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Abstract: In business, one of the most important management functions is decision making. The Group Modular Cho-
quet Random TOPSIS (GMC-RTOPSIS) is a Multi-Criteria Decision Making (MCDM) method that can work
with multiple heterogeneous data types. This method uses the Choquet integral to deal with the interaction be-
tween different criteria. The Choquet integral has been generalized and applied in various fields of study, such
as imaging processing, brain-computer interface, and classification problems. By generalizing the so-called
extended Choquet integral by copulas, the concept of CC-integrals has been introduced, presenting satisfactory
results when used to aggregate the information in Fuzzy Rule-Based Classification Systems. Taking this into
consideration, in this paper, we applied 11 different CC-integrals in the GMC-RTOPSIS. The results demon-
strated that this approach has the advantage of allowing more flexibility and certainty in the choosing process
by giving a higher separation between the first and second-ranked alternatives.

1 INTRODUCTION

Business managers rely on the right decisions to keep
their business competitive. Many times a decision
has to be made by multiple analysts and considering
various criteria. This is a time consuming and ex-
pensive task. Although, most of the time, it can be
solved by an algorithm or mathematical model, like
route, supplier chain, and location problems (Deveci
et al., 2017; Alazzawi and Żak, 2020; Shyur and Shih,
2006), releasing the pressure of the decision from the
managers, and allow them to work on other processes
of the company/industry.

The Technique for Order of Preference by Simi-
larity to Ideal Solution (TOPSIS) (Huang and Yoon,
1981) is one of the multi-criteria decision making
(MCDM) methods that ranks the best possible solu-
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tion among a set of alternatives. This approach is
based on pre-defined criteria, using the alternative’s
distance to the best and worst possible solutions for
the problems, Positive and Negative Ideal Solutions
(PIS and NIS), respectively.

In 2017, the Group Modular Choquet Random
TOPSIS (GMC-RTOPSIS) (Lourenzutti et al., 2017)
was introduced. The method generalized the orig-
inal TOPSIS allowing it to deal with multiple and
heterogeneous data types. The approach models the
interaction among the criteria by using the discrete
Choquet integral (Choquet, 1954). The Choquet inte-
gral allows a function to be integrated by using non-
additive fuzzy measures (Choquet, 1954; Candeloro
et al., 2019), which means that it can consider the in-
teraction among the elements that are being integrated
(Murofushi and Sugeno, 1989; Dimuro et al., 2020).
The GMC-RTOPSIS learns the fuzzy measure associ-
ated with the criteria with a Particle Swarm Optimiza-
tion (PSO) algorithm (Wang et al., 2011) .

The CT -integrals (Lucca et al., 2016) is a general-
ization of the Choquet integral that replaces the prod-
uct operation by triangular norm (t-norm) functions
(Klement et al., 2011). The CT -integrals are a family
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of integrals that are pre-aggregation functions (Lucca
et al., 2016). Additionally, CT -integrals are averaging
functions, i.e., the result is always between the mini-
mum and maximum of the input.

The T-separation measure (Wieczynski et al.,
2020) was introduced and applied in the GMC-
RTOPSIS instead of the Choquet integral. In
this study, the authors considered five different T-
separation measures to tackle Case Study 2 from
(Lourenzutti et al., 2017). The problem consists of
choosing a new supplier for a company by asking var-
ious decision-makers to give their opinions with dif-
ferent criteria. The problem is posed with a variety
of data types, such as probability distributions, fuzzy
numbers, and interval numbers. The paper also pro-
posed to use the t-norm that better discriminates the
first ranked alternative to the second one by calcu-
lating the difference of the rankings. The approach
presented good results when using the Łukasiewicz
t-norm (TŁ), giving a better separation between the
ranked alternatives than the standard Choquet inte-
gral.

