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Abstract: Ensuring safety and fault tolerant strategies is essential in the development of Advanced Driver Assistance 

System, such as an automated cruise control.This work presents a study of the stability of switched regulated 

systems following the reconfiguration of the speed controller due to a fault.  

Firstly, the context of these works is presented highlighting the need to have a fault management system with 

a diagnostic part and a reconfiguration part in order to ensure the operating safety. The reconfiguration part 

can take the form of a switch thus involving the study of stability. It is in this context that, secondly, the 

passivity of the plant as well as of both the controllers (CRONE and PI) is demonstrated. 

As the switch takes place between two elements of a passive nature, the last point of this work highlights the 

application of the continuous approach in order to demonstrate the passivity and therefore the stability of the 

regulated plant despite the presence of the switch.  

To address this problem, an augmented model in the form of a generic state space representation of the 

controllers and the plant is constructed. Then, a Lyapunov candidate function representing the sum of the 

storage function of the controller and the plant is defined. A sign study of this function as well as its derivative 

is carried out for the two operational modes (CRONE regulating the plant and PI regulating the plant) in order 

to demonstrate the passivity of the switched regulated systems. 

1 INTRODUCTION 

Nowadays, research and development of Advanced 

Driver Assistance Systems (ADAS) in the automotive 

field focus on the development and integration of 

increasingly complex autonomous functions.  

However, one of the main factors to take into 

account in the development of these functions is to 

ensure the safety of the passengers at all times. For 

this, the good functioning of the various systems 

present within the Automated Driving (AD) must be 

ensured.  

Tools have therefore been put in place to prevent 

the presence of any faults or failures that could have 

disastrous consequences for the system and endanger 

the passengers of the vehicle. These tools are mainly 

Fault Detection and Isolation (FDI) methods. These 

are part of the fault management procedures. 

 

* This work is supported by Stellantis OpenLab program  

  (Electronics and Systems for Automotive). 

FDI methods are classified in two categories: 

qualitative methods and quantitative methods (Jones 

et al, 1988). The first one is based on data history. The 

most known methods are using artificial intelligence 

or fuzzy logic (Franck et al, 1997), neural network or 

genetic algorithms (Samanta, 2004) and so on. The 

second category is based on mathematical model of 

the system. The main methods are the parity spaces 

ones (Evans et al, 1970; Potter et al, 1977; Daly et al, 

1979), the parametrical estimations ones (Isermann, 

1984; Isermann, 2006; Constantinescu et al, 1995) 

and the state estimations ones (Beard, 1971; 

Massoumnia, 1986; Edelmayer et al, 1996).  

Application on the automotive field focus mainly 

on mechanical faults such as internal combustion 

engine (Kim et al, 1998), drive-by-wire (Isermann & 

al, 2002) or detection of non-aligned wheels or 

degraded braking (Spooner et al, 1997).  

After the fault detection, the important point for 
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the safety and the good functioning is to ensure, that 

despite the presence of the fault, the system continues 

to operate, either in an operational way or in a 

degraded way. For this, a reconfiguration is required 

in order to switch from the defective component or 

function to the operational or degraded one. It is from 

this perspective of reconfiguration that switched 

systems are interesting to set up.  

However, from a control engineering perspective 

and above all regarding stability, switching can cause 

instabilities within the system and therefore present 

risks.   

To ensure the stability requirements, tools based 

on Lyapunov’s stability have been put in place.  

Before presenting a state of the art of the existing 

methods to guarantee the stability of switched 

systems, Lyapunov’s theory is first recalled. Indeed, 

the majority of stabilization methods are based on the 

Lyapunov criterion. 

1.1 Lyapunov Stability Criterion 

By definition, a stable system is a system which, 
when removed from its position of equilibrium tends 
to return to it. 

One of the major theories in the study of the 
stability of systems is Lyapunov’s theory of stability. 
The main advantage of this theory is that it has an 
application to both linear and nonlinear systems.  

The Lyapunov stability criterion is based on a 

candidate state function denoted 𝑉(𝑥)  representing 

the energy of the system studied. The latter must be 

defined positive and its derivative, which is 

representing the evolution of the energy over time, 

must be defined negative. This means that the energy 

of the system is positive but decreases with time. As 

a result, the system returns to a rest position, so it is 

stable. These conditions can be written in the form of 

inequalities as defined below: 
 

 ∀𝑥 ∈ ℝ,𝑉(𝑥) > 0 (1) 
 

and 
 ∀𝑥 ∈ ℝ, �̇�(𝑥) < 0, (2) 

 

where, 𝑥 represents the state vector.  

1.2 State of Art of Stability Methods 
for Switched Systems Methods 

Consider a state vector 𝑥(𝑘) ∈ 𝑅𝑛 , an input vector 

𝑢(𝑘) ∈ 𝑅𝑚  and an output vector 𝑦(𝑘) ∈ 𝑅𝑝  with 𝑘 

being a time index.  

Let 𝜎: 𝑍+ → {1,2,3… , 𝑆} with 𝑆 , the number of 

subsystems. 𝜎 is a piecewise constant function whose 

value changes at the switching times. This function is 

called the commutation law.  

A switched discrete time system can be described 

by the following equations: 
 

  

𝑥(𝑘 + 1) = 𝑓𝜎(𝑘)(𝑥(𝑘), 𝑢(𝑘))
 

𝑦(𝑘) = ℎ𝜎(𝑘)(𝑥(𝑘), 𝑢(𝑘))
. (3) 

 

In the literature, methods for studying the stability 

of switched systems, in particular for discrete time 

systems, have been implemented. The definition of 

the joint spectral radius presented in (Hetel et al, 

2007, Tsitsiklis et al, 1997) is one of these methods 

and gives a sufficient and necessary condition for the 

stability of the system by computing the extension of 

the radius of a set of matrices 𝐴 = {𝐴1, … , 𝐴𝑆} , 

denoted 𝜌(𝐴). The major difficulty of this method is 

to compute numerically the joint spectral radius in a 

generic framework. Several approximations are made 

in the literature.  

