
Towards Formal Security Verification of Over-the-Air Update Protocol:
Requirements, Survey and UpKit Case Study

Christophe Ponsard and Denis Darquennes
CETIC Research Centre, Charleroi, Belgium

Keywords: Cybersecurity, Formal Modelling, Verification, Update Protocol, Internet of Things.

Abstract: The fast growing number of connected devices through the Internet of Things requires the capability of per-
forming secure and efficient over-the-air updates in order to manage the deployment of innovative features
and to correct security issues. Pushing an updated image in a device requires a complex protocol exposed to
security threats which could be exploited to block, spy or even take control of the updated device. Hence, such
update protocols need to be carefully designed and verified. In the scope of this paper, we review some rep-
resentative update protocols and related threats based on MQTT, TUF (Uptane) and the blockchain. We then
show how the adequate management of those threats can be verified using a formal modelling and verification
approach using the Tamarin tooling. Our work is applied to the concrete case of the UpKit protocol which
exhibits an interesting design.

1 INTRODUCTION

The Internet of Things (Iot) is a key driver of the
digitisation of our society and economy by provid-
ing global interconnection between objects and peo-
ple through communication networks. It is quickly
expanding to all domains, including consumers (e.g.
smart homes), transportation (e.g. connected cars,
railways signaling protocol) and manufacturing (In-
dustry 4.0). In 2020, the number of IoT endpoints will
reach 5.8 billion with an annual growth rate of about
20% which is expected to continue over the coming
years (Gartner, 2019).

Achieving an efficient maintenance of such a large
network is critical to ensure the progressive deploy-
ment of applications and to update them with new
features, functional improvements or security patches
(Acosta Padilla et al., 2016). Physical maintenance
is cost-prohibitive and too much time-consuming for
most implementations, so remote updates are used to
ensure the evolution of the firmware code running in-
side the IoT devices. Such updates may even be car-
ried out over-the-air for mobile devices such as in
connected cars.

Of course, the update phase is a critical process
requiring to go through different steps. Key steps of
a typical update process are depicted in Figure 1: the
vendor (V) generates a new firmware which is made
available for distribution by specific repositories (R)

from which it is transferred to the target device (D),
possibly through some intermediary device (e.g. a
smartphone). Optionally, secondary devices (S) un-
der the control of the main device can also be updated
in the same process (e.g. secondary ECUs in a car).
The various communication links cannot be assumed
secured Hence, end-to-end security needs to be en-
forced to avoid any security threats which could be
exploited by an attacker to block the updated device
or to inject some malware to start spying, stealing data
or even to take control over the device.

Figure 1: Global overview of firmware update process.

This paper aims at giving a comprehensive overview
about existing firmware update protocols and how
the securely of such protocols can be assessed. Our
goal is not to perform an exhaustive survey but rather
to show commonalities and differences and also to
highlight useful tools to understand and analyse more
deeply those protocols using formal modelling and
verification. For this purpose, we selected one of the
studied protocol called UpKit and used the Tamarin
tool to illustrate how typical security properties can
be specified and analysed. Based on this, we also dis-
cuss some lessons learned so far and identify some

800
Ponsard, C. and Darquennes, D.
Towards Formal Security Verification of Over-the-Air Update Protocol: Requirements, Survey and UpKit Case Study.
DOI: 10.5220/0010431408000808
In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 800-808
ISBN: 978-989-758-491-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

research directions to deepen our work and the work
of others in this field.

The paper is structured as follows. First, Section 2
reminds about the main security requirements for per-
forming firmware updates and reports about some
known attacks targeting those requirements. Section 3
then reviews how some representative implementa-
tions cope with those requirements and attacks by
providing informal justification. Section 4 shows how
formal modelling and verification can provide deeper
confidence on the correctness of an update protocol
based on the Tamarin tool. Section 5 discusses some
lessons learned so far about designing and verify-
ing such protocols. Finally, Section 6 concludes and
presents our future work.

2 KEY SECURITY
REQUIREMENTS AND
RELATED ATTACKS

Firmware is a very sensitive information to protect.
The key requirements are that:

• Only Genuine Firmware may be Installed on
Managed Devices. This requirement relates to
integrity of the image and authentication of the
source, both can be achieved using digital signa-
tures.

