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Abstract: With the continuous increase of network terminal equipment, the operation scenarios of 4G-LTE wireless
networks are becoming more and more complex. The traditional manual method of analysis and screen-
ing of network cell equipment can no longer meet the needs of production. Therefore, an efficient wireless
network cell abnormality diagnosis algorithm is needed to screen abnormalities of equipment to improve op-
eration and maintenance efficiency. In view of the fact that the existing single-dimensional anomaly diagnosis
algorithm cannot achieve fully automated detection and the existing multidimensional anomaly diagnosis al-
gorithm has low detection efficiency on multidimensional time series data, there are a large number of errors
and omissions. This paper proposes a multidimensional time series data based on 4G-LTE wireless network
cell anomaly diagnosis optimization algorithm uses small-sample supervised algorithms to assist the training
of massive-sample unsupervised algorithms, thereby improving the detection performance of unsupervised
learning algorithms. This paper verifies the effectiveness of the optimization algorithm through experiments,
and has a great improvement in the four commonly used unsupervised algorithms, which can well improve the
anomaly detection capabilities of the existing algorithms.

1 INTRODUCTION

With the continuous development of communication
technology, the layout of wireless networks has be-
come more complex, and the operation and main-
tenance of network equipment has become more
and more challenging. The number of existing 4G-
LTE base stations is huge and there are many prob-
lems. However, the limited maintenance resources,
the shortage of personnel, and the lack of support
methods and platforms make it difficult to achieve in-
depth and detailed maintenance. How to reduce the
impact of faults on the business and improve user ex-
perience under the existing circumstances is the top
priority of maintenance work. At present, the tra-
ditional operation and maintenance method of wire-
less base stations is to monitor equipment alarms and
network indicators by engineers, identify abnormal
points, and manually analyze, screen, locate, and pro-
cess. The efficiency of manual screening is low, and
the skill level of maintenance personnel is uneven, re-
sulting in an inability to effectively improve mainte-
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nance efficiency. Therefore, in order to realize fault
detection automation and reduce manual participa-
tion, it is necessary to develop a detection algorithm
for wireless network cell abnormality.

The anomalies of wireless network cell can be
classified into three categories: anomalous outliers,
anomalous cycles, and anomalous collections (Chan-
dola et al., 2009). As shown in Figure 1, in aperi-
odic data, if a single data point can be considered
anomalous relative to other data, the data is called
an outlier. In a periodic sequence, if the data is ab-
normal in a certain period but normal in other pe-
riods, the data is called abnormal period data. In
time series collections, if the collection where the data
is located is inconsistent with other sibling collec-
tions, the collection is an abnormal collection. This
paper performs anomaly detection on wireless net-
work cell devices. The above three anomalies need
to be included. For a 4G-LTE wireless network cell,
the device reports monitoring data every hour. The
monitoring data contains multiple indicators, includ-
ing PDCP (Packet Data Convergence Protocol) layer
data flow, RRC (Radio Resource Control) connec-
tion times, CQI (Channel Quality Indicator) excellent
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rate, and so on. Within a week’s time sequence win-
dow, the point abnormality and periodic abnormality
of each indicator at a certain moment will affect the
failure judgment of a single network cell. At the same
time, different sets of network cells need to be com-
pared to detect anomalies that are different from other
sibling network cell collections.

Figure 1: Three kinds of 4G-LTE wireless network cell
anomalies: anomalous outliers, anomalous cycles, and
anomalous collections.