Other methods are based directly on the Lyapunov 

candidate function 𝑉(𝑥) . In (Shorten & al, 2007; 

King et al, 2004; Zhai & al, 2002), the principle of a 

common quadratic Lyapunov function (CQLF) is 

proposed for continuous second or even third order 

systems and also give algebraic criteria in order to 

determine this function. The principle is based on the 

existence of a Lyapunov function of a quadratic form 

and common to each subsystem.  

However, it is in general very difficult to obtain 

such a function and its use is restricted to relatively 

low order systems.  

In order to overcome the constraints of a 

Lyapunov function common to each subsystem, 

works presented by (Mignone et al, 2000; Daafouz et 

al, 2002) highlight the use of a multiple Lyapunov 

functions. In the case of discrete time systems, a poly-

quadratic Lyapunov function is presented. In this 

method, each subsystem has a Lyapunov function 

𝑉𝑖(𝑥) , which satisfies linear matrix inequalities in 

order to prove the existence of a poly-quadratic 

Lyapunov function and therefore the stability of the 

switched system.  

Whatever the methods presented above, they are 

based on matrix algebra specific to the systems 

studied. This therefore assumes knowledge of the 

system model. However, in cases that are more 

complex, obtaining the mathematical model of the 

plant is very difficult or even impossible, particularly 

in cases such as a switch between “black box” type 

systems or AI algorithms.  
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Hence, the definition of a generic stability 

criterion for switched systems, which is not necessary 

based on the knowledge of the mathematical model, 

is required. It is with this in mind that the notion of 

passivity and its implication with stability are defined 

and used for the work presented in this paper. In the 

next subsection, the notion of passivity is thus 

presented.  

1.3 Notion of Passive Systems 

Passivity makes it possible to characterize a system 
based on the notion of energy (McCourt et al, 2010).  

Definition 1: Let define a causal continuous-time 

system denoted 𝛴 , with input vector 𝑣 ∈ 𝑅𝑚  and 

output vector 𝑧 ∈ 𝑅𝑝 . This system is said to be 

passive if ∀𝑡 ≥ 0, the variation of its stored energy 

over time noted 
𝑑𝑉(𝑥)

𝑑𝑡
 is less than the power supplied 

𝑧𝑇𝑣 by its input, i.e.: 

 ∀𝑡 ≥ 0,
𝑑𝑉(𝑡)

𝑑𝑡
− 𝑧𝑇𝑣 ≤ 0. (4) 

Remark 1.1: The input vector 𝑣  included all the 

inputs of the system, i.e. the control inputs and the 

disturbances.  

Remark 1.2: Each output is associated with its 

respective input as part of the power calculation. 

Otherwise, passivity cannot be guaranteed.  

Remark 1.3: For an energy point of view, passivity 

implies that the energy stored by a system denoted 

𝑉(𝑥)  dissipates and therefore decreases over time. 

Thus, the Lyapunov stability criteria are verified.  

According to (Khalil, 2002), a passive system is 

therefore a stable system in the sense of Lyapunov but 

the converse is not true.  

Remark 1.4: In addition, the advantage of using 

passivity is that the interconnection of passive 

systems (in parallel and in feedback) is passive. The 

proofs are demonstrated in (McCourt et al, 2012). 

This characteristic is very interesting specially in the 

case of hybrid systems.  

The state of the art on the methods on the stability 

of switched systems are mainly based on the 

knowledge of a mathematical model, which can be 

difficult or even impossible to obtain, hence the need 

to focus on another approach. Passivity and its link 

with stability as well as its application for 

interconnected systems offer a good alternative for 

the stability of switched systems.  

The work is therefore presented as follows. 

Section 2 recalls the study framework, in particular 

the detection of the fault on one of the controller in 

the velocity control, which is at the origin of the 

switch. The passivity of the plant, modelled by a 

longitudinal bicycle model is then studied as well as 

the passivity of both of the controllers: CRONE and 

PI. The different proofs of passivity lead to the 

conclusion that the switched system switches 

between two passive subsystems. Section 3 then, 

introduce the principle of continuous approach and 

allows to conclude of the stability of the switch.  

2 STUDY OF PASSIVITY 

This section mainly focuses on the analysis of the 

passivity of the plant, modelled by a longitudinal 

bicycle model, as well as of the two controllers 

present within the speed controller.  

First, the study framework is recalled in order to 

determine the origin of the switch. Then, an analysis 

of the passivity of the plant through the analysis of the 

analytical expressions of the nonlinear model is 

made. The linear case is presented in order to 

introduce the different expressions necessary for the 

study of stability in Section 3.  

Finally, this section presents the analysis of 

passivity for a 2nd generation CRONE controller and 

a PI controller. 

2.1 Study Framework 

The work presented in this paper follows the 

development of a fault-tolerant strategy for an 

automotive cruise control detailed in (Ruhnke & al, 

2020).  

As a reminder, this work consists of regulating the 

longitudinal speed around a reference value using the 

CRONE controller. This latter undergoes at an 

arbitrary time 𝑡𝑑  a sampling fault, which forces its 

output value to an erroneous value. This has the 

consequence to fault the speed regulation.  

The objective is therefore to design a supervisor, 

which makes it possible both to detect the fault on the 

CRONE controller and, following the detection, to 

switch to a functional PI controller in order to ensure 

the good functioning of the velocity control system. 

The block diagram of the system is illustrated Figure 

1.  
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Figure 1: Block diagram of the studied system. 

2.2 Plant Analysis 

In order to analyse the passivity of the plant, the 

nonlinear model is first presented as well as the 

simplifying hypotheses linked to the study 

framework. The analytical expression of the variation 

of the storage function is then defined followed by 

sign study. 