• The Process Must be Transactional: either suc-
ceed with new version of keep old version but not
result in a bricked state of the updated device.

• Devices can Only Upgrade and Generally to the
Last Version. Downgrading can result in lost of
compatibility and also exposes to vulnerabilities
corrected in a more recent version.

• Devices Need to Updated in Some Defined Time
Frame. It means the system must be available and
the freshness of the requests must be guaranteed.

• A Proof of Update May be Required, e.g. to make
sure all managed devices have been correctly up-
dated.

• In Case of Dependencies among Subsystems, All
Subsystems Must be Updated Consistently, hence
the need for a protocol involving primary/sec-
ondary devices. This is a consistency property.

• The Firmware Itself Shall not be Analysable by
Third Parties. This is a confidentiality security
property and requires to secure communications
with encryption techniques.

An attacker targeting a firmware update system might
aim at trying to:

• Read the Firmware, in order to extract some infor-
mation from it. This may be designed secret but
also possibly as a preparation phase for a more
elaborated attack, e.g. to install a malware in the
IoT device.

• Block Updates, preventing the deployment of new
functions and keeping the infrastructure vulnera-
ble.

• Block the System, making the system unavailable
through some form of corrupted updates.

• Take Control of the System, through the instal-
lation of its own code, possibly to issue mali-
cious/harmful commands, to steal information or
to progress in the achievement of a larger attack.

Based on the above requirements and attacker goals,
a number of attacks on update systems are already
known:

• Arbitrary Software Installation. An attacker is
able to install its own image in response to down-
load request without being detected.

• Indefinite Freeze Attacks. The attacker replaces
updates by current version preventing all update.

• Rollback Attacks: the attacker is able to install an
old version that may contain vulnerabilities.

• Fast-forward Attacks. The attacker increases the
version number and makes it difficult to recover a
legitimate versions appearing as rollbacks.

• Distributed Denial of Service Attack. The attacker
is flooding an update server with requests so it will
crash or won’t be able to serve legitimate requests.

• Endless Data Attacks. The attacker responds to
a file download request with an endless stream of
data, possibly causing failures if the case is not
well managed.

• Slow Retrieval Attacks. An attacker responds to
clients with a very slow stream of data preventing
update process to complete.

• Mix-and-Match Attacks. An attacker presents
clients with inconsistent bundles resulting in up-
date failures or other complications.

• Wrong Software Installation. An attacker pro-
vides a client with a trusted file that is just not
the one the client wanted.

• Vulnerability to Key Compromises. An attacker
can take control of private keys, especially in sys-
tem relying on a single key.

Towards Formal Security Verification of Over-the-Air Update Protocol: Requirements, Survey and UpKit Case Study

801

Figure 3: TUF+Uptane Architecture (Asokan et al., 2018).

3 SURVEY OF FIRMWARE
UPDATE PROTOCOLS

This section reviews and compares different update
protocols. The aim is not to be exhaustive but more
representative of existing solutions in order to be able
to discuss them. A more systematic survey is pro-
posed by (Mtetwa et al., 2019).

3.1 MQTT-based Design

Message Queuing Telemetry Transport (MQTT) is
a lightweight, publish-subscribe network protocol to
transport messages between devices. It is an open
OASIS and ISO standard (ISO/IEC 20922) (OASIS,
2019) and is designed to fit IoT needs with devices
with small code footprint and/or limited bandwidth.
Various firmware update implementations rely on this
protocol and some of its features such as the publish/-
subscribe protocol. As part of the FreeRTOS Real-
time operating system for microcontrollers, an over-
the-air (OTA) client library is available to manage the
notification of a newly available update, download the
update, and perform cryptographic verification of the
firmware update using MQTT, with also the ability to
manage secondary devices (AWS, 2020).

Figure 2: MQTT-based design.

An MQTT-based update protocol is also specified in
details in (Lo and Hsu, 2019) and depicted in Fig-
ure 2. The first and second steps rely on MQTT to

mutually authenticate a firmware patch server and a
firmware broker server, to establish the session key
between them and to transfer a new firmware. Its in-
tegrity and source are then verified. The third and
fourth phases also utilize MQTT to mutually authen-
ticate the broker server and the gateway and then pub-
lish the new firmware to the gateway. Again, the
firmware integrity and source are verified. The fi-
nal fifth phase mutually authenticates the gateway and
the IoT device before dispatching the new version of
firmware to the corresponding IoT device where is is
installed.