After introducing the CT -integrals, Lucca et al.
have proposed the CC-integrals (Lucca et al., 2017a).
CC-integrals are a generalization of the Choquet in-
tegral in its expanded form, satisfying some proper-
ties, such as averaging, idempotency, and aggregation
(Grabisch et al., 2009). The authors applied the CC-
integral in classification problems, showing that the
function based on the minimum is the one that pro-
duced the highest performance of the classifier. The
CC-integrals have been studied in the literature by
Dimuro et al., where the properties of CMin integrals
(Lucca et al., 2017b; Dimuro et al., 2018; Mesiar and
Stupňanová, 2019) were analyzed.

In this paper, we define the CC-separation mea-
sure and use it in the GMC-RTOPSIS instead of the
Choquet integral. We also apply our approach in an
application as an example, the same used in (Louren-
zutti et al., 2017; Wieczynski et al., 2020). Finally, we
analyze its results and compare them to other works.

The paper is organized as follows: Section 2 in-
troduces the basic concepts about the fuzzy set the-
ory and TOPSIS decision making. In Section 3 we
define the CC-separation measure. In Section 4 we
show our methodology, the problem used to test the
CC-separation measure, and the results achieved by
using it. Lastly, the conclusion is in Section 5.

2 PRELIMINARY CONCEPTS

In this section, we recall the preliminary concepts
necessary to develop the paper.

2.1 Fuzzy Set Theory

A Fuzzy Set (Zadeh, 1965) is defined on a universe X
by a membership function µa : X → [0,1], denoted by

a = {〈x, µa(x)〉 | x ∈ X} .

We call a trapezoidal fuzzy number (TFN) the fuzzy
set denoted by a = (a1,a2,a3,a4), where a1 ≤ a2 ≤
a3 ≤ a4, if the membership function µa is defined on
R as:

µa(x) =


x−a1

a2−a1
, if a1 ≤ x < a2

1, if a2 ≤ x≤ a3
a4−x

a4−a3
, if a3 < x≤ a4

0, otherwise.

A measure of the distance between two TFNs a =
(a1, a2, a3, a4) and b = (b1, b2, b3, b4) is defined
as:

d(a,b) =

√
1
4

4

∑
i=1

(ai−bi)
2.

The defuzzified value of a TFN a = (a1,a2,a3,a4) is
given by:

m(a) =
a1 +a2 +a3 +a4

4
.

An intuitionistic fuzzy set (IFS) A is defined on a uni-
verse X by a membership function µA : X→ [0,1] and
a non-membership function νA : X → [0,1] such that
µA(x)+νA(x)≤ 1, for all x ∈ X , that is:

A = {〈x,µA(x),νA(x)〉 | x ∈ X} .

Let µ̃A and ν̃A be the maximum membership degree
and the minimum non-membership degree, respec-
tively, of an IFS A.

An IFS A is an intuitionistic trapezoidal fuzzy
number (ITFN), denoted by

A = 〈(a1,a2,a3,a4) , µ̃A, ν̃A〉

where a1 ≤ a2 ≤ a3 ≤ a4, if µA and vA are given, for
all x ∈ R, by

µA(x) =


x−a1

a2−a1
µ̃A, if a1 ≤ x < a2

µ̃A, if a2 ≤ x≤ a3
a4−x

a4−a3
µ̃A, if a3 < x≤ a4

0, otherwise

and

νA(x) =


1−ν̃A
a1−a2

(x−a1)+1, if a1 ≤ x < a2

ν̃A, if a2 ≤ x≤ a3
1−ν̃A
a4−a3

(x−a4)+1, if a3 < x≤ a4

1, otherwise.
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The distance between two ITFNs A =
〈(a1, a2, a3, a4) , µ̃A, ν̃A〉 and B =
〈(b1, b2, b3, b4) , µ̃B, ν̃B〉 is:

d(A,B) =
1
2
[dµ̃(A,B)+dν̃(A,B)]

where

dκ(A,B) =
{

1
4

[
(a1−b1)

2 +(1+(κA−κB)
2)

(1+(a2−b2)
2 +(a3−b3)

2)

−1+(a4−b4)
2
]}1/2

for κA = µ̃A and κB = µ̃B when κ = µ; and for κA = ν̃A
and κB = ν̃B when κ = ν.