2.2.1 Context 

For this work, it is assumed that the longitudinal 

speed is regulated around a reference speed 𝑉𝑥𝑟𝑒𝑓
. 

The vehicle is an urban electrical vehicle with two 

in-wheel motors in the front wheel. This vehicle is 

supposed to drive in a straight line on a horizontal dry 

road. The total mass of the vehicle 𝑀𝑡  is evenly 

distributed throughout the vehicle.  

In this paper, a simplified driving scenario is 

studied. Thus, the plant does not undergo disturbance.  

In the following notations, index 𝑖  indicates 

whether if it is the front wheels 𝑖 = 1  or the rear 

wheels 𝑖 = 2, which are considered, and the index 𝑗 
indicates whether if it is the left wheels 𝑗 = 1 or the 

right wheels 𝑗 = 2, which are considered. 

For the modelling of the vehicle, the longitudinal 

bicycle model is used and is illustrated Figure 2. 

 

Figure 2: Longitudinal model of the vehicle. 

𝐿𝑎𝑟  and 𝐿𝑎𝑣  represents respectively the rear and the 

front wheelbase. 𝑀1 and 𝑀2 are respectively the front 

and rear masses. 𝐺  is the center of gravity of the 

vehicle and 𝑔 the gravitational force. 𝐽𝑖𝑗  , 𝛺𝑖𝑗(𝑡) and 

𝑉𝑥(𝑡)  are defined below in the expression of the 

equations of the model.  

Following the various simplifying assumptions, 

only the longitudinal dynamics are considered. By 

applying the fundamental principle of dynamics, the 

plant can be modelled through the expressions of the 

longitudinal velocity 𝑉𝑥(𝑡)  and the wheel rotation 

speeds 𝛺𝑖𝑗(𝑡). The two quantities are expressed in the 

absolute reference, such as: 
 

 𝑉𝑥(𝑡) =
1

𝑀𝑡
∫ 𝐹Σ𝑥

(𝜏)𝑑𝜏 + 𝑉𝑥(0)
𝑡

0
, (5) 

 

where, 𝑀𝑡 represents the total mass of the vehicle and 

𝐹Σ𝑥(𝑡) is the sum of the longitudinal forces, which is 

expressed in its general form as follows: 
 

 𝐹Σ𝑥
(𝑡) = 2 𝐹𝑥(𝑡) − 𝐹0𝑥

(𝑡) − 𝐹𝑎(𝑉𝑥) − 𝐹𝑟𝑟(𝑉𝑥). (6) 
 

𝐹𝑥(𝑡) are the longitudinal nonlinear forces 

expressed by the Pacejka model (Morand & al, 2015) 

for one wheel. The forces developed by the left front 

tire 𝐹𝑥11
(𝑡) are equal to the forces developed by the 

right front tire 𝐹𝑥12
(𝑡), so the following notation is 

applied: 𝐹𝑥(𝑡) = 𝐹𝑥11
(𝑡) = 𝐹𝑥12

 (𝑡).  

𝐹𝑎(𝑉𝑥) and 𝐹𝑟𝑟(𝑉𝑥) are the aerodynamic and the 

rolling resistance forces and 𝐹0𝑥
(𝑡)  represents the 

force associated with the gust of wind. 

As the disturbance 𝐹0𝑥
(𝑡)  is not considered for 

the analysis of passivity in the nonlinear case, 

expression (6) can be rewritten as follows: 
 

 𝐹Σ𝑥
(𝑡) = 2 𝐹𝑥(𝑡) − 𝐹𝑎(𝑉𝑥) − 𝐹𝑟𝑟(𝑉𝑥).  (7) 

 

Regarding the wheel rotation dynamics, only the 

two front driving wheels are considered. The rotation 

speed of the wheels can therefore be written as 

follows: 

 𝛺ij(𝑡) =
1

𝐽𝑖𝑗
∫ 𝐶Σ(𝜏)𝑑𝜏

𝑡

0
+ 𝛺ij(0) . (8) 

𝐽𝑖𝑗 is the moment of inertia and 𝐶𝛴(𝑡) is the sum 

of the momentum applied on the front wheels. The 

sum is expressed as follows: 
 

 𝐶Σ1j
(𝑡) = 𝐶𝑟1𝑗

(𝑡) − 𝑟0 𝐹𝑥(𝑡) − 𝐶𝑓1𝑗(𝑡), (9) 

 

where, 𝐶𝑟1𝑗
(𝑡) represents the motor torque and the 

control command, 𝐶𝑓1𝑗(𝑡), the viscous friction and 

𝑟0 𝐹𝑥(𝑡) , the resistant momentum. For more 

information, (Morand & al, 2015) provides a more 

detailed model.  

Rear Front 

Road 
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2.2.2 Nonlinear Case without Disturbance 

For simplifying the notation, temporal index will not 

be written in the following expressions and 𝛺𝑖𝑗(𝑡) is 

rewritten as 𝛺(𝑡).  

In order to analyse the passivity of the plant, the 

storage function 𝑉(𝑥) must be defined. In this case, it 

is equal to the sum of the kinetic energies of the 

system and the potential energy of gravity, which is 

here constant and denoted 𝐾, that is: 
  

 𝑉(𝑥) =
1

2
𝑀𝑡  𝑉𝑥

2 + 2 ∗
1

2
𝐽𝑖𝑗  𝛺

2 + 𝐾. (10) 

By deriving equation (10),  �̇�(𝑥) is equal to: 
 

  �̇�(𝑥) = 𝑀𝑡  𝑉𝑥  �̇�𝑥 + 2𝐽𝑟 𝛺 �̇�, (11) 
 

where,  
 

  �̇�𝑥 =
1

𝑀𝑡
 (2 𝐹𝑥(𝑉𝑥 , Ω) − 𝐹𝑎(𝑉𝑥) − 𝐹𝑟𝑟(𝑉𝑥)) (12) 

and 
 

 �̇� =
1

𝐽1𝑗

(𝐶𝑟1𝑗 
− 𝑟0 𝐹𝑥(𝑉𝑥 , 𝛺) − 𝑏𝑟  𝛺). (13) 