2 RELATED WORK

In wireless network cell anomaly detection, the exist-
ing single-dimensional anomaly diagnosis algorithm,
whether it is traditional machine learning such logis-
tic regression (Kleinbaum et al., 2002) or deep learn-
ing algorithms such TCN (Bai et al., 2018), these
algorithms firstly predict the index value at the fu-
ture moment, then set the threshold of the difference
between the predicted data and the real data to de-
cide whether it is abnormal. This method has some
limitations. On the one hand, it can only judge the
abnormal value of a single indicator. To determine
whether the network cell is abnormal according to the
single indicator, it also needs to rely on the voting
between the indicators or other manually formulated
combination rules. On the other hand, this method
can only detect point anomalies and partial periodic
anomalies, and cannot compare the wireless network
cell data set with other sibling sets. Therefore, the
single indicator anomaly detection algorithm is not
suitable for the scenario in this paper. This paper
needs to be modeled by combining statistical fea-
ture extraction and multidimensional anomaly diag-
nosis algorithm. Statistical feature extraction mainly
includes the construction of time series features and
set features. Multidimensional anomaly diagnosis al-

gorithms include supervised algorithms with labeled
data, such as SVM(George and Vidyapeetham, 2012),
ANN(Pradhan et al., 2012), and unsupervised algo-
rithms with unlabeled data, such as k-Means(Wazid
and Das, 2016). Generally, the results of supervised
algorithms are more reliable and accurate than unsu-
pervised algorithms. However, due to the amount of
abnormal data is much less than normal data, a larger
amount of data is required to train an effective su-
pervision model, which means that it will cost a lot
to label the data. Therefore, supervised anomaly de-
tection algorithms are actually not suitable for large-
scale multi-dimensional anomaly detection Scenes.
Although unsupervised anomaly detection algorithms
do not require labeling data and are more suitable for
massive data scenarios, multidimensional unsuper-
vised algorithms cannot select useful features, these
mixed useless features will reduce the accuracy of
unsupervised models. This paper designs a method
of coupling supervised and unsupervised algorithms
for training. We have obtained a small number of
4G-LTE wireless network cell annotation data. These
data come from multiple operation and maintenance
engineers, but we found that different operation and
maintenance engineers have different understandings
of the same data. They rely on their own operation
and maintenance experience, and it is difficult to unify
their opinions. Therefore, we believe that these an-
notation data not only contain reliable abnormal la-
bels, but may also contain noisy normal data (False
alarms), which is a low-quality annotation data. If a
model with high accuracy is obtained through super-
vised algorithm training with this data, then its gener-
alization performance on a large number of samples
is not excellent. We first analyze these low-quality
annotation data to find useful features, and then use
these useful features to train unsupervised algorithms.
The anomaly detection ability of the unsupervised
model is improved through the coupling training of
the unsupervised algorithm and the supervised algo-
rithm.

General anomaly diagnosis algorithms such as
anomaly detection based on measure density and
KNN (Angiulli and Pizzuti, 2002), Auto Encoder
based on neural network (Aggarwal, 2015), anomaly
detection based on projected distance and PCA (Shyu
et al., 2003), Isolation Forest (Aryal et al., 2014),
One Class SVM (Wang et al., 2004), KDE (Kim
and Scott, 2012), etc., cannot simultaneously find
abnormal outliers, abnormal cycles, and abnormal
collections. After comparing various algorithms,
we selected the four algorithms with the best ef-
fects for analysis and subsequent experiments. As
shown in Figure 2, it can be seen that KNN and
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Figure 2: Abnormal state that could not be fully detected.
Each curve represents the change in the value of a single
indicator of the network cell within a week. Figure (a) rep-
resents the abnormal detection of the E-RAB Abnormal in-
dicator of the network cell using the anomaly detection al-
gorithm based on measurement density and KNN. The ab-
scissa is the time point, the ordinate is the indicator value.
The red legend represents the detected abnormal curve.
Blue represents the detected normal curve. Yellow repre-
sents a curve that the algorithm detects as normal but is ac-
tually abnormal. Figure (b) represents the detection result
of the E-RAB Abnormal indicator by the One Class SVM
algorithm. Figure (c) represents the detection result of the
RRC AttConnReestab indicator by the Isolation Forest al-
gorithm. Figure (d) represents the detection result of the
PCA algorithm on the RRC AttConnReestab indicator.

One Class SVM cannot perfectly detect wireless net-
work cells different from other collections, such as
E-RAB AbnormRel (Evolved Radio Access Bearer
Abnormally Released) anomaly. Isolation Forest and
PCA also have the problem of missed detection of
RRC AttConnReestab (Radio Resource Control At-
tach Connection Reestablish) anomaly. These unsu-
pervised algorithms are often unable to find out the
anomalies in this scenario comprehensively. There-
fore, based on the existing small number of expert
system annotated samples and massive non-annotated
samples, this paper designs a training method that
combines supervised and unsupervised algorithms,
which can improve the detection performance of un-
supervised algorithms.

3 METHODOLOGY

We first defined 3 anomaly types for the time series
data of 4G-LTE wireless network cells, and then we
proposed a method to train an unsupervised anomaly
diagnosis algorithm assisted by a supervised model.

3.1 Problem Definition

In this paper, all the time series window data is shown
in Figure 3, which can be regarded as the set X , the
single network cell time series window is the set Xn,
the relationship between the two can be expressed as
X = X1,X2, ...,Xn, n represents the number of network
cells included in set X . The multidimensional data
at a single moment in the time series window is St ,
Xi = S1,S2, ...,St , t is the time series length, and the
multidimensional data St = s1

t ,s
2
t , ...,s

k
t , k represents

the indicator dimension.

Figure 3: Time series window data.

The problem to be solved in this paper is
that in the data set X containing many network
cells, an abnormal network cell Xi is detected by
a multidimensional unsupervised algorithm. The
basis for judging the abnormality of the network
cell Xi is that an indicator sequence Sl

1,S
l
2, ...,S

l
n

,l ∈ (1, ...,k) in Xi has an anomalous outlier Sl
abnormal

(anomalous outliers) or an abnormal sub-sequence
Sl

a,S(a+1)l , ...,S(a+ t)l ,a ∈ (1, ...c(n− t)) (anoma-
lous cycles), or the sequence (anomalous collection)
is inconsistent with the indicator sequence changes of
other network cells. Synthesize abnormal outlier, ab-
normal cycle detection and abnormal detection of net-
work cell collections to determine abnormal network
cell.

3.2 Our Method

This paper mainly assists the unsupervised algorithm
to select important features through a supervised algo-
rithm, and improves the performance of the unsuper-
vised anomaly detection algorithm. As shown in Fig-
ure 4, in the 4G-LTE wireless network cell anomaly
detection scenario, first, the features of the original
data are constructed based on the statistical method to
form the original feature data set, and the data is pre-
processed. And then divided into annotated set and
non-annotated set according to whether it has been
labeled. Then use supervised algorithms such as XG-
Boost (Chen and Guestrin, 2016) to train the anno-
tated set and calculate the feature importance, select
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the important feature set by sorting the important fea-
tures (Chen et al., 2019), and filter the non-annotated
data features, and finally use KNN, PCA, Isolation
Forest, One Class SVM and other unsupervised al-
gorithms are trained on non-annotated sets to obtain
classification results.

Figure 4: Our anomaly detection algorithm process.

Because the non-annotated data cannot be veri-
fied, it is only used in the real reasoning stage. As
shown in Figure 5, in order to verify the effective-
ness of the algorithm in this paper, we conduct exper-
iments on the annotated data. First, 4 unsupervised
algorithms (KNN, PCA, Isolation Forest, One Class
SVM) are used to calculate the anomaly labels, and
then vote together with the labels marked by experts.
The rule is that if 3 of the 5 tags are marked as abnor-
mal, the data is counted as an abnormal point, other-
wise it is a normal point. Then construct features on
the voting data through feature engineering, divide the
training data and test data, and then train the XGBoost
model, sort the importance of the features constructed
by the feature engineering according to the XGBoost
algorithm, and intercept the first 100 features as im-
portant feature sets. Then filter the features of the
original annotation data, respectively train 4 unsuper-
vised algorithms, and calculate the evaluation indica-
tor according to the predicted label and ground truth.
Finally, the effectiveness of the algorithm is verified
by comparing the evaluation indicator of four unsu-
pervised algorithms before and after feature selection.

4 DATA PREPROCESSING

In this paper, the original data is first screened, some
data with more missing time series are removed.
Then, some of the original indicators with higher
correlation coefficients are deleted, because indica-

Figure 5: The process of validating the algorithm.

tors with higher correlations have lower discrimina-
tion and will affect the training of the linear model.
Next, construct statistical features and time series fea-
tures of the remaining indicators through feature en-
gineering. Finally, since what we obtained is a kind of
low-quality and unreliable annotation data, in order to
enhance the credibility of the annotation data, we use
the unsupervised anomaly detection algorithm and the
expert mark to perform majority voting to determine
the anomaly label.

4.1 Data Sampling

Data Scenes Screening. The original data contains
a total of 6 scenes of data, including high-speed rail,
colleges, residential buildings, subways, etc. This pa-
per selects the wireless network cell data of the res-
idential scene. Because the data of the residential
scene has a high proportion, and the data of the res-
idential scene has a certain periodicity in time, it is
convenient for experiment and analysis.
Data Cleaning. The data set of each wireless net-
work cell should contain 7×24 hours of time series
data, but in the actual data collection process, there
are some data reports that are repeated or lost. This
paper first removes the data with the same wireless
network cell id and the same timestamp, then, the col-
lection with less than 3% of missing cells is screened,
and finally the number of wireless network cell col-
lections is 4188, and the hourly granularity data is
688747.

4.2 Feature Engineering

Original Indicators. The original indicators are
shown in Table 1, which contains 24 kinds of indi-
cators.
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Table 1: Original indicators.

Meaning Name Meaning Name

PDCP traffic pdcp Same frequency switching
success rate HO SuccOutIntraFreq Rate

RRC connection times rrc Number of failed same
frequency switching HO FailOutIntraFreq

Radio initial connection
success rate Radio InitSuccConn Rate Inter-frequency switching

success rate HO SuccOutInterFreq Rate

S1 signaling connection
establishment failure times S1Sig FailConnEstab Number of failed inter-

frequency switching HO FailOutInterFreq

RRC connection establish-
ment failure times RRC FailConnEstab CQI excellent rate cqi rate

E-RAB establishment
failure times ERAB FailEstab PRB average interference

noise phy rrurxrssimean chan1

Number of abnormal
releases of UE context UECNTX AbnormRel

Packet loss number of
uplink user interface

of air port
PDCP SduLossPktUl

UE context drop rate UECNTX Drop Rate
Packet loss rate of

uplink user interface
of air port

PDCP SduLossPktUl Rate

E-RAB abnormal
release times ERAB AbnormRel

Packet loss number of
downlink user interface

of air port
PDCP SduLossPktDl

E-RAB drop rate ERAB Drop Rate
Packet loss rate of

downlink user interface
of air port

PDCP SduLossPktDl Rate

RRC connection reestablish
rate RRC ConnReestab Rate

Packet discard number
of downlink user interface

of air port
PDCP SduDiscardPktDl

RRC reconstruction
request times RRC AttConnReestab

Packet discard rate of
downlink user interface

of air port
PDCP SduDiscardPktDl Rate

Correlation Analysis. Calculate the Pearson corre-
lation (Lee Rodgers and Nicewander, 1988) between
the original indicators two by two. The results are
shown in Figure 6. The original indicators with corre-
lation coefficient > 0.7 are selected and deleted. The
deleted indicators are shown in Table 2.
Generate Features. Construct features from the 21
original indicators retained through feature engineer-
ing. This paper constructs 3 feature sets, namely sta-
tistical feature set, time feature set, and time series
feature set. The statistical feature set calculates the
maximum, minimum, mean, standard deviation, and
median on the time series for a single indicator of each
wireless network cell; the time feature set includes
the hour corresponding to the time stamp and the day
of the week, whether it is a weekend, whether it is a
holiday; time series feature set include the maximum,
minimum, mean, standard deviation, and median of a
single indicator at the same hour in a week, and the
value of a single indicator in the previous hour. The
generated feature set is shown in Table 3.
Generate Labels. After the data is constructed
through feature engineering, 4 unsupervised algo-
rithms KNN, PCA, Isolation Forest, and One Class
SVM are trained separately, and the prior anomaly ra-

Figure 6: Correlation between original indicators.

tios of the four algorithms are set to 1%, calculate the
abnormal label through unsupervised algorithm, and

IoTBDS 2021 - 6th International Conference on Internet of Things, Big Data and Security

52



Table 2: Delete the original indicator.

Indicator 1 Status Indicator 2 Status Correlation
pdcp Keep rrc Delete 0.83

PDCP SduDiscardPktDl Keep PDCP SduDiscardPktDl Rate Delete 0.74
PDCP SduLossPktUl Keep PDCP SduLossPktUl Rate Delete 0.94

Table 3: Constructing features based on original indicators.

Feature set Meaning Name Input
(dim)

Output
(dim)

Statistical
Features

The maximum value of a single indicator in time series kpi max

21 105
The minimum value of a single indicator in time series kpi min

The mean value of a single indicator in time series kpi mean
The standard deviation of a single indicator in time series kpi std

The median of a single indicator in time series kpi med

Time
Features

Current hour hours

1 4
Current day of the week day of the week
Whether it is weekend is week day
Whether it is a holiday is vacation

Time Series
Features

The maximum value of a single indicator
at the same time within a week kpi samehour max

21 105

The minimum value of a single indicator
at the same time within a week kpi samehour min

The average value of a single indicator
at the same time within a week kpi samehour mean

The standard deviation of a single indicator
at the same time within a week kpi samehour std

The median value of a single indicator
at the same time within a week kpi samehour med

The value of a single indicator at the previous moment
within a week of the wireless network cell kpi last hour 21 21

then vote with the label marked by the expert. If 3 of
the 5 types of tags are marked as abnormal, the data
is counted as an abnormal point, otherwise it is a nor-
mal point. As shown in Table 4, there were 684765
normal samples and 3982 abnormal samples.

Table 4: Data distribution.

Normal Abnormal
684765 3982

5 FEATURE SELECTION

In this paper, the data processed by feature engineer-
ing is trained by supervised algorithms, and the im-
portant indicators are found through supervised al-
gorithm. The purpose of this is to try to improve
the detection performance of unsupervised algorithms
through these important indicators.

5.1 Training Supervision Model

Data Set Division. After data processing, there are a
total of 688747 pieces of training data, and each piece
of data corresponds to 256 features. After the data is

shuffled, the training data and the validation data are
divided according to the ratio of 7:3. The ratio of the
divided data set is shown in Table 5.

Table 5: Data set division.

Data Set Normal Abnormal
Train 418014 2545

Validation 179215 1025

Training Data Augmentation. In the training data in
Table 5, the ratio of the positive sample to the neg-
ative sample is 1:164, and the data skew is serious,
so the generalization ability of the model obtained by
directly using the original data for training will be
poor. Considering that the down-sampling data will
cause too few samples and the model is easily over-
fitted, this paper uses the up-sampling algorithm to
generate more abnormal samples. This paper uses the
SMOTE (Chawla et al., 2002) algorithm to augment
2545 metadata, and finally the ratio of positive and
negative samples approaches 1:1.
Hyper Parameter Optimization. This paper uses
random search to adjust the hyperparameters, and
the evaluation indicator is AUC (Walter, 2005). The
parameter search range and optimal parameters are
shown in Table 6.
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Table 6: XGBoost parameter settings.

Parameter Range Optimal Value
Subsample ratio of columns
when constructing each tree [0.6, 0.7, 0.8, 0.9, 1.0] 0.7

Boosting learning rate [0.1, 0.4, 0.45, 0.5, 0.55, 0.6] 0.55
Maximum tree depth for base learners [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 8

Minimum sum of instance
weight needed in a child [0.001, 0.003, 0.01] 0.001

Number of trees to fit [1, 2, 3, 4, 5, . . . , 18, 19, 20] 16

Evaluation. This paper selects Precision, Recall
(Buckland and Gey, 1994), F1-Score (Sokolova et al.,
2006), and AUC as evaluation indicators. The results
are shown in Table 7. The experimental results show
that the Recall and AUC indicators of the model are
above 95%, which can distinguishes positive and neg-
ative samples well.

Table 7: XGBoost evaluation indicators.

Evaluation Indicator Value(%)
Precision 83.9

Recall 95.8
F1-Score 89.6

AUC 97.9

5.2 Important Features Selection

This paper selects three ways to calculate the im-
portance of features to XGBoost model, which are
Frequency, Average Gain and Average Cover (Hastie
et al., 2009). For each calculation method, the first
48 important features are calculated and the important
feature set fi, i ∈ 1,2,3 is formed. The final important
feature set F (F =

⋃3
i=1 fi) is obtained by combining

the three sets. The capacity of the final feature set F is
100, as shown in Table 8, including 20 basic indicator
fields and 2 information indicator fields.

6 RESULT

After the important feature selection in the previ-
ous chapter, we finally retained 100 important fea-
tures for unsupervised model training. We respec-
tively calculated the prediction results of the four un-
supervised algorithms, KNN, PCA, Isolation Forest,
and One Class SVM under all features (256 columns)
and only important features (100 columns), then com-
pared them with the expert annotation labels to obtain
the Accuracy, Recall, F1-Score, and AUC of the pre-
diction labels. As shown in Table 9, we find that the
evaluation indicators of the four algorithms have been
improved after the important feature selection, espe-
cially the Recall and F1-Score have improved signif-

icantly. Therefore, it can be proved that the detec-
tion performance of the unsupervised algorithm can
be improved by screening important features with a
small sample of supervised algorithms. Finally, we
fused the prediction results of the four algorithms.
The abnormal scores predicted by the four algorithms
were weighted and fused according to the coefficient
of 0.4: 0.3: 0.2: 0.1. The final Recall was 31.1% and
F1-Score was 17.7%. Compared with the Recall of
the four algorithms, the fusion result can cover more
abnormal situations, and the F1-Score is not much
lower, and the false detection of normal samples is
also maintained at a reasonable level.

As shown in Figure 7, this paper shows the de-
tection results of PDCP under the four algorithms. It
can be seen from the figure that the algorithm results
after feature selection are more accurate than the pre-
vious results. It can effectively detect indicator sets
with large fluctuation ranges and less obvious fluctua-
tions (compared to other stable sets), as well as some
subsequences that are quite different from the normal
period.

7 CONCLUSION

Combining Table 9 and Figure 7, we can find that the
four unsupervised algorithms Isolation Forest, One
Class SVM, KNN, and PCA are better than the re-
sults under the original features after the extraction
of important features, and the Recall of each algo-
rithm has Significantly improved, especially Isolation
Forest and PCA, increased by 16.5% and 12.1% re-
spectively, it shows that more abnormal samples have
been detected. Combining normal samples and ab-
normal samples, the F1-Score of the four algorithms
have also been greatly improved. The Isolation For-
est and PCA have improved significantly, with 12.3%
and 9.1% respectively. This shows that when more
abnormal samples are detected, a large number of nor-
mal samples are not mistakenly detected as abnormal
samples, which reduces the occurrence of false detec-
tions while reducing missed detections. Finally, with
the support of computing power, the four algorithms
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Figure 7: Comparison of detection results before and after feature selection. Figure (a) is the detection result obtained by
training an unsupervised model based on 256-dimensional original features, and Figure (b) is an abnormal wireless network
cell detected using 100-dimensional important features. From top to bottom, the detection results of Isolation Forest, One
Class SVM, PCA, and KNN are selected. Each figure selected the PDCP indicators of multiple wireless network cells
for display. The abscissa represents the time series point, and the ordinate represents the indicator value. The red legend
represents the detected abnormal wireless network cell, the blue is the normal, and the yellow represents the abnormal data
but the algorithm does not detect the situation (the algorithm judges the normal wireless network cell).
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Table 8: Important features set.

Indicator Fields Statistical Features

pdcp kpi, last hour, max, mean, med, min, samehour max,
samehour mean, samehour med, samehour min, samehour std, std

Radio InitSuccConn Rate kpi, last hour, min, samehour max, samehour mean
S1Sig FailConnEstab kpi, mean, samehour med, samehour min
RRC FailConnEstab last hour, std

ERAB FailEstab kpi, mean, samehour mean, std
UECNTX AbnormRel kpi, last hour, mean, med, std
UECNTX Drop Rate kpi, med, samehour mean, samehour med
ERAB AbnormRel kpi, last hour, mean, samehour mean
ERAB Drop Rate med

RRC ConnReestab Rate kpi, last hour, mean, med, samehour max, samehour min
RRC AttConnReestab max, mean, samehour mean, samehour med

HO SuccOutIntraFreq Rate kpi, last hour, min, samehour min, samehour std, std
HO FailOutIntraFreq kpi, last hour, samehour med
HO FailOutInterFreq kpi, med, samehour med, samehour min

cqi rate kpi, last hour, samehour max, samehour min, samehour std

phy rrurxrssimean chan1 kpi, last hour, min, samehour max, samehour mean,
samehour med, samehour std, std

PDCP SduLossPktUl Rate kpi, samehour max, samehour mean
PDCP SduLossPktDl kpi, last hour, samehour max, samehour std

PDCP SduLossPktDl Rate kpi, samehour min, samehour std

PDCP SduDiscardPktDl Rate kpi, last hour, max, mean, med, samehour max,
samehour mean, samehour med, samehour min, samehour std, std

hours hours
day of the week day of the week

Table 9: Comparison of evaluation indicators before and
after feature selection.

Algorithm Eval 256-D
(%)

100-D
(%) Inc (%)

Isolation
Forest

Accuracy 98.5 98.7 +0.2
Recall 11.0 27.5 +16.5

F1-Score 8.2 20.5 +12.3
AUC 55.0 63.3 +8.3

OneClass-
SVM

Accuracy 96.7 97.5 +0.8
Recall 23.4 30.3 +6.9

F1-Score 8.2 12.5 +4.3
AUC 60.3 64.1 +3.8

PCA

Accuracy 98.5 98.6 +0.1
Recall 8.4 20.5 +12.1

F1-Score 6.2 15.3 +9.1
AUC 53.7 59.8 +6.1

KNN

Accuracy 98.6 98.7 +0.1
Recall 11.1 16.2 +5.1

F1-Score 8.5 12.6 +4.1
AUC 55.1 57.7 +2.6

Ensemble
algorithms

Accuracy - 98.3 -
Recall - 31.1 -

F1-Score - 17.7 -
AUC - 64.9 -

can be weighted and fused, and the Recall index af-
ter fusion is increased by 3.6%, and more abnormal
wireless network cells can be detected after the fu-
sion. In summary, the effect of constructing a fea-
ture set on the original data and performing anomaly
detection through an unsupervised algorithm is rela-

tively poor, while the detection effect of the same al-
gorithm on the feature set after feature screening has
been greatly improved. The meaning of this paper
mainly includes two aspects. On the one hand, in
the massive unlabeled data, building important fea-
ture sets through small samples of labeled data and
supervised algorithms can assist the training of un-
supervised algorithms, thereby improving the detec-
tion performance of unsupervised algorithms. On the
other hand, through the optimization training of unsu-
pervised algorithm, a large amount of data can be pre-
annotated to provide an auxiliary decision-making
role for the follow-up annotation work of experts.

In the future work, we will try to unify the opin-
ions of different operation and maintenance engineers
as much as possible to obtain higher quality annota-
tion results. Although the evaluation indicators of this
article have been improved, the current inconsisten-
cies in the annotations have caused the final recall to
be unsatisfactory, and this experiment only selected
4G-LTE wireless network cell data in a few regions.
In the future, we will use data from more provinces
for optimization and verification to better improve the
current wireless network base station operation and
maintenance methods.
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