3.2 TUF/Uptane Automotive Design

The Update Framework (TUF) is a flexible frame-
work to secure new and existing software update sys-
tems. It was designed in 2010 to meet the needs of
a wide variety of software update systems, to eas-
ily integrate with existing software update systems
(Samuel et al., 2010). It is characterised by a high re-
silience against compromised keys and other attacks
that can spread malware in a repository or inside an
device. It is based on the definition of separate roles
which sign specific aspects of the metadata with their
own keys. In addition, TUF requires a threshold num-
ber of signatures, supports for explicit and implicit
revocation of keys, and can mandate the offline man-
agement of vulnerable keys.

Uptane is a variant of TUF which better fits the
needs of consistently updating the several Engine
Control Unit (ECUs) found in cars (Kuppusamy et al.,
2018). It is organised in two levels: more power-
ful primary ECUs are managing simpler secondary
ECUs. The main addition is the introduction of a di-
rector repository to manage the update process and
two levels of verification (full or partial). It is resilient
to the best efforts of nation state attackers and has be-
come the de facto standard in automotive. It is also
considered for adaptation in other domains, e.g. rail-
ways (Galibus, 2019).

ForSE 2021 - 5th International Workshop on FORmal methods for Security Engineering

802

Figure 4: UpKit Update Architecture (Langiu et al., 2019).

Figure 3 shows the sequence of events in Uptane. (1)
the primary ECU reports a vehicle version manifest
(i.e. its signed software configuration) to the remote
director repository, along with the Vehicle Identifica-
tion Number (VIN). (2) The director repository deter-
mines the correct, up-to-date software configuration
for all ECUs of the target vehicle and signs director
metadata describing all software artifacts each ECU
must install. (3-5) The primary ECU retrieves and
verifies all metadata and software artifacts on behalf
of secondary ECUs and (5) distributes them over the
vehicle’s local-area network along with the metadata.
Secondary ECU may only perform a partial verifica-
tion of the director signature if not powerful enough
to perform a full verification.

3.3 Lightweight UpKit Design

UpKit is a portable and lightweight software update
framework for constrained IoT devices (Langiu et al.,
2019). It proposes a refined update architecture in-
dependent of the firmware distribution channels. It
covers all phases of the update process of Figure 1.
It is able to guarantee update freshness thanks to a
double-signature process and can reject invalid soft-
ware at an early stage to avoid an unnecessary reboot
which could impact availability.

The full process is detailed in Figure 4. It starts
with a classical generation phase where (1-2) the im-
age is transferred to the image repository together
with a manifest allowing its verification. In the prop-
agation phase, (3) the new version is advertised for
availability and (4-6) target devices send back a re-
quest token which is used in (7) to generate a request
specific firmware image (possibly differential for re-
ducing footprint and processing needs) together with
the addition of a second signature from the repository
server. (8) The image and manifest can then be trans-
ferred to the device possibly through intermediary de-
vices such as a smartphone. In the IoT device, an up-
date module is running in front of the bootloader and
(9) performs an early check of the double manifest
signatures. Only in case of success (10), the image is
transferred (11-13) to go in the loading phase. In (16-

17), a final verification occurs just before (18) switch-
ing versions otherwise the current image is kept.

3.4 Blockchain-based Design

In contrast with the previous architectures based on
the client-server model, a blockchain architecture is
proposed in (Lee and Lee, 2017). Blockchain is an
open, distributed ledger that can record transactions
between two parties efficiently and in a verifiable and
permanent way (Iansiti and Lakhani, 2017). It is thus
interesting both for its ability to ensure integrity but
also for its distributed nature resulting in a high re-
silience compared to client-server architecture where
the server is a single point of failure that can undergo
Distributed Denials of Service (DDoS) attacks.

Figure 5 shows the blockchain-based firmware
update. The manifest is distributed through the
blockchain network and contains a unique hash value
of the firmware image. Images are stored in a dis-
tributed file system with hash values of firmware im-
ages being stored in the blockchain. To cope with
the limited computational of IoT devices, all verifi-
cations are performed by blockchain nodes. Specific
blockchain nodes are configured to manage the reg-
istration, i.e. to upload the manifest and firmware
image) and the retrieval, i.e. to handle IoT devices
requests for manifest and firmware images.

Figure 5: Blockchain-based firmware update platform (Lee
and Lee, 2017).

The Update process is as follows:

1. author registration of a new firmware to a regis-
tration node.

2. registration check: the author is registered if not
yet and the manifest is checked against the author

Towards Formal Security Verification of Over-the-Air Update Protocol: Requirements, Survey and UpKit Case Study

803

Table 1: Comparison summary.

Design Comm. Image
Integrity

Image
Freshness

Image
Availability

Secondary
Update

Other remarks

MQTT-
based

MQTT Signature Publish/
subscribe

Server Yes for
OpenRTOS

TUF
Uptane

Generic Multiple
signatures

Timeserver Server Yes Multiple roles
Partial Verif.

UpKit Generic Double sig-
nature

Double sig-
nature

Server No Early check

Blockchain Generic Hash in
blockchain

Blockchain Distributed No Blockchain
processing (trust)

public key.
3. manifest stored in the blockchain which cannot be

deleted nor tampered.
4. firmware image stored on distributed file system

with control hashed kept in the blockchain.
5. IoT devices perform periodic check for updates

and blockchain provides last version information
which can trigger an update process.

6. manifest downloaded to the IoT device (assuming
secured channel).

7. image downloaded to the device from the P2P file
system and checked using the author public key.

Key advantages over client-server architecture are
that the repository cannot be tampered, that update
will stay available even if the vendor disappears and
that it can also cope with DDoS attack. It also moves
computation tasks to the blockchain provided a trust
assumption can be made.

3.5 Comparison Summary

Table 1 summarises the main security characteristics
of the presented update protocols. Note that confi-
dentiality is not covered here although firmware anal-
ysis could help gaining knowledge about vulnerabil-
ities, the most important requirements are integrity
and availability. With respect to integrity MQTT pro-
vides simple signatures while Uptane/UpKit supports
more elaborated signatures schemes. Blockchain is
also very good to ensure image integrity, especially
avoiding the tampering of the repository itself. A
weak point of Uptane is the time server based de-
sign which is addressed by UpKit using a delivery
protocol on an instance basis. The blockchain de-
sign can provide trusted timestamping services at the
required precision although the precise timekeeping
on distributed system is known to be a harsh problem
(Hong, 2020). Image availability is also more reliable
on a blockchain design given the distributed nature
compared to the traditional server-based design of the
other solutions.

The rest of this paper will focus on UpKit protocol
as simple and lightweight protocol to illustrate how
to carry out a verification activity against some of the
identified security requirements.

4 FORMAL MODEL AND
PARTIAL VERIFICATION OF
THE UpKit PROTOCOL

A striking fact is that some industrial protocols like
TUF and Uptane claim to be able to cope with at-
tacks at nation state level but the available papers
only provide informal arguments about how the pro-
tocol design is achieving such resistance (Kuppusamy
et al., 2018). When deploying security critical proto-
cols to manage large network of devices, it is interest-
ing to produce more rigorous analysis and evidence
that the protocol is able to ensure security require-
ments and resists known attack patterns described in
Section 2. Some generic formal tools have been ap-
plied to formal security verification, e.g. Alloy (Gr-
isham et al.,). However, analysing security requires
to reason about knowledge, to model specific crypto-
graphic primitives (e.g. hashing, signing, PKI infras-
tructure) and to capture the attacker behaviours (e.g.
Dolev-Yao adversary model (Dolev and Yao, 1983)).
In the scope of this work, we selected the Tamarin
tool (Basin et al., 2017) which has proven its ability to
analyse complex protocol and to manage the tracking
of design changes. It was also already used to model
IoT protocols (Kim et al., 2017). Unbounded verifica-
tion tools such as ProVerif (Blanchet et al., 2005) are
also reported to be efficient, but without guarantee of
termination in the case of complex protocol.

This section first introduces the general infrastruc-
ture and the attacker capabilities before performing
partial verification on the generation and propagation
phases of the UpKit protocol presented in Section 3.3.
Various Tamarin constructs are also introduced.