 

𝑉�̇�   and  �̇� are replaced in (11) by their respective 

expressions: 
 

  �̇�(𝑥) = 𝑉𝑥  [2 𝐹𝑥(𝑉𝑥 , 𝛺) − 𝐹𝑎(𝑉𝑥) − 𝐹𝑟𝑟(𝑉𝑥)] + 

   2𝛺 (𝐶𝑟1𝑗
− 𝑟0𝐹𝑥(𝑉𝑥 , 𝛺) −  𝑏𝑟𝛺). (14) 

By expanding equation (14),  �̇�(𝑥) can be expressed 

as follows: 
 

  �̇�(𝑥) = 2 𝛺 𝐶𝑟1𝑗
− 𝑏𝑟 𝛺

2 − 2 𝛺 𝑟0 𝐹𝑥(𝑉𝑥 , 𝛺) +

𝑉 𝑥 2 𝐹𝑥(𝑉𝑥 , 𝛺) − Vx (𝐹𝑎(𝑉𝑥) + 𝐹𝑟𝑟(𝑉𝑥)), (15) 

where, 2 𝛺 𝐶𝑟1𝑗
 represents the input/output product 

associated with the power calculation, −𝑏𝑟  𝛺
2 is the 

power lost to rotation and 𝑉𝑥  (𝐹𝑎(𝑉𝑥) + 𝐹𝑟𝑟(𝑉𝑥)) is the 

power lost to translation. 

According to equation (4), the plant is considered 

as passive if the following inequality holds: 
  

 ∀𝑡 ≥ 0, �̇�(𝑥) − 2 𝛺 𝐶𝑟1𝑗
≤ 0. (16) 

 

As the vehicle moves forward and the variables 

are expressed in the absolute coordinate system, the 

sign of these latter is known.  

Thus, for the driving scenario under study, 𝑉𝑥 ,
𝛺,  𝐶𝑟1𝑗

 and 𝐹𝑥(𝑉𝑥 , 𝛺)  are positive as well as the 

module of 𝐹𝑎(𝑉𝑥)  and 𝐹𝑟𝑟(𝑉𝑥) . Since 𝑟0  and 𝑏𝑟  are 

positive, this implies that 𝑏𝑟 𝛺
2 ,  Vx (𝐹𝑎(𝑉𝑥) +

𝐹𝑟𝑟(𝑉𝑥)) are thus positive.  

Therefore, validation of inequality (16) depends 

on the sign of: 
 

𝑉𝑥  2 𝐹𝑥(𝑉𝑥 , 𝛺) − 2 𝛺 r0 𝐹𝑥(𝑉𝑥 , 𝛺),          (17) 

which can be rewritten as: 
 

2 𝐹𝑥(𝑉𝑥 , 𝛺) [𝑉𝑥 − 𝑟0 𝛺].                      (18) 
 

In order to define the sign of (18), the expression 

of the slip rate in traction, 𝜏𝑡𝑟𝑎𝑐𝑡, is recalled. 
 

 𝜏𝑡𝑟𝑎𝑐𝑡 =
𝑟0 𝛺−𝑉𝑥

𝑟0 𝛺
. (19) 

 

As the vehicle moves forward, 𝜏𝑡𝑟𝑎𝑐𝑡 is positive.  

By isolating the numerator of (19), the following 

equation is as follows: 
 

𝑟0 𝛺 − 𝑉𝑥 = 𝜏𝑡𝑟𝑎𝑐𝑡 𝑟0 𝛺 > 0. (20) 
 

As a result, 𝑉𝑥 − 𝑟0 𝛺  is negative as well as 

equation (18). 

Inequality (16) is therefore respected and the plant 

is passive. 

2.2.3 Linearized Model of the Plant 

In this subsection, the expression of the linearized 

model of the plant as well as the expression of the 

storage function and its derivative are presented.  

The objective is not to demonstrate the passivity 

of the plant in the linear case, but to introduce the 

matrices of the linearized model and the expression 

of the storage function of the plant, which are 

necessary for the approach developed in Section 3 for 

the proof of the stability of the switched system.  

For this purpose, a linearization of equations (12) 

and (13) around an operational point is made. 

A linear state space representation is obtained by 

linearization of equations (12) and (13) around an 

equilibrium point denoted 𝑋𝑒 = (𝑉𝑥𝑟𝑒𝑓
 𝛺𝑟𝑒𝑓), where 

𝑉𝑥𝑟𝑒𝑓
 represents the reference longitudinal speed and 

𝛺𝑟𝑒𝑓 , the wheel rotation speed of reference associated 

with 𝑉𝑟𝑒𝑓 . Thus, the matrices A, B, C and D of the 

state space representation are as follows (Morand & 

al, 2015):  

 𝐴 = [
𝑎11 =

𝜕ℎ1

𝜕𝑋1
𝑎12 =

𝜕ℎ1

𝜕𝑋2

𝑎21 =
𝜕ℎ2

𝜕𝑋1
𝑎22 =

𝜕ℎ2

𝜕𝑋2

]|

X=𝑋𝑒 

;  𝐵 = [ 
0
1
], (21) 

and  

𝐶 = [0 1]; 𝐷 = 0,              (22) 

with 𝑥 = (𝑣𝑥  𝜔) , 𝑣 = 𝑐𝑚  and 𝑧 = 𝜔 , representing 

respectively the small variations around the 

equilibrium point for the state, the input and the 

output vectors  of the linearized model. 