Aggregation functions (AF) (Grabisch et al.,
2009) are used to unify inputs into a single value rep-
resenting them all and are defined as a function that
maps n > 1 arguments onto the unit interval, that is,
a function f : [0,1]n → [0,1] such that the bound-
aries, f (000) = 0 and f (111) = 1, with 000,111 ∈ [0,1]n,
and the monotonicity properties, xxx ≤ yyy =⇒ f (xxx) ≤
f (yyy), ∀xxx,yyy ∈ [0,1]n, hold.

A triangular norm (t-norm) is an aggregation func-
tion T : [0,1]2 → [0,1] that satisfies, for any x,y,z ∈
[0,1]: the commutative and associative properties and
the boundary condition.

An overlap function (Bustince et al., 2010) O :
[0,1]2→ [0,1] is a function that satisfies the following
conditions:

• O is commutative;

• O(x,y) = 0 ⇐⇒ xy = 0;

• O(x,y) = 1 ⇐⇒ xy = 1;

• O is increasing;

• O is continuous.

A bivariate function Co : [0,1]2 → [0,1] is called a
copula (Nelsen, 2007) if, for all x,x′,y,y′ ∈ [0,1] with
x≤ x′ and y≤ y′, the following conditions hold:

• Co(x,y)+Co(x′,y′)≥Co(x,y′)+Co(x′,y);

• Co(x,0) =Co(0,x) = 0;

• Co(x,1) =Co(1,x) = x.

The Choquet integral is defined based on a fuzzy mea-
sure (Sugeno, 1974), that is, a function m from the
power set of N to the unit interval, m : 2N → [0,1],
that for all X ,Y ⊂ N holds the conditions:

(1) m( /0) = 0 and m(N) = 1;

(2) if X ⊂ Y , then m(X)≤ m(Y ).

From this, Choquet defined the integral as: Let m
be a fuzzy measure. The Choquet integral (Choquet,
1954) of xxx ∈ [0,1]n with respect to m is defined as:

Cm : [0,1]n→ [0,1]

xxx→
n

∑
i=1

(
x(i)− x(i−1)

)
m(A(i))

where (i) is a permutation on 2N such that x(i−1) ≤
x(i) for all i = 1, . . . ,n, with x(0) = 0 and A(i) =
{(1), . . . ,(i)}.

Notice that one can use the distributive law to ex-
pand the Choquet integral into:

Cm =
n

∑
i=1

(
x(i)m(A(i))− x(i−1)m(A(i))

)
(1)

Recently, the Choquet integral was generalized by
copula functions. By substituting the product oper-
ator by copulas in the expanded form of the Choquet
integral (Eq. 1), CC-Integrals (Lucca et al., 2017a)
were introduced.

Let m be a fuzzy measure and Co be a bivari-
ate copula. The Choquet-like integral based on cop-
ula with respect to m is defined as a function CCo

m :
[0,1]n→ [0,1], for all xxx ∈ [0,1]n, by

CCo
m =

n

∑
i=1

Co
(
x(i), m(A(i))

)
−Co

(
x(i−1), m(A(i))

)
(2)

where (i), x(i) and A(i) is defined as the Choquet inte-
gral.

It is important to note that the Choquet integral,
the CT -integrals, and the CC-integrals are averag-
ing functions, i.e., the results from them are always
bounded by the minimum and maximum of their in-
put.

2.2 Decision Making

The GMC-RTOPSIS (Lourenzutti et al., 2017) is a
decision making algorithm that improved the classic
TOPSIS (Huang and Yoon, 1981) by allowing groups
of decision-makers, modularity in the input, multiple
input types and, by using the Choquet integral, the
ability to measure the interaction among different cri-
teria.

Figure 1 shows an overview of the decision mak-
ing process with the Choquet integral. Here three
different decision-makers give their ratings for three
products based on three criteria. These ratings are
then processed and inserted in the Choquet integral,
where the interaction between the criteria is calcu-
lated. After, the results are ranked according to their
highest classiness coefficient value.
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Figure 1: Image description of the decision making process
using the Choquet integral. Source: the authors.

To describe the GMC-RTOPSIS method let q rep-
resent the q-th decision maker in a collection of
Q ∈ N = {1,2,3, . . .} ones. Let AAA = {A1, . . . ,Am}
be the set of alternatives for the problem and CCCq =
{C1, . . . ,Cnq} represent the criteria set for decision
maker q. With CCC = {CCC1, . . . ,CCCQ} = {C1, . . . ,Cn},
where n = ∑

Q
q=1 nq, representing the criteria set of all

the decision makers. From these notations we can
represent each of the q-th decision maker by the ma-
trix below (Eq. (3)), called decision matrix DM:

DMq =



C1 C2 · · · Cnq

A1 sq
11(YYY

q) sq
12(YYY

q) · · · sq
1nq

(YYY q)

A2 sq
21(YYY

q) sq
22(YYY

q) · · · sq
2nq

(YYY q)

...
...

...
. . .

...
Am sq

m1(YYY
q) sq

m2(YYY
q) · · · sq

mnq(YYY
q)


(3)

Each matrix cell sq
i j(YYY

q), with 1≤ i≤ m, 1≤ j ≤ nq,
is called the rating of the criterion j for alternative
i. Also, notice that the rating is a function of YYY =
(YYY rand , YYY det), which are factors that model random
and deterministic events. Random events are modeled
by stochastic processes, and deterministic are events
which are not random, like time, location or a param-
eter of a random event. A fixed value x of the deter-
ministic vector is called a state, and the set of all states
is represented by X .

In possession of all decision matrices from all
decision-makers Q, the algorithm can be applied. The
process is quite similar to the original TOPSIS, pre-
sented in 1981. It uses the same definition of Posi-
tive Ideal Solution (PIS) and Negative Ideal Solution
(NIS) that are, respectively, the one that is closer to
the best possible solution and the one that is distant
from the best possible solution, see Eq. (4). The
most significant difference is that each criterion may
use a different distance measure since each may have
its own type. So, the distances of each criterion are
calculated separately and aggregated afterward in the

separation measure step of the algorithm (see Figure
2).

In order to ease the comprehension of our ap-
proach, we present in Figure 2 the steps of the GMC-
RTOPSIS, where:

Step 0. Select a state x ∈ X not yet processed;

Step 1. Normalize all matrices;

Step 2. Select the PIS, denoted by s+j (YYY ), and
the NIS, denoted by s−j (YYY ), considering, for each
j ∈ {1, . . . ,n}, respectively:

s+j (YYY ) =

 max
1≤i≤m

si j, if it is a benefit criterion,

min
1≤i≤m

,si j if it is a cost/loss criterion,

(4)

s−j (YYY ) =

 min
1≤i≤m

si j, if it is a benefit criterion,

max
1≤i≤m

si j, if it is a cost/loss criterion;

Step 3. Calculate the distance measure for each
criterion C j, with j ∈ {1, . . . ,n}, to the PIS and
NIS solutions, that is,

d+
i j = d(s+j (YYY ),si j(YYY )),

d−i j = d(s−j (YYY ),si j(YYY )),

where i ∈ {1, . . . ,m} and d is a distance measure
associated with the criteria data type;

Step 4. Calculate the separation measure, for each
i ∈ {1, . . . ,m}, using the Choquet integral as fol-
lows:

S+i (YYY ) =

√
n

∑
j=1

((
d+

i( j)

)2
−
(

d+
i( j−1)

)2
)

mYYY (CCC+
( j))

S−i (YYY ) =

√
n

∑
j=1

((
d−i( j)

)2
−
(

d−i( j−1)

)2
)

mYYY (CCC−( j))

where d+
i(1) ≤ . . . ≤ d+

i(n), d−i(1) ≤ . . . ≤ d−i(n), for
each j ∈ {1, . . . ,n}, C+

( j) is the criterion cor-
respondent to d+

i( j), C−( j) is the criterion corre-
spondent to d−i( j), CCC+

( j) = {C
+
( j),C

+
( j+1), . . . ,C

+
(n)},

CCC−( j) = {C
−
( j),C

−
( j+1), . . . ,C

−
(n)}, CCC+

(n+1) =CCC−(n+1) =

/0, d+
i(0) = d−i(0) = 0 and mY is the learned fuzzy

measure by a particle swarm optimization algo-
rithm (Wang et al., 2011).
Here, the separation measure is the square root of
the Choquet integral of squared distances, and this
means that it is the square root of a d-Choquet in-
tegral (Bustince et al., 2020). Also, for each state,
we may have a different fuzzy measure, which
means that the fuzzy measure is dependent on YYY det
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Figure 2: Diagram of the GMC-RTOPSIS process. The separation measure step is where the CC-separation measure is used.
Source: The authors.

Step 5. For each i ∈ {1, . . . ,m}, calculate the
relative closeness coefficient to the ideal solution
with:

CCi(YYY ) =
S−i (YYY )

S−i (YYY )+S+i (YYY )
;

Step 6. By using probability distributions in the
DM, it is introduced a bootstrapped probability
distribution in the CCi values, so as a point repre-
sentation for this distribution we minimize a pre-
defined risk function:

cci = argmin
c

R(c)

= argmin
c

∫
R

L(c, CCi(YYY )) dF(CCi(YYY )); (5)

Step 7. If there is at least one non-processed state
x, return to Step 0;
Step 8. Aggregate the cci values from all the
states with ĉci = fx∈X (cci(x)), where f is an ag-
gregation function.
Step 9. Finally, rank the alternatives from the
highest to the lowest ĉci values.

3 GENERALIZATION OF THE
GMC-RTOPSIS BY USING
CC-INTEGRALS

Using the Choquet integral in the separation mea-
sure, the GMC-RTOPSIS method allows for interac-
tion among different criteria. This is the step where

this study incorporates the CC-integrals in place of
the Choquet integral.

We introduce the CC-separation measure by:

Definition 3.1 (CC-separation measure). Let Co be
a bivariate copula and m a fuzzy measure. A CC-
separation measure S∗ : [0,1]2→ [0,1] is defined, for
all i ∈ {1, . . . ,m}, by the functions:

S+i (YYY ) =

[
n

∑
j=1

Co
((

d+
i( j)

)2
, mYYY

(
CCC+
( j)

))

−Co
((

d+
i( j−1)

)2
, mYYY

(
CCC+
( j)

))]1/2

S−i (YYY ) =

[
n

∑
j=1

Co
((

d−i( j)

)2
, mYYY

(
CCC−( j)

))

−Co
((

d−i( j−1)

)2
, mYYY

(
CCC−( j)

))]1/2

where d+
i( j), d−i( j), CCC+

( j), CCC−( j) and mYYY are defined as in
Step 4 of the GMC-RTOPSIS algorithm. Note that
the separation measure is the squared root of the CC-
integral, which is an aggregation function as shown
in (Lucca et al., 2017a).
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4 EXPERIMENTAL
FRAMEWORK

In this section, we present the application of the CC-
separations in the GMC-RTOPSIS. To do so, we start
describing the methodology adopted in the study; af-
ter that, the example in which we apply our approach
is described, and lastly, the obtained results are pre-
sented and discussed.

4.1 Methodology

In this study, we will apply the proposed CC-
separation measure to the Case Study 2 introduced
in (Lourenzutti et al., 2017) and used in (Wieczyn-
ski et al., 2020) to ease the comparison between the
different CC-integrals.

To perform the simulation, we used 10,000 sam-
ples from the DM. We also applied a particle swarm
optimization to learn the fuzzy measure using 30 par-
ticles and 100 interactions. The PSO is used since the
original method had good outcomes with the method.

In this study we used the copula functions from
Table 1. We highlight that we used 2 different values
for the α parameter, which are α = 0.1, selected from
the literature (Lucca et al., 2017a), and α= 0.6, which
was the best fit for the problem presented in this paper
based on the difference between the first and second
ranked alternatives, when compared to other α values.

For the risk function, given in Eq. (5), it was used
the squared loss:

L(cc, CCi) = (cc−CCi)
2.

This result in the mean function being the point esti-
mator for the process.

Also, we use the aggregation function bellow in
the Step 8 of the algorithm:

WAMi = w(S1) · cci(S1)+w(S2) · cci(S2).

For the analysis of the results from the different cop-
ula functions, we use the difference between the alter-
native ranked first to the second ranked with:

∆R1,R2 = max(ĉ1)−max(ĉ2)

where ĉ1 = {cci | i ∈ {1, . . . ,m}} and ĉ2 = ĉ1 −
{max(ĉ1)}.

Lastly, since we are altering only the Choquet
function, the algorithm maintains its original com-
plexity.

4.2 The Considered Problem

A company needs a new supplier for a provision and
is evaluating four different suppliers, namely A1, A2,

A3 and A4. The company called three of its managers
to analyze the suppliers and give their ratings based
on their criteria.

The first manager is a budget manager. He con-
sidered the price per batch (in thousands) as C(1)

1 ,
warranty (in days) as C(1)

2 and payment conditions
(in days) as C(1)

3 . Also, it was considered that the
demand for the product is higher in December. He
modeled it by using a binary variable τ, that is τ = 0
when the month is between January and November,
and τ = 1 when it is December. Finally, he assigned a
weight for each of his criterion with a weighting vec-
tor: www(1) = (0.5, 0.25, 0.25).

The second manager, a product manager, consid-
ered the price as C(2)

1 , delivery time (in hours) as C(2)
2 ,

production capacity C(2)
3 , product quality C(2)

4 and the
time to respond to a support request (in hours) as
C(2)

5 . Additionally, to account for the reliability in the
production process and what a failure in the process
could cause to the supplier’s production capacity, he
let Pi be a random variable such that Pi = 0 occurs
when there are no failures in the production process
of the supplier Ai, and Pi = 1 when there are fail-
ures. Also, in December, the production is acceler-
ated, so the chance of failure is higher, so he modeled
a stochastic process with the help of the function:

fi(x,y) = x
(
1+ y(Pi + τ)2).

Lastly, the production capacity was modeled by using
ITFNs:
s2

13 =
(
(0.81+P1 ,0.91+P1 ,1.01+P1 ,1.01+P1), 1.0, 0.0

)
s2

23 =
(
(0.81+4P2 ,0.91+4P2 ,1.01+4P2 ,1.01+4P2), 0.7, 0.1

)
s2

33 =
(
(0.61+2P3 ,0.71+2P3 ,0.81+2P3 ,1.01+2P3), 0.8, 0.0

)
s2

43 =
(
(0.51+3P4 ,0.61+3P4 ,0.81+3P4 ,0.91+3P4), 0.8, 0.1

)
.

This manager selected the same weight for all criteria,
i.e www(2) = (0.2, 0.2, 0.2, 0.2, 0.2).

The commercial manager was the third. He con-
sidered the product lifespan (in years) as C(3)

1 , social
and environmental responsibility as C(3)

2 , the quan-
tity of quality certifications as C(3)

3 and the price as

C(3)
4 . The weighting vector provided by this manager

is www(3) = (0.25, 0.12, 0.23, 0.4).
The Pi distribution was determined by historical

data of each supplier and it is given as follows:
• For τ = 0:

p(P1 = 0|S1) = 0.98,
p(P2 = 0|S1) = 0.96,
p(P3 = 0|S1) = 0.97,
p(P4 = 0|S1) = 0.95.
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Table 1: Examples of Copulas.

(I) T-norms

Definition Name/Description

TM(x,y) = min{x,y} Minimum

TP(x,y) = xy Algebraic Product

TL(x,y) = max{0,x+ y−1} Łukasiewicz

TNM(x,y) =

{
min{x,y} if x+ y > 1
0 otherwise

Nilpotent Minimum

THP(x,y) =

{
0 if x = y = 0

xy
x+y−xy otherwise

Hamacher Product

(II) Non-associative overlap functions

Definition Reference/Description

OB(x,y) = min{x√y,y
√

x} Cuadras-Augé family of copulas (Nelsen, 2007)

OmM(x,y) = min{x,y}max{x2,y2} (Dimuro and Bedregal, 2014; Pereira Dimuro et al., 2016)

Oα(x,y) = xy(1+α(1− x)(1− y)),
where α ∈ [−1,0[ ∪ ]0,1]

(Alsina et al., 2006; Lucca et al., 2015)

(III) Non-associative copulas, which are neither t-norms nor overlap functions

Definition Reference/Description

CF(x,y) = xy+ x2y(1− x)(1− y) (Klement et al., 2011)

CL(x,y) = max{min{x, y
2},x+ y−1} (Alsina et al., 2006)

CDiv(x,y) =
xy+min{x,y}

2 (Alsina et al., 2006)

• For τ = 1:

p(P1 = 0|S2) = 0.96,
p(P2 = 0|S2) = 0.92,
p(P3 = 0|S2) = 0.96,
p(P4 = 0|S2) = 0.90.

Considering all the DMs, we have the following
underlying factors: a random component YYY rand =
(P1,P2,P3,P4) and a deterministic component Ydet = τ

that has two states: S1 when τ = 0 and S2 when
τ = 1. The underlying factors can be represented by
YYY = (YYY rand , YYY det). The managers agreed that the state
S2 was more important, since the production is higher,
so they gave it a higher weight for it in the aggregation
step (Step 8 of the method) by setting w(S1) = 0.4 and
w(S2) = 0.6.

The DMs of all managers are presented in Table
2, where the linguistic variables (W, P, I, G and E) are
defined as in Table 3.

The company, considering the opinion of manager 2
more important, assigned a weighting vector for the
managers represented by www = (0.3, 0.4, 0.3). Fur-
thermore, they wanted to include some interaction be-
tween the criteria, so a variation of 30% was allowed
for each fuzzy measure in relation to the coefficient
in the additive fuzzy measure. This measure is calcu-
lated computationally by means of the PSO algorithm
(Wang et al., 2011; Lourenzutti et al., 2017).

4.3 Obtained Results

The aggregated ranked results are presented in Table 4
(for all the results see APPENDIX Table 5). The table
shows for each copula function Co, the rank of alter-
natives from columns 2 to 5, with its aggregated val-
ues inside parenthesis. The last column shows the dif-
ference between alternatives ranked first and ranked
second.

We can see that for the t-norms the values are pro-
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Table 2: Decision matrices for the managers.
(a) Budget manager

Alternatives C(1)
1 C(1)

2 C(1)
3

τ = 0 τ = 1

A1 260.00(1+0.15τ) 90 G G
A2 250.00(1+0.25τ) 90 P W
A3 350.00(1+0.20τ) 180 G I
A4 550.00(1+0.10τ) 365 I W

(b) Production manager

Alternatives C(2)
1 C(2)

2 C(2)
3 C(2)

4 C(2)
5

A1 260.00 U( f1(48, 0.10), f1(96, 0.10)) s2
13 I [24, 48]

A2 250.00 U( f2(72, 0.20), f2(120, 0.20)) s2
23 P [24, 48]

A3 350.00 U( f3(36, 0.15), f3(72, 0.15)) s2
33 G [12, 36]

A4 550.00 U( f4(48, 0.25), f4(96, 0.25)) s2
34 E [0, 24]

(c) Commercial manager

Alternatives C(3)
1 C(3)

2 C(3)
3 C(3)

4

A1 Exp(3.5) W 1 260.00
A2 Exp(3.0) W 0 250.00
A3 Exp(4.5) P 3 350.00
A4 Exp(5.0) I 5 550.00

Table 3: Linguistic variables and their respective trape-
zoidal fuzzy numbers.

Linguistic variables Trapezoidal fuzzy numbers

Worst (W) (0, 0, 0.2, 0.3)
Poor (P) (0.2, 0.3, 0.4, 0.5)
Intermediate (I) (0.4, 0.5, 0.6, 0.7)
Good (G) (0.6, 0.7, 0.8, 1)
Excellent (E) (0.8, 0.9, 1, 1)

portional to the ones presented in the study that used
CT -integral instead of the Choquet integral (Wieczyn-
ski et al., 2020). As in that paper, here the TŁ t-norm
has the greatest difference, with ∆R1, R2 = 0.0700. Al-
though, only the TMN t-norm performs well compared
with other copulas such as Oα and CF .

The copula Oα with α = 0.6 achieved the sec-
ond greatest difference among the tested ones, with
∆R1, R2 = 0.0502. The next of this family tested was
the one with α= 0.1, as it is the main value used in the
literature, it resulted in a quite lower difference value,
with only ∆R1, R2 = 0.0294. Among the copulas from
the α family, we have CF , with ∆R1, R2 = 0.0466 and
TMN with ∆R1,R2 = 0.0454.

Notice that when using Cdiv, CL and TM copulas the
alternatives A3 and A4 change position. This is from
the influence of the state 2 result, where these func-
tions may have weighted higher criteria for alternative
A4. Furthermore, the relative small difference ∆R1,R2
make the top of the rank prone to invert positions.

Our last analysis considered the CC-separations
that presented the lowest ranks. Precisely, it is
observable in the obtained results that the copulas
THP,TP,OB and TM obtained a similar performance
and the lowest separation.

5 CONCLUSIONS

The GMC-RTOPSIS is a decision method that
chooses the alternative that is closer to an ideal solu-
tion. It is capable of dealing with multiple data types
as inputs and, also, through the Choquet integral, con-
siders the interaction among different criteria.

In this paper, we presented the CC-separation
measure. A new measure to be used in the GMC-
RTOPSIS method that utilizes the CC-integrals in-
stead of the Choquet integral. The CC-integrals is a
generalization of the Choquet integral that presented
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Table 4: Rank of the alternatives with each of the C functions, ordered by difference between the value of the alternative
ranked first and second.

Co function Ranked 1st Ranked 2nd Ranked 3rd Ranked 4th ∆R1,R2

TŁ A3(0.6462) A4(0.5762) A1(0.4616) A2(0.3782) 0.0700

Oα=0.6 A3(0.5897) A4(0.5395) A1(0.4716) A2(0.4282) 0.0502

CF A3(0.5991) A4(0.5525) A1(0.4453) A2(0.4194) 0.0466

TNM A3(0.5919) A4(0.5493) A1(0.4713) A2(0.3910) 0.0425

Oα=0.1 A3(0.5953) A4(0.5659) A1(0.4453) A2(0.3962) 0.0294

OmM A3(0.5995) A4(0.5715) A1(0.4454) A2(0.3927) 0.0280

CDiv A4(0.5234) A3(0.5016) A1(0.4868) A2(0.4250) 0.0218

CL A4(0.5273) A3(0.5097) A1(0.4914) A2(0.4361) 0.0176

THP A3(0.5351) A4(0.5221) A1(0.5049) A2(0.4308) 0.0131

TP A3(0.5821) A4(0.5701) A1(0.4346) A2(0.3977) 0.0120

OB A3(0.5511) A4(0.5395) A1(0.4713) A2(0.4133) 0.0116

TM A4(0.5229) A3(0.5118) A1(0.4737) A2(0.4386) 0.0110

good results when applied in classification problems.
By using an example from the literature, we tested

the method with 11 different copula functions, with
one of them using two distinct parameters. The re-
sults indicate that the Łukasiewicz t-norm is the best
copula function to use in this example problem since
it gives the greatest separation between the alterna-
tives ranked first and second. Additionally, the Over-
lap alpha family, with α = 0.6, the CF and the TNM
also presented good separations.

By being able to verify the separation between the
ranks, we can choose more confidently the alternative
that better suits the problem. Therefore, by using mul-
tiple functions in the CC-separation measure, we can
see how the problem behaves in different situations.

Finally, future work will consider learning the α

parameter of the overlap alpha family, using distinct
optimization methods.
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APPENDIX

Table 5: Mean and standard deviation of the alternatives for
State 1 and State 2. The highest mean for each function and
state is in boldface and the highest for the criterion has an
asterisk*.
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