Therefore,  from  the  discussion  of  this  rule,  one 
realizes the power of analysis that is provided by the 
machine  learning  model.  The  use  of  these  models 
demonstrates the ability to make decisions in the face 
of  varied  process  conditions  and  the  correlation 
between  the  most  significant  variables,  allowing 
gains with adjustments that drive the optimization of 
the expected result of the press. 
6  CONCLUSIONS 
The results of this work make it possible to speed up 
the predictive analysis of the performance of the roller 
press, automating the correlation of information from 
the  various  available  systems  and  enabling  the 
diagnosis  of  the  press  performance  in  real  time, 
meaning  a  great  advance  since  currently  this 
performance needs an analysis laboratory with results 
available only in an interval of 4 hours. 
In  addition,  it  shows  effective  results  of  a 
multivariate analysis, contrasting the human limitation 
for the evaluation of numerous parameters. Thus, this 
work allows the decision making of the technical and 
operational team to be strengthened in order to support 
the challenge of reducing costs and increasing revenue 
and quality of the production process. 
The  applicability  in  the  industry  as  well  as  its 
scalability are highly possible, since the possibility of 
implantation can be applied and customized for other 
existing  roller  presses,  for  the  other  different 
equipment in the pelletizing process (such as ball mill, 
filters, pelletizing discs and others) and even different 
processes, as long as they are evaluated for each need 
and peculiarity. 
Besides  that,  the  prediction  of  the  process 
performance  can  open  a  wide  discussion  and 
possibility of study for the prediction of the useful life 
of  this  equipment  adopting  the  various  machine 
learning techniques. 
ACKNOWLEDGEMENTS 
This study was financed in part by the Coordenação 
de  Aperfeiçoamento  de  Pessoal  de  Nível  Superior  - 
Brasil  (CAPES)  –  Finance  Code  001,  the  Conselho 
Nacional  de  Desenvolvimento  Científico  e 
Tecnológico  (CNPQ),  the Fundação  De  Amparo  a 
Pesquisa  Do  Estado  De  Minas  Gerais  - 
FAPEMIG grant  code  APQ-01331-18,  the  Instituto 
Tecnológico Vale (ITV), the Universidade Federal de 
Ouro Preto (UFOP) and Vale S.A. 
REFERENCES 
Aldrich, C. (2020). Process Variable Importance Analysis 
by  Use  of  Random  Forests  in  a  Shapley  Regression 
Framework.  Minerals 10, 5.  doi:https://doi.org/ 
10.3390/min10050420 
Barrios,  G.,  Tavares,  M.,  Pérez-Prim,  J.  (2014).  High 
pressure grinding rolls simulation using the discrete 
element method dynamic coupling interface.  Paper 
presented  at  the  XXVII  International  Mineral 
Processing Congress, Santiago, Chile.  
Campos, T. M., Barrios, G. K. P., Bueno, G., & Tavares, L. 
M.  (2017).  Desafios  na  modelagem  da  capacidade  e 
potência  consumida  da  prensa  de  rolos. XXVII 
Encontro  Nacional  de  Tratamento  de  Minérios  e 
Metalurgia Extrativa, 1743-1753. 
Campos, T. M. (2018). Modelagem matemática da prensa 
de rolos aplicada à cominuição de minério de ferro. 
Universidade Federal do Rio de Janeiro,  
Hasanzadeh,  V.,  &  Farzanegan,  A.  (2011).  Robust  HPGR 
model  calibration  using  genetic  algorithms.  Minerals 
Engineering, 24,  424-432.  doi:10.1016/j.mineng. 
2010.12.004. 
Naik,  A.,  Samant,  L.  (2016).  Correlation  Review  of 
Classification  Algorithm  Using  Data  Mining  Tool: 
WEKA,  Rapidminer,  Tanagra,  Orange  and  Knime. 
Procedia Computer Science, 85, 662-668. doi:10.1016 
Oliveira, R. N. M. d. (2015). Performance analysis of the 
HRCTM HPGR in pilot plant. (Master).  Universidade 
de São Paulo, São Paulo.  
Saramak,  D.,  &  Kleiv,  R.  A.  (2013).  The  effect  of  feed 
moisture  on  the  comminution  efficiency  of  HPGR 
circuits. Minerals Engineering, 43-44, 105-106.  
Shedroff,  N.  (1999).  Information  Interaction  Design:  A 
Unified Field Theory in Design. In R. JACOBSON (Ed.), 
Information Design (pp. 267-292): The MIT Press. 
Silva,  L.  (2008).  Influência da umidade no processo de 
pelotização. Faculdade do Centro Leste – UCL.  
Tohry, A., Chelgani, S. C., Matin, S. S., & Noormohammadi, 
M.  (2020).  Power-draw  prediction  by  random  forest 
based on operating parameters for an industrial ball mill. 
Advanced Powder Technology,, 31, 967-972.  
Tohry, A., Yazdani, S., Hadavandi, E., Mahmudzadeh, E., & 
Chelgani,  S.  C.  (2020).  Advanced  modeling  of  HPGR 
power consumption based on operational parameters by 
BNN:  A  “Conscious-Lab”  development.  Powder 
Technology, 381. doi:10.1016/j.powtec.2020.12.018 
Torres, M., & Cassali, A. (2009). A novel approach for the 
modelling  of  high-pressure  grinding  rolls.  Minerals 
Engineering, 22, 1137–1146.  
Viterbo, J.,  Boscarioli, C.,  Bernardini, F., &  Teixeira, M. 
(2016). Avaliação de Ferramentas de Apoio ao Ensino 
de  Técnicas  de  Mineração  de  Dados  em  Cursos  de 
Graduação.  In  Anais  do  XXIV  Workshop  sobre 
Educação em Computação, (pp. 11-20). Porto Alegre: 
SBC. doi:10.5753/wei.2016.9644. 
Vyhmeister,  E.,  Reyes-Bozo,  L.,  Rodriguez-Maecker,  R., 
Fúnez-Guerra,  C.,  Cepeda-Vaca,  F.,  &  Valdés-
González,  H.  c.  (2019).  Modeling  and  energy-based 
model predictive control of high pressure grinding roll. 
Minerals Engineering, 134.