The expression of the storage energy can be 

rewritten in the linear case, such as: 
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 𝑉(𝑥) =
1

2
𝑀𝑡𝑣𝑥

2 + 2
1

2
 𝐽𝑟𝜔

2 + 𝐾. (23) 
 

By deriving expression (23) and replacing the 

expressions of 𝑣�̇� and �̇�, the derivative of the storage 

function is equal to: 

�̇�(𝑥) = 𝑀𝑡  𝑣𝑥 [𝑎11 𝑣𝑥 + 𝑎12 𝜔]   

+2𝐽1𝑗
𝜔 [𝑎21𝑣𝑥 + 𝑎22 𝜔 +

𝑐𝑚

𝐽1𝑗

]. (24) 

 

By expanding the expression (24), 
 

 �̇�(𝑥) = 𝑀𝑡  𝑎11 𝑣𝑥
2 + [𝑀𝑡  𝑎12 + 2 𝐽1𝑗

 𝑎21] 𝑣𝑥 𝜔 +

2𝐽1𝑗
𝑎22 𝜔

2 + 2 𝜔 𝑐𝑚,  (25) 
 

where 2 𝜔 𝑐𝑚 represents the input/output product. 
 

To simplify the notations, equation (25) is 

rewritten as follow: 
 

  �̇�(𝑥) = 𝑎 𝑣𝑥
2 + 𝑏 𝑣𝑥  𝜔 + 𝑐 𝜔2 + 2𝜔 𝑐𝑚, (26) 

 

with, 𝑎 = 𝑀𝑡  𝑎11, 𝑏 = 𝑀𝑡  𝑎12 + 2𝐽1𝑗 
𝑎21  and 𝑐 =

2𝐽1𝑗
 𝑎22 . 

The next step is to verify the passive nature of the 

CRONE controller and the PI controller. This 

analysis will lead to the conclusion that the switch 

takes place between two passive subsystems.  

2.3 Passivity of the Controllers  

In order to study the passivity of CRONE and PI 

controllers, Definition 1 is applied.  

For both controllers, the expression of the transfer 

function as well as the Partial Fraction 

Decomposition (PFD) are defined. A causal diagram 

of the PI controller and of one of the cell of the 

CRONE controller are illustrated. Finally, the 

passivity of each controller is studied.  

As a reminder, a system is passive if the following 

inequality is respected: 

 ∀𝑡 ≥ 0,
𝑑𝑉(𝑡)

𝑑𝑡
− 𝑧𝑇𝑣 ≤ 0.                  (27) 

where 𝑧𝑇𝑣  represents the input/output product 

associated with the power calculation. 

2.3.1 Passivity of the PI Controller 

The transfer function of the PI controller is of the 

following form: 

 𝑃𝐼(𝑠) = 𝐶0

1+
𝑠

𝜔𝑖
𝑠

𝜔𝑖

. (28) 

The PFD of transfer function (28) can be written as 

follows: 

 𝑃𝐼𝑃𝐹𝐷(𝑠) =
𝑟𝑃𝐼

𝑠
+ 𝑘𝑃𝐼, (29) 

with 𝑟𝑃𝐼 ,  𝑘𝑃𝐼 > 0. 

The input of the controller is the error signal 𝜖(𝑡) 

and the output is 𝑈𝑃𝐼(𝑡) associated with a voltage and 

proportional to the motor torque 𝐶𝑚(𝑡)  through a 

factor 𝑀. 

The causal diagram associated with the parallel 

form of the PI is illustrated Figure 3. 

 

Figure 3: Causal diagram associated with the parallel form 

of the PI controller. 

In order to study the controller’s passivity, the 

storage function must be defined. In the case of the 

PI, the energy is stored only in the integral element, 

so 𝑉(𝑥) is expressed as follows: 
 

 𝑉(𝑥) =
1

2
 

1

𝑟𝑃𝐼
 𝑈𝐼(𝑡)

2. (30) 

 

The next step is to derive equation (30) to check 

if inequality (27) is respected. 

Thus,  
 

  �̇�(𝑥) =
1

𝑟𝑃𝐼
𝑈𝐼(𝑡) 𝑈𝐼

̇ (𝑡), (31) 

 

where,  

  �̇�𝐼(𝑡) = 𝑟𝑃𝐼  𝜖(𝑡)  (32) 

and  

 𝑈𝐼(𝑡) = 𝑈𝑃𝐼(𝑡) − 𝑈𝑃(𝑡). (33) 
 

By replacing  𝑈𝐼
̇ (𝑡) and 𝑈𝐼(𝑡) in (33),  �̇�(𝑥) can be 

rewritten as, 
 

  �̇�(𝑥) =
1

𝑟𝑃𝐼
 𝑟𝑃𝐼  𝜖(𝑡) (𝑈𝑃𝐼(𝑡) − 𝑈𝑃(𝑡)). (34) 

 

As 𝑈𝑃(𝑡) = 𝑘𝑃𝐼  𝜖(𝑡) , by developing and 

rewriting (34),  �̇�(𝑥) is equal to: 
 

  �̇�(𝑥) = 𝑈𝑃𝐼(𝑡) 𝜖(𝑡) − 𝑘𝑃𝐼  𝜖(𝑡)
2, (35) 

 

where, 𝑈𝑃𝐼(𝑡) 𝜖(𝑡) =
1

𝑀
𝐶𝑚(𝑡) 𝜖(𝑡)  represents the 

input/output product associated with the power 

calculus; 

The PI is passive if the following inequality holds: 
 

  �̇�(𝑥) − 𝑈𝑃𝐼(𝑡) 𝜖(𝑡) ≤ 0. (36) 
 

As �̇�(𝑥) − 𝑈𝑃𝐼𝜖(𝑡) = −𝑘𝑃𝐼  𝜖(𝑡)
2 𝑘𝑃𝐼 𝜖(𝑡)

2is always 
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 positive, inequality (36) is always respected and 

therefore the PI controller is passive. 

2.3.2 Passivity of the CRONE Controller 

The CRONE controller is a 2nd generation CRONE. It 

was calculated from the loop-shaping of the open 

loop. For more information about the design of the 

CRONE controller (Morand et al, 2015) presents the 

different stages of the design.  

The rational form of the controller has two parts: 

an integer part and a part, which represents the 

rationalization of the phase lead cell of non integer 

order rewritten as a recursive product of zeros and 

poles. The expression of the transfer function of the 

rational form of the controller is the following: 

𝐶𝑅𝑂𝑁𝐸(𝑠) =

𝐶0

((1+
𝑠

𝜔1
)∗(1+

𝑠

𝜔2
))

(
𝑠

𝜔𝑙
)
 
(1+

𝑠

𝜔ℎ
)

(
1

1+
𝑠

𝜔ℎ

) ∏
1+𝑠/𝜔𝑖

′

1+𝑠/𝜔𝑖

𝑁
𝑖=1 . (37) 

The PFD of the transfer function (37) is expressed 

as follows: 

 𝐶𝑅𝑂𝑁𝐸𝑃𝐷𝐹(𝑠) = ∑
𝑟𝑖

𝑠−𝑝𝑖

7
𝑖=1 , (38) 

with 𝑟𝑖 > 0.  

By posing 𝜔𝑖 = −𝑝𝑖, with 𝑝𝑖 < 0, the expression 

(41) can be rewritten such as, 

 𝐶𝑅𝑂𝑁𝐸𝑃𝐹𝐷(𝑠) = ∑
𝑟𝑖

𝑠+𝜔𝑖

7
𝑖=1 . (39) 

The input of the controller is the error signal 𝜖(𝑡) and 

the output is 𝑈𝐶𝑅𝑂𝑁𝐸(𝑡) associated with a voltage and 

proportional to the motor torque 𝐶𝑚(𝑡)  through a 

factor 𝑀. 

The causal diagram associated with the parallel 

form of the rational form of the CRONE is 

illustrated Figure 4.  

 

Figure 4: Causal diagram of the parallel form of the rational 

form of the CRONE controller. 

For the study of the passivity of the controller, the 
storage function is defined. As the energy is only 

stored in the integral elements, 𝑉(𝑥)  is defined as 
follows: 

 𝑉(𝑥) =
1

2
∑  

1

𝑟𝑖

7
𝑖=1  𝑥𝑖(𝑡)

2. (40) 

 

The derivative of the storage function is then 

equal to: 
 

  �̇�(𝑥) = ∑  
1

𝑟𝑖

7
𝑖=1 𝑥𝑖(𝑡) 𝑥�̇�(𝑡), (41) 

where,  

  𝑥�̇�(𝑡) = 𝑟𝑖  [𝜖(𝑡) −
𝜔𝑖

𝑟𝑖
 𝑥𝑖(𝑡)]. (42) 

 

By replacing  �̇�𝑖(𝑡) by its expression,  
 

  �̇�(𝑥) = ∑ 𝑥𝑖(𝑡) 𝜖(𝑡) − ∑ 𝜔𝑖  𝑥𝑖(𝑡)
27

𝑖=1
7
𝑖=1 , (43) 

 

where,  
 

 ∑ 𝑥𝑖(𝑡) 𝜖(𝑡) = 𝑈𝐶𝑅𝑂𝑁𝐸(𝑡) 𝜖(𝑡) =
1

𝑀
𝐶𝑚(𝑡) 𝜖(𝑡)7

𝑖=1 , 

  (44) 
 

which represents the input/output product associated 

with the power calculus. 

For the CRONE to be passive, the following 

inequality must hold: 
 

  �̇� − ∑ 𝑥𝑖(𝑡) 𝜖(𝑡)
7
𝑖=1 < 0. (45) 

 

However, 
 

 �̇� − ∑ 𝑥𝑖(𝑡) 𝜖(𝑡)
7
𝑖=1 = −∑ 𝜔𝑖  𝑥𝑖(𝑡)

2,7
𝑖=1    (46) 

 

and 𝜔𝑖  𝑥𝑖(𝑡)
2 > 0 thus inequality (45) holds and the 

CRONE controller is passive.  

During Section 2, the passivity plant was shown 

as well as the passivity of both of the controllers 

through the analysis of analytical expressions.  

The problem is the following: the fault detection 

has caused a switch, which takes place between two 

passive subsystems. It is, thus, necessary to prove the 

stable nature of the switching system in order to 

ensure the system’s operating safety.  

3 STABILITY OF THE 

SWITCHED SYSTEMS 

The previous sections made it possible to demonstrate 

that the switch was done between two passive 

subsystems, namely on the one hand, the longitudinal 

model regulated by the CRONE and on the other 

hand, the longitudinal model regulated by the PI.  

The objective is to prove the overall stability of 

the longitudinal speed controller, whatever the 

switching law.  
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For this, the continuous approach method 

(Nouillant et al., 2001) is developed. The principle is 

to build a state space representation of an augmented 

model, here the linearized model of the plant and the 

regulation, regardless the operating mode. In 

addition, only one Lyapunov candidate function 

denoted 𝑉(𝑥) is constructed.  

The objective is to verify that the Lyapunov 

candidate function satisfies, for each operating mode, 

the Lyapunov criteria represented by equations (1) 

and (2) namely 𝑉(𝑥) > 0 and  �̇�(𝑥) ≤ 0. 

If this is the case, the candidate function is a 

Lyapunov function common to both subsystems and 

the following theorem can be applied: 

Theorem 1: (Boyd & al, 1994) (Sun and Ge, 2011). 

Let be the linear switched system �̇�(𝑡) = 𝐴𝑗  𝑥(𝑡). If 

there exists a positive definite symmetric matrix 𝑃 ∈
𝑅𝑛x𝑛 such that the following inequality is respected: 

 𝐴𝑗
𝑇 𝑃 + 𝑃 𝐴𝑗 < 0, 𝑓𝑜𝑟 𝑗 = 1,2 , (47) 

then the function 𝑉(𝑥) = 𝑥𝑇𝑃 𝑥  is a Common 

Quadratic Lyapunov Function (CQLF) for the 

system. The switching system is then stable whatever 

the switching law. 

Remark 3.1: This theorem is a sufficient condition but 

very conservative because it is difficult to obtain such 

a function.  

The matrices 𝐴𝑗  and 𝐵𝑗  of the augmented model 

are defined. In order to have a generic writing the 

matrices are defined in the most complex case, i.e. by 

taking into account the largest state and command 

vectors.  

For this, the following state vector is 

considered: 𝑥 = [𝑥1  𝑥2  𝑥3  𝑥4  𝑥5  𝑥6  𝑥7  𝑣𝑥   𝜔]𝑇 

where 𝑥1 … 𝑥7 represent the states of the regulation 

and 𝑣𝑥 , 𝜔 respectively the longitudinal speed and the 

wheel’s rotation speed, represent the states of the 

plant in the linearized model. In addition, the input 

vector is considered 𝑢 = 𝑉𝑥𝑟𝑒𝑓
, which represent the 

reference longitudinal speed.   

The matrices 𝐴𝑗 and 𝐵𝑗  are as follows: 
 

 𝐴𝑗 = 𝑑𝑖𝑎𝑔(−𝑟𝑖  𝜔𝑖(𝑗), −𝑟7, 𝐴), (48) 
 

where, 𝑖 = 1,… ,6 and 𝐴 represents the matrix of the 

linearized model of the plant (see equation (21)).  

 

 𝐵𝑗 =

[
 
 
 
 
 
 
 
 

𝑟1(𝑗)
𝑟2(𝑗)

𝑟3(𝑗)

𝑟4(𝑗)

𝑟5(𝑗)
𝑟6(𝑗)

𝑟7 + 𝑘(𝑗)
0
0 ]

 
 
 
 
 
 
 
 

 . (49) 

 

Index 𝑗 represents the operating mode in which the 

system is, i.e.: 

• If 𝑗 = 1 , the CRONE is in operation and 

regulates the system, thus 𝑟1 → 𝑟7  and 𝜔1 →
𝜔6 have the numerical values associated with 

the PFD of the CRONE controller and 𝑘 = 0. 

• If 𝑗 = 2, the PI is in operation and regulates 

the systems, thus 𝑟1 = 𝑟2 = ⋯ = 𝑟6 =
0, 𝜔1 = ⋯ = 𝜔6 = 0, 𝑟7 = 𝑟𝑃𝐼  and 𝑘 = 𝑘𝑃𝐼 .  

In order to study the stability of the switched system, 

the energy storage function is defined and denoted 

𝑉(𝑥). This function is equal to the sum of the energy 

storage function of the regulation system and the 

energy storage function of the plant. 

 

𝑉(𝑥)(𝑗) =
1

2
∑

1

𝑟𝑖(𝑗)
 𝑥𝑖

2(𝑗) +
1

2
𝑀𝑡  𝑣𝑥(𝑡)

2 + 2 ∗7
𝑖=1

1

2
𝐽𝑟 𝜔(𝑡)2.  (50) 

 

This function can be rewritten under a matricial form 

such as: 

 𝑉(𝑥) = 𝑥𝑇𝑃𝑗𝑥, (51) 

where, 𝑃𝑗 = 𝑑𝑖𝑎𝑔 (
1

2

1

𝑟𝑖
(𝑗),

1

2
𝑀𝑡 , 𝐽𝑟) > 0  with 𝑖 =

1,… ,7.  

𝑉(𝑥)  is considered as the candidate Lyapunov 

function.  

The objective is to calculate the derivative of 

𝑉(𝑥) and to check if it meets the Lyapunov criteria 

for both operating mode. 

 �̇�(𝑥) = ∑
1

𝑟𝑖(𝑗)
 𝑥𝑖(𝑗) 𝑥�̇�(𝑗) + 𝑀𝑡  𝑣�̇�𝑣𝑥 + 2𝐽𝑟  𝜔 ̇ 𝜔7

𝑖=1 ,  

  (52) 

where, 𝑥�̇�(𝑗) = −𝑟𝑖𝜔𝑖(𝑗) 𝑥𝑖  for 𝑖 = 1,… ,6 

and  𝑥7̇(𝑗) = −𝑟7(𝑗) 𝑥7.  

By replacing 𝑥�̇�(𝑗), 𝑣�̇�and  �̇� with their respective 

expressions, equation (52) can be rewritten as : 

 �̇�(𝑥) = ∑ −𝜔𝑖𝑥𝑖(𝑗)
2 − 𝑥7

2 + 𝑎𝑣𝑥
2 + 𝑏𝑣𝑥𝜔 +6

𝑖=1

𝑐𝜔2 + 2𝜔𝑐𝑚 ,. (53) 
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Equation (53) can be decomposed in two 

functions: �̇�𝑅𝐸𝐺(𝑥), which represents the derivative 

of the storage function for the regulation 

and  �̇�𝑃𝑅𝑂(𝑥), which represents the derivative of the 

storage function for the plant.  

 �̇�𝑅𝐸𝐺(𝑥) = ∑ −𝜔𝑖  𝑥𝑖(𝑗)
2 − 𝑥7

26
𝑖=1 . (54) 

  �̇�𝑃𝑅𝑂(𝑥) = 𝑎 𝑣𝑥
2 + 𝑏 𝑣𝑥𝜔 + 𝑐 𝜔2 + 2 𝜔 𝑐𝑚, (55) 

In order to check if the candidate function 𝑉(𝑥) is 

a Lyapunov function, the sign of (50) is first studied 

for both case. 

When 𝑗 = 1, the CRONE is regulating the system. 

Moreover, 𝑣𝑥(𝑡)
2 , 𝜔(𝑡)2 > 0  and according to 

section 2.3, 𝑟𝑖 > 0.  

As a result, 𝑉(𝑥)(𝑗 = 1) is positive definite. 

When 𝑗 = 2, the PI is regulating the system. Thus, 

equation (50) can be rewritten such as: 

𝑉(𝑥)(𝑗 = 2) =
1

𝑟𝑃𝐼
 𝑥𝑃𝐼

2 (𝑗) +
1

2
𝑀𝑡  𝑣𝑥(𝑡)

2 + 2 ∗
1

2
𝐽𝑟 𝜔(𝑡)2.  (56) 

As 𝑟𝑃𝐼 > 0, 𝑉(𝑥)(𝑗 = 2) is positive definite.  

At this stage, in order to conclude on the nature of 

the candidate function 𝑉(𝑥), the sign of (53) has to be 

studied. For this purpose, the sign of (54) and (55) are 

studied for both functioning cases. 

For the first case, when 𝑗 = 1 , �̇�𝑅𝐸𝐺(𝑥) =
∑ −𝜔𝑖  𝑥𝑖(𝑗)

2 − 𝑥7
26

𝑖=1 . As 𝜔𝑖 > 0, the function  �̇�𝑅𝐸𝐺  

is negative definite.  

For the second case, when = 2 , �̇�𝑅𝐸𝐺(𝑥) = −𝑥7
2, 

then  �̇�𝑅𝐸𝐺  is negative definite.  

Despite the operating mode, the derivative of the 

storage function for the controller is always defined 

negative. Therefore the sign of (53) depends on the 

sign of (55), which is independent of the functioning 

mode. 

Lemma 3.1: (Khalil, 2002).  If a system is passive 

with a positive storage function 𝑉(𝑥), then the origin 

is stable is the sense of Lyapunov by considering 

𝑉(𝑥)  as a Lyapunov function candidate. 

Then, �̇�(𝑥) ≤ 0.  

The approach presented in section 2.2.2 and 2.2.3 

shows that firstly the plant is passive and secondly 

that both 𝑣𝑥(𝑡)
2 and 𝜔(𝑡)2 are positive. As a result, 

the storage function of the plant, which is  𝑉𝑝𝑟𝑜(𝑥) =
1

2
𝑀𝑡𝑣𝑥(𝑡)

2 + 2
1

2
𝐽𝑟𝜔(t)2  is positive definite. By 

using Lemma 3.1, equation (55) is then negative 

definite.  

Equations (54) and (55), which respectively 

represents the derivative of the storage function for 

the controller and the plant are both negative definite. 

In this case, equation (53), which represents the sum 

of these two functions is as well negative definite.  

Since the candidate function 𝑉(𝑥)  is positive 

definite and its derivative is negative definite for both 

operating modes, 𝑉(𝑥)  is therefore a common 

quadratic Lyapunov function. As the result, by 

application of Theorem 1, the regulated longitudinal 

model is stable.  

4 CONCLUSIONS 

Fault management systems are employed to ensure 

the operational safety of the Advanced Driver 

Assistance Systems. These include a diagnostic part 

that detects and locales the fault, and a 

reconfiguration part that follows the detection, 

allowing you to switch to a functional mode or a 

degraded mode.  The reconfiguration can take the 

form of a switch. As the latter can be a source of 

instabilities, it is therefore necessary to ensure the 

stability of the overall system despite the presence of 

switching. 

Thus, the purpose of this work was to study the 

stability of switched regulated systems following 

reconfiguration due to the detection of a fault on the 

calculator of the Automated Cruise Control system. 

In order to answer this problem, the passivity of 

the undisturbed plant modelled by a longitudinal non-

linear bicycle model, as well as the Partial Fraction 

Decomposition of the PI and CRONE controllers, 

was studied in section 2. 

For the plant, the passivity was demonstrated 

through the sign study of the analytical expression of 

the storage function as well as its derivative. The 

same approach was applied to de Partial Fraction 

Decomposition of both controllers. 

The study of passivity concludes that the switch 

occurs between two passive subsystems, namely the 

plant controlled by the CRONE and the plant 

controlled by the PI. 

Finally, in order to show the passive and therefore 

stable nature of the switched regulated systems, the 

continuous approach has been developed. The latter 

consists in building an augmented model through a 

state space representation whose structure is 

independent of the operating mode. This state space 

representation contains the controllers and the plant.  

Then, a single candidate function of Lyapunov is 

defined and represents the sum between the storage 

function of the regulation and the storage function of 

the plant. A sign study of this function and its 

derivative leads to the conclusion that the candidate 

function meets Lyapunov’s stability criteria and 
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therefore that the regulated longitudinal bicycle 

model is passive and thus stable, despite the switch 

between CRONE and PI controllers. 

The safety and security aspect have been proven 

through these works. The perspectives, however, 

related to an aspect of comfort.  

Indeed, when the CRONE controller is 

operational, the PI operated in open loop. In some 

cases, the switch can generate a significant 

discontinuity in the control signal. These abrupt 

variations can engender sources of discomfort for the 

passengers, particularly in terms of sudden variation 

of acceleration. 

Regarding the application area, this work was 

developed around a longitudinal model without 

disturbances and on a dry, straight and plane road. It 

would be interesting in terms of perspectives, to 

expand the model used, to make it more realistic and 

generic with regard to real driving scenarios. 

On the one hand, disturbances such as gusts of 

wind, slopes of the road, poor road adherence or non-

uniform loading can be considered and the other 

hand, other vehicle-specific dynamics such as lateral 

and yaw dynamics can be taken into account.  

Then, a study of the stability associated with 

reconfiguration, regardless of driving scenarios, 

would allow verifying the genericity of the 

reconfiguration.  

In the longer term, the idea is to study 

reconfiguration and stability on the architecture of the 

Automated Driving that is more complex with an 

application on driving-aid functions such as artificial 

intelligence-based decision-making or planning 

algorithms whose mathematical model is more 

difficult even impossible to obtain.  

These perspectives will enhance the operating 

safety of the generic architecture of an Automated 

Driving vehicle in both highway and urban 

environments. 
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