ForSE 2021 - 5th International Workshop on FORmal methods for Security Engineering

804

4.1 Infrastructure Modelling

Listing 1 details how distribution actors can declare
a pair of public/private keys and a device can be at-
tributed an ID. Generic Tamarin rules are used for this
and take the form [precondition] --[action
]-> [postcondition]. A fresh fact is used to gen-
erate new values, e.g. a fresh key Fr(˜ltkA), which
can be associated with specific public variables ($A)
using a specific fact to record that knowledge, e.g.
!Ltk($A,˜ltka). A public Out channel is available
to send information and make it known by everybody,
including attackers, e.g. Out(pk(˜ltkA)) is dis-
tributing the public key. In addition, the Reveal ltk
rule shows how to model the fact and attacker might
compromise a private key.

Listing 1: Modelling: PKI and devices identification.

/ / P u b l i c key i n f r a s t r u c t u r e
r u l e R e g i s t e r p k :
[Fr (∼l t kA)] / / f r e s h p r i v a t e key
−−>
[! Ltk ($A , ∼l t kA)
/ / p r i v a t e key known by owner
, ! Pk ($A , pk (∼l t kA))
/ / c o r r e s p o n d i n g p u b l i c key
, Out (pk (∼l t kA))] / / p u b l i c key i s p u b l i c

r u l e R e g i s t e r d e v i c e :
[Fr (∼i d)] / / g e n e r a t e d e v i c e ID
−−>
[! Id ($D ,∼i d) / / ID known by d e v i c e
, Out (∼i d)] / / ID p u b l i c

/ / Compromising an a g e n t ’ s p r i v a t e key
r u l e R e v e a l l t k :
[! Ltk (A, l t kA)] / / key i n q u e s t i o n
−−[Revea l (A)]−>
/ / r e v e a l a c t i o n (f o r use i n lemma)
[Out (l t kA)] / / p r i v a t e key d i v u l g a t e d

4.2 Generation Phase

Listing 2 shows the generation phase which is based
on two rules respectively modelling the emission
by the vendor V 1 send img and reception by the
repository Repo 1 recv img of an image together
with its manifest (simply the signature here). Spe-
cific predicates capture the send and receive ac-
tions as well as the signature verification. Signa-
ture primitives are directly available through the sign-
ing builtin package. Two proof lemmas are used:
the repo update possible simply checks that the
model can produce traces for transferring an image
while the vendor authentication lemma captures
the security requirement that the repository can only

record a correctly verified image unless the private
key has been compromised (cf. attacker capabilities).
In order to perform the verification, traces are re-
stricted only to those verifying the signature. Tamarin
autoprovers manage to prove both lemmas almost in-
stantly.

Listing 2: Verification of the generation phase.

/ / Vendor V s e n d s f i r m w a r e t o repo s e r v e r
r u l e V 1 send img :
l e t img = <V, ∼fw>
i n
[Fr (∼fw)
, ! Ltk (V, l t kV)
, ! Pk (R , pkR)]
−−[SendToRepo (V, img)]−>
[Out()]

/ / Update repo s e r v e r r e c e i v i n g f i r m w a r e
r u l e R e p o 1 r e c v i m g :
l e t img=<V, fw> i n
[! Pk (V, pkV)
, ! Ltk (R , l t k R)
, In ()
, Fr (∼newVers ion)]
−−[RecvInRepo (R , img)
, Eq (v e r i f y (s i g , img , pkV) , t r u e)
, A u t h e n t i c (V, img) , Hones t (R) , Hones t (V)
, RepoNewImage (R , img)]−>
[! Repo (R , fw , V, s i g) ,

Out (∼newVers ion)]

r e s t r i c t i o n E q u a l i t y :
” A l l x y # i . Eq (x , y) @i ==> x = y ”

lemma r e p o u p d a t e p o s s i b l e :
/ / c h e c k i n g model n o t v o i d
e x i s t s − t r a c e
”Ex S R img # i # j . SendToRepo (S , img) @i

& RecvInRepo (R , img) @j”

lemma v e n d o r a u t h e n t i c a t i o n : / / s e c u r i t y p r o p e r t y
” A l l b m # i . A u t h e n t i c (b ,m) @i
==> (Ex # j . SendToRepo (b ,m) @j & j<i)
| (Ex B # r . Revea l (B)@r & Hones t (B) @i & r < i) ”
end

4.3 Propagation Phase

The propagation phase is described in Listing 3. Af-
ter advertising a new image is available, the mani-
fest is enriched with a second signature correspond-
ing to match a specific request from the device to en-
force freshness. The model is quite similar to the pre-
vious generation phase except the exchange is initi-
ated by the repository. Again two lemmas are used:
device check possible checks about the feasibil-
ity of the exchange to detect flaws in the model and
double signature ok checks the second signature,

Towards Formal Security Verification of Over-the-Air Update Protocol: Requirements, Survey and UpKit Case Study

805

again provided the attacker has not compromised the
repository private key. Note the model is simplified as
the intermediary smartphone is not modelled and the
first signature is not checked given the image was not
yet requested. Again Tamarin autoprovers manage to
check the solution almost instantaneously.

Listing 3: Verification of the generation phase.

r u l e D 3 Token :
[In (newVers ion) ,

! Id (D, i d) ,
Fr (∼r e q)]

−−[Dev i c e Reques t (D,∼r e q)]−>
[! Token (D,∼r e q)
, Out (∼r e q)]

r u l e R 7 Update :
[In (r e q) ,

! Repo (R , fw , V, s i g) ,
! Ltk (R , l t k R)]

−−>
[Out(< s i g , s i g n (< s i g , req >, l t k R)>)]

r u l e D 9 m a n i f e s t :
[In (< s i g , s ig2 >) ,

! Token (D, t o k) ,
! Pk (R , pkR)]

−−[Eq (v e r i f y (s ig2 ,< s i g , tok >,pkR) , t r u e) ,
ManifestOK (D, s i g)]−>

[! Checked (D, s i g)]

r e s t r i c t i o n E q u a l i t y :
” A l l x y # i . Eq (x , y) @i ==> x = y ”

lemma d e v i c e c h e c k p o s s i b l e :
e x i s t s − t r a c e
”Ex R D s i g # i # j . RepoNewImage (R , s i g) @i

& ManifestOK (D, s i g) @j”

lemma d o u b l e s i g n a t u r e o k :
” A l l D s i g # i . ManifestOK (D, s i g) @i
==> (Ex R # j . RepoNewImage (R , s i g) @j & (j<i))
| (Ex B # r . Revea l (B)@r & (r<i)) ”

5 DISCUSSION OVER RELATED
WORK

The comparison of our work with a systematic survey
(Mtetwa et al., 2019) reveals that we cover two key
categories of designs: server-based and block-chained
based. The survey identified 5 blockchain solutions
while we identified only 2 of them but we could cap-
ture all the important features of such solution. Over
the air update to vehicles is largely present in the sur-
vey and in our work, although the authors seems to
have missed TUF, Uptane and UpKit. On the techno-
logical side, we also detailed a MQTT-based solution

which is is more at implementation level but used in
frameworks such as OpenRTOS from Amazon.

Modelling using a formal language and tool as al-
ways a noticeable learning curve. In our case, the
Tamarin tooling is quite easy to install and benefits
from a nice web interface. Many reference docu-
ments are available: manual, tutorial and an impor-
tant model repository together with explanatory pa-
pers (Tamarin Team, 2016). However, getting into the
notations with the correct state of mind requires some
effort. Developing a model is a progressive endeavor
relying of different progressive milestones where in-
termediary checks can be introduced. In our case, the
division into different logical phases was a natural de-
composition of the problem. During the work, we
also identified a number of modelling patterns, e.g.
to deal keys, identifiers, signatures, specific agents
which can be quite systematically reused to accelerate
the modelling and verification of the remaining steps.

So far, the process mainly helped to clarify the
specification and to precisely define what is required
as information in the various requests. The model is
still partial but can easily be extended to cover the
full update cycle. The knowledge gained can also be
applied to more complex processes than UpKit, for
example Uptane to cope with the split of responsibili-
ties across different roles with specific keys and more
complex configuration including secondary updates.
Modelling the timeserver seems also possible using
the time ordering operators. Some attacