” in tables and a lack of them as “–”.

4.1 Functional Characteristics

Comparison of functional characteristics (Table 1)
shows that signals from and reactions to the external
environment are presented in 8 from 17 approaches.
In these approaches dynamic properties of the
system are taken into consideration.

Thus, elements of the use case paths
(TFM4MDA and Ilieva and Ormandjieva’s
approach), activity diagrams (Ilieva and
Ormandjieva’s approach and Nassar and
Khamayseh’s approach), sequence diagrams
(RedSeeDS and AnModeler), BPMN model

Table 1: Extracted Knowledge on Functional Characteristics (“+” is presented, “-” is not presented).

Approaches Signals Reaction Cycle Holistic view Affiliation
2.1.1 TFM4MDA + + + + +
2.1.2 TopUML + + + + +
2.1.3 Ilieva and Ormandjieva + + - - -
2.1.4 Relative Extraction Methodology - - - - -
2.1.5 DAA4BPM + + - - +
2.1.6 DAA4BPM v.2 - - - - -
2.1.7 DoMoRe - - - - -
2.1.8 Mirończuk - - - - -
2.1.9 AR2AA - - - - -
2.1.10 Kashmira and Sumathipala - - - - -
2.1.11 AnModeler + + - - +
2.1.12 A Domain Model Extractor - - - - -
2.2.1 IDM + + + + +
2.2.2 Nassar and Khamayseh + + - - -
2.2.3 AGER - - - - -
2.2.4 Shweta, Sanyal and Ghoshal - - - - -
2.2.5 ReDSeeDS + + - - +

Completeness of Knowledge in Models Extracted from Natural Text

119

(DAA4BPM) and TFM (IDM) allow representing
these properties.

The cycle and holistic view are used only in the
approaches, which use the TFM as the target or the
transition model. The possibility to define the
affiliation to one or another system exists in BPMN
models, Use Case models where it is possible to
show different systems verbally or graphically, as
well as in the TFM where it is one of the mandatory
elements in the functional feature tuple. Therefore,
affiliation is represented in 6 approaches, which use
these models. It means that all mentioned functional
characteristics are presented only in those
approaches, which use the TFM as the target model
or the transitional model.

4.2 Behavioral Characteristics

Comparison of behavioral characteristics illustrates
discovering of causal and logical dependencies, as
well as demonstrates presence of such behavioral
elements as an action (its name, parameters, and
result), an object which is responsible for the action,
control flows and logical operations on them, and
also preconditions and post-conditions (Table 2).

Causal dependencies (determined by causes and
effects) are represented in those approaches, which
use the TFM as the target model or the transitional
model. The DoMoRe approach also uses causal
dependencies but between the facts, not between
behavioral characteristics. Logical dependencies are
defined in those approaches, which use behavioral
diagrams (and models), as well as RDF triplets, as
the target model.

Definition of actions includes extracting their
names, parameters, and results (Table 2). Most of
approaches define action names, but Mirończuk’s
approach does not, because it is oriented on
extraction of structural characteristics.

Parameters are defined only in 4 approaches:
Ilieva and Ormandjieva’s approach, ReDSeeDS,
AnModeler and AR2AA. Ilieva and
Ormandjieva’s approach takes a direct object (dOb)
as a parameter in their diagrams. In ReDSeeDS
approach parameters are shown in the sequence
diagram and are also transferred into class diagrams
as attributes. The authors of the AnModeler
approach detect action parameters by their defined
transformation rules. In the AR2AA approach
parameters can be taken from the ActionOutput

Table 2: Extracted Knowledge on Behavioral Characteristics (“+” is presented, “-” is not presented).

Approaches

Causal
dependency

Lo
gi

ca
l d

ep
en

de
nc

ie
s

Action
Re

sp
on

sib
le

 o
bj

ec
t

Co
nt

ro
l f

lo
w

Lo
gi

ca
l o

pe
ra

tio
n

Pr
ec

on
di

tio
n

Po
st-

co
nd

iti
on

Ca
us

e

Ef
fe

ct

N
am

e

Pa
ra

m
et

er

Re
su

lt

2.1.1 TFM4MDA + + + + - + + + + + -
2.1.2 TopUML + + + + - + + + + + +
2.1.3 Ilieva and Ormandjieva - - + + + - + + + + -
2.1.4 Relative Extraction Methodology - - - + - - + - - - -
2.1.5 DAA4BPM - - + + - + + + + + -
2.1.6 DAA4BPM v.2 - - + + - - - + + + -
2.1.7 DoMoRe - - - + - - - - - - -
2.1.8 Mirończuk - - - - - - - - - - -
2.1.9 AR2AA - - - + + - - - - + -
2.1.10 Kashmira and Sumathipala - - - + - - + - - - -
2.1.11 AnModeler - - + + + - + + + + +
2.1.12 A Domain Model Extractor - - - + - - + - - - -
2.2.1 IDM + + + + - + + + + + +
2.2.2 Nassar and Khamayseh - - + + - - - + + + -
2.2.3 AGER - - - + - - + - - - -
2.2.4 Shweta, Sanyal and Ghoshal - - - + - - + - - - -
2.2.5 ReDSeeDS - - + + + + + + + + -

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

120

descriptions. However, parameters themselves do
not exist in the extracted view. Some of the
approaches discover action results as separate
elements: DAA4BPM approach illustrates results in
the form of domain objects, which are sent between
lanes; ReDSeeDS approach presents results as a type
of a return value in an operation of a class in class
diagrams and a return message in sequence
diagrams; approaches, which use the TFM specify a
result as an element in a functional feature tuple.
Basically, almost all approaches that discover an
action also have an object responsible for the action,
excluding those of using the semantic term network
(DoMoRe), activity diagram (Nassar and
Khamayseh approach) and RDF triplets
(DAA4BPM v.2 and AR2AA).

Control flows are presented in those approaches,
which model behavior of systems in the domain, i.e.,
which use such diagrams/models as a use case path
model, activity and sequence diagrams, a TFM, a
BPMN model and RDF triplets (Table 2). Logical
operations that express branching can be presented
between control flows.

Logical operations are used in all the
approaches, which discover control flows, excluding
2 approaches, namely, ReDSeeDS and
DAA4BPM v.2. The TFM4MDA approach and
ReDSeeDS use only OR (conditionals), but it is not
clear is it possible to discover the logical operation
AND explicitly. While approaches, namely, Ilieva
and Ormandjieva’s approach, DAA4BPM, Nassar
and Khamayseh and AnModeler approaches use
OR and AND. In their turn, DAA4BPM v.2,
TopUML approach and IDM approach use OR,
AND and XOR. Preconditions are extracted in those
approaches which discover OR but AR2AA
approach which uses predicates and does not define
control flows. Post-conditions are discovered in the
TopUML approach, IDM approach, AnModeler.
The IDM and AnModeler approaches extract post-
conditions from Use Case specifications where they
are specifically indicated. The TopUML approach
extracts post-conditions from text if they are
explicitly defined.

In most of the approaches causal dependencies
are replaced by logical dependencies, i.e., mostly the
latter are analyzed. Causal dependencies among
functional characteristics are discovered only in
those approaches which use the TFM. Behavior is
determined by actions and control flows, herewith in
most cases only action names and rarely when action
parameters and results are extracted from text.
However, objects responsible for action execution
are defined almost in all cases. Regarding control

flows that include branching and preconditions, they
are determined when a target model is a dynamic
model. Post-conditions are defined only when they
are explicitly indicated in the text and in most
approaches authors disregard them.

4.3 Structural Characteristics

Structural characteristics extracted by the
approaches (Table 3) include entities responsible for
execution of an action (actor), different properties of
entities (role, name, attributes and their types,
cardinality, state) and structural relations (is-part-of,
is-a and other relations that can be grouped as
associations).

Actors are extracted in those approaches, where
they are defined in a target model or a transitional
model. Actors are entities that directly initiate some
action. They can be named as actors, responsible
entities or defined by predicate names.

Entities (domain objects) in their mutual
relationships can take certain roles. These roles are
determined in ReDSeeDS (by default from UML,
correspondingly to an object type, i.e. class) and in
the Mirończuk’s approach manually. Entities are
defined in all the approaches, wherein the structural
characteristics are extracted. If an entity is extracted,
then it has a name, which is determined by the
corresponding noun. In those approaches, which
have target models such as class diagrams or
structure in the form of semantic networks, attributes
are also determined. The authors of the Domain
Model Extractor approach mentioned that it is not
always possible to detect a semantically correct
name of the attribute from text one-to-one and a
domain expert participation may be necessary.
However, in the TFM4MDA and IDM approaches
attributes are not extracted, because they apply a
TFM, where the internal structure of the object is not
defined. Though, the authors of those approaches
mention that attributes can be extracted from text
and specified in data vocabulary or in some other
specification of domain objects. Regarding
extraction of attribute types, most approaches just
skip this step. In the Relative Extraction
Methodology attribute types are not explicitly
defined, but it seems that the authors of this
approach add them to a target model manually. In
ReDSeeDS approach authors take attribute types as
they are mentioned in software requirement text.
Generated classes are distinguished by author-
defined stereotypes such as entity, form, list, button,
gridLink, link and others. Object cardinalities also
are rarely when extracted. The AnModeler approach

Completeness of Knowledge in Models Extracted from Natural Text

121

analyzes singular and plural forms of nouns directly
from text, as well as numerical values assigned to
nouns. Kashmira and Sumathipala’s approach
uses a machine learning module for detecting
cardinalities. A state of object after execution of the
action as a separate element is presented only in the
TopUML approach, but in other approaches the
state can be represented as an attribute and requires
additional analysis.

Structural relations between objects are
aggregation, generalization/specialization, and other
relations that can be logically grouped under
associations. In all the approaches where objects are
extracted, associations are also determined. The
exception is the IDM approach in which a target
model is the TFM, where structural relationships
between objects are not modeled. Though, ontology
can be used for this purpose. Majority of the
approaches which extract associations also
determine aggregation and generalization. There are
two ways how they can be determined: by keywords
and key phrases in the text or relations in the
semantic network. Ilieva and Ormandjieva’s and
DoMoRe approaches use the semantic network.
Other approaches (ReDSeeDS, A Domain Model
Extractor, AnModeler, DAA4BPM v.2) use
transformation rules with key phrases such as
“contain”, “is made up of”, “include”, “identified

by”, “recognized by” for aggregation and “is a”,
“type of”, “kind of”, “may be” for generalizations.
Among the considered approaches, the AGER and
Kashmira and Sumathipala’s approaches, with the
E-R diagram as a target model, determine
aggregations. However, the AGER approach does
not determine generalization. Though, Kashmira
and Sumathipala’s approach uses the machine
learning module to find generalization between
entities and sub-entities.

Domain objects and associations between them
are extracted actually in all the approaches. In most
approaches attributes are also determined, but their
types mostly are ignored, as well as object
cardinalities in associations. Detailed analysis of
structural relations such as aggregation and
generalization is less presented in the approaches.

The main path to determine these structural
relations is analyzing keywords in text. Thereby,
during text analysis it is necessary to pay attention to
extraction of object cardinalities, attributes, attribute
types and structural relations such as aggregations
and generalizations. As well it is necessary to pay
attention to detecting a role of an object in those
cases, when objects can participate in multiple
relations. The approaches which use the TFM should
envisage an additional specification for detailed

Table 3: Extracted Knowledge on Structural Characteristics (“+” is presented, “-” is not presented).

Approaches

A
ct

or

Ro
le

 o
f o

bj
ec

t

O
bj

ec
t n

am
e

A
ttr

ib
ut

e
na

m
e

A
ttr

ib
ut

e
ty

pe

O
bj

ec
t c

ar
di

na
lit

y

St
at

e
of

 o
bj

ec
t Structural relations

A
gg

re
ga

tio
n

G
en

er
al

iz
at

io
n

A
ss

oc
ia

tio
n

2.1.1 TFM4MDA + - + - - - - - - +
2.1.2 TopUML + - + + - - + - - +
2.1.3 Ilieva and Ormandjieva + - + + - - - + + +
2.1.4 Relative Extraction Methodology - - + + + - - - - +
2.1.5 DAA4BPM + - - - - - - - - -
2.1.6 DAA4BPM v.2 + - + + - - - + + +
2.1.7 DoMoRe + - + + - - - + + +
2.1.8 Mirończuk + + + + - - - - - +
2.1.9 AR2AA - - - - - - - - - -
2.1.10 Kashmira and Sumathipala - - + + - + - + + +
2.1.11 AnModeler + - + + - - - + + +
2.1.12 A Domain Model Extractor - - + + - + - + + +
2.2.1 IDM + - + - - - - - - -
2.2.2 Nassar and Khamayseh + - - - - - - - - -
2.2.3 AGER - - + + - - - + - +
2.2.4 Shweta, Sanyal and Ghoshal - - + + - - - - - +
2.2.5 ReDSeeDS + + + + + - - + - +

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

122

description of extracted objects and their internal
structures, as well as structural relations between
them.

4.4 Levels of Abstraction

Table 4 illustrates levels of abstraction determined in
the approaches. Most approaches, excluding
DoMoRe and Mirończuk, extract knowledge at the
level of actions. Those approaches which define the
business processes (execution scenarios) as a result
also extract knowledge at the level of processes.
These processes usually are defined for one concrete
system in the domain and correspondingly it is
possible to assume that these approaches assign
those processes to a certain system and can also
indicate sub-systems. Those more complete
approaches are the TFM4MDA, DAA4BPM,
TopUML, IDM and AnModeler.

4.5 Discussion

As it can be seen from comparisons presented in this
section, none of the reviewed approaches extract
enough knowledge to fulfill all of the defined
criteria.

Only 8 approaches consider functional properties
(TFM4MDA, TopUML, Ilieva and Ormandjieva,
DAA4BPM, AnModeler, IDM, Nassar and
Khamayseh and ReDSeeDS). Most of them still
consider a system by its fragments and do not pay
proper attention to formal (not intuitive)
determination of system’s borders and separation of
the system from the space of its environment. The

same limitation holds also for separation of sub-
systems from the system.

Almost all approaches consider behavioral and
structural properties, yet most are missing the
extraction of details that will be necessary in the
case the target model will further be converted to
source code. This means that target models need to
be manually supplemented by additional data.

One of the complexities of natural text
descriptions is mixing levels of abstraction. It is
usual for people to change the flow of a story from
general to specific and then back to general. Just few
approaches take this fact into account and try to
extract levels of abstraction. The benefit of this is in
decreasing the possibility of duplication and
overlapping of structures or behavior in target
models. Most of the overviewed approaches focus
on a single aspect: functional, structural, or
behavioral.

Authors believe that methods that focus on
multiple aspects - TFM4MDA, TopUML, Ilieva
and Ormandjieva, AnModeler and ReDSeeDS -
are more valuable as these results in more retained
knowledge in the target model and more information
to use for transforming the model further into source
code.

To better understand which approach can be
applied for a certain case, both the source and target
models must be checked. Weights must be given to
each criterion based on its importance for the task
and a comparison can be made based on that.
Regarding NLP features used for text processing, the
authors must note that in most cases pre-processed
POS tagged sentences are analyzed using

Table 4: Extracted Knowledge on Levels of Abstraction (“+” is presented, “-” is not presented).

Approaches Action Process System Sub-system
2.1.1 TFM4MDA + + + +
2.1.2 TopUML + + + +
2.1.3 Ilieva and Ormandjieva + + - -
2.1.4 Relative Extraction Methodology + - - -
2.1.5 DAA4BPM + + + +
2.1.6 DAA4BPM v.2 + - - -
2.1.7 DoMoRe - - - -
2.1.8 Mirończuk - - - -
2.1.9 AR2AA + - - -
2.1.10 Kashmira and Sumathipala + - - -
2.1.11 AnModeler + + + +
2.1.12 A Domain Model Extractor + - - -
2.2.1 IDM + - + +
2.2.2 Nassar and Khamayseh + + - -
2.2.3 AGER + - - -
2.2.4 Shweta, Sanyal and Ghoshal + - - -
2.2.5 ReDSeeDS + + - -

Completeness of Knowledge in Models Extracted from Natural Text

123

extraction rules defined by the authors of the
approaches. As mentioned in section 2, they can be
simple and complex. Some approaches are more
advanced since use ontologies and machine learning
models for sematic analysis. However, analysis if
published work illustrates that it is not common. The
reason may be a lack of enough number of corpuses
for training those models.

It must be noted that the comparison does not
consider the quality of outputs of the approaches.
The authors believe that quality of the target model
is as important as the completeness of the extracted
model, yet this is a separate research topic and is
directly influenced by the tools and techniques
applied. These results can change dynamically with
innovations and updates of the tools and techniques.
This means that results presented by authors of the
reviewed approaches can quickly become outdated
and not match a similar approach if implemented
today.

5 CONCLUSIONS

The research has provided a short overview of 17
approaches for Domain Model Extraction according
to 4 groups of comparison criteria. The criteria are
based on functional, behavioral, and structural
characteristics of systems as well as levels of
abstraction.

The results showed that none of the approaches
is able to extract a target domain model without
losing any information from source models. The
provided comparison lets a researcher define
importance weight for each criterion according to
the expected target model and source models and
select appropriate approach for its case.

Construct validity: Since various methods for
extraction of domain models from text exist, the
question about completeness of extracted knowledge
in the models also exists. Thus, this research reviews
existing results of other author works. In order to
evaluate the current state in the field, 4 groups of
criteria have been presented: functional, behavioral,
and structural characteristics of systems and levels
of abstraction. They include basic elements which
are needed for generation of source code from
domain models. Since texts from which knowledge
are extracted are different, we do not consider
application specific and platform specific details.
The quality of extraction of knowledge is not
analyzed; just the presence or the lack of the
extraction is noted.

Internal validity: Out research is limited by
publication period (15 years) and publication
databases (IEEE and ACM). The search of related
works has been done using a limited number of
keywords: “Knowledge Extraction”, “Domain model
extraction”, “Natural Language Processing”. The
result of the search was filtered by relevance to the
research question and the target model. Multiple
publications of the same authors were overviewed
and the most complete publications were taken for
analysis.

External validity: The presented results allow
understanding which elements are more frequently
extracted and which elements need greater attention.
The more complete the model is, the more complete
the source code will be. This means that researchers
should focus on extracting the lacking knowledge.

Further research could focus on improvements of
existing approaches as well as providing other
criteria that are necessary for constructing the more
complete domain model. Yet some aspects were out
of scope of this article, e.g., evaluating the quality of
the output of these approaches, transformability of
the target model to other models, validation methods
and metrics used by the original authors, and a level
of automation of the approaches.

ACKNOWLEDGEMENTS

This research/publication was supported by Riga
Technical University's Doctoral Grant programme.

REFERENCES

Agt-Rickauer, H., 2020. Supporting Domain Modeling
with Automated Knowledge Acquisition and
Modeling Recommendation. PhD Thesis. Berlin :
Technischen Universit¨at Berlin.

Anwar, M. W., Ahsan, I., Azam, F., Butt, W. H., &
Rashid, M., 2020. A Natural Language Processing
(NLP) Framework for Embedded Systems to
Automatically Extract Verification Aspects from
Textual Design Requirements. In Proceedings of the
2020 12th International Conference on Computer and
Automation Engineering, pp. 7–12.
https://doi.org/10.1145/3384613.3384619

Arora, C., Sabetzadeh, M., Briand, L., & Zimmer, F.,
2016. Extracting domain models from natural-
language requirements: Approach and Industrial
Evaluation. In Proceedings of the ACM/IEEE 19th
International Conference on Model Driven
Engineering Languages and Systems - MODELS ’16,
pp. 76769

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

124

Asnina, E., 2006. Formalization of Problem Domain
Modeling within Model Driven Architecture. PhD
Thesis. Riga: Riga Technical University.

Donins, U., 2012. Topological Unified Modeling
Language: Development and Application. PhD Thesis.
Riga: Riga Technical University.

Ferrari, A., Dell’Orletta, F., Spagnolo, G. O., & Gnesi, S.,
2014. Measuring and improving the completeness of
natural language requirements. Lecture Notes in
Computer Science, vol. 8396, pp. 23–38. Springer,
Cham. https://doi.org/10.1007/978-3-319-05843-6_3

Friedrich, F., Mendling, J., & Puhlmann, F., 2011. Process
Model Generation from Natural Language Text. In
Proceedings of the 23rd International Conference on
Advanced Information Systems Engineering (CAiSE
2011), pp. 482–496. https://doi.org/10.1007/978-3-
642-21640-4_36

Ghosh, S., Mukherjee, P., Chakraborty, B., & Bashar, R.,
2018. Automated Generation of E-R Diagram from a
Given Text in Natural Language. In Proceeding of the
2018 International Conference on Machine Learning
and Data Engineering (ICMLDE), pp. 91–96.
https://doi.org/10.1109/iCMLDE.2018.00026

Ilieva, M. G., & Ormandjieva, O., 2006. Models Derived
from Automatically Analyzed Textual User
Requirements. In Proceeding of the Fourth
International Conference on Software Engineering
Research, Management and Applications (SERA’06),
pp. 13–21. https://doi.org/10.1109/SERA.2006.51

Kalnins, A., 2010. A Model-Driven Path from
Requirements to Code. Computer Science and
Information Technologies, vol. 756, pp. 33–57.

Kalnins, A., Smialek, M., Kalnina, E., Celms, E.,
Nowakowski, W., & Straszak, T., 2011. Domain-
Driven Reuse of Software Design Models. In Janis
Osis & E. Asnina (Eds.), Model-Driven Domain
Analysis and Software Development, pp. 177–200. IGI
Global. https://doi.org/10.4018/978-1-61692-874-
2.ch009

Kashmira, P. G. T. H., & Sumathipala, S., 2018.
Generating Entity Relationship Diagram from
Requirement Specification based on NLP. In
Proceeding of 2018 3rd International Conference on
Information Technology Research (ICITR), pp. 1–4.
https://doi.org/10.1109/ICITR.2018.8736146

Krishnan, H., & Samuel, P., 2010. Relative Extraction
Methodology for class diagram generation using
dependency graph. In Proceeding of 2010
International Conference on Communication Control
and Computing Technologies, pp. 815–820.
https://doi.org/10.1109/ICCCCT.2010.5670730

Leopold, H., van der Aa, H., Pittke, F., Raffel, M.,
Mendling, J., & Reijers, H. A., 2017. Searching
textual and model-based process descriptions based on
a unified data format. Software & Systems Modeling,
vol. 18(2), pp. 1179–1194. https://doi.org/10.1007/
s10270-017-0649-y

Mirończuk, M. M., 2020. Information Extraction System
for Transforming Unstructured Text Data in Fire
Reports into Structured Forms: A Polish Case Study.

Fire Technology, vol. 56(2), pp. 545–581.
https://doi.org/10.1007/s10694-019-00891-z

Nassar, I. N., & Khamayseh, F. T., 2015. Constructing
Activity Diagrams from Arabic User Requirements
using Natural Language Processing Tool. In
Proceeding of 2015 6th International Conference on
Information and Communication Systems (ICICS), pp.
50–54. https://doi.org/10.1109/IACS.2015.7103200

Osis, J., 1969. Topological Model of System Functioning
(in Russian). Automatics and Computer Science, J. of
Academia of Siences, vol. 6, pp. 44–50.

Osis, J., & Donins, U., 2017. Topological UML modeling :
an improved approach for domain modeling and
software development. Elsevier.

Osis, J, & Asnina, E., 2011. Model-Driven Domain
Analysis and Software Development. In Janis Osis &
E. Asnina (Eds.), Model-Driven Domain Analysis and
Software Development. IGI Global.
https://doi.org/10.4018/978-1-61692-874-2

Shweta, Sanyal, R., & Ghoshal, B., 2018. Automatic
Extraction of Structural Model from Semi Structured
Software Requirement Specification. In Proceeding of
2018 IEEE/ACIS 17th International Conference on
Computer and Information Science (ICIS), pp. 543–
558. https://doi.org/10.1109/ICIS.2018.8466406

Slihte, A., 2015. The Integrated Domain Modeling: an
Approach and Toolset for Acquiring a Topological
Functioning Model. PhD Thesis. Riga: Riga Technical
University.

Smialek, M., & Straszak, T., 2012. Facilitating Transition
from Requirements to Code with the ReDSeeDS Tool.
In Proceeding of 2012 20th IEEE International
Requirements Engineering Conference (RE), pp. 321–
322. https://doi.org/10.1109/RE.2012.6345825

Thakur, J. S., & Gupta, A., 2017. Automatic generation of
analysis class diagrams from use case specifications.
ArXiv. http://arxiv.org/abs/1708.01796

Completeness of Knowledge in Models Extracted from Natural Text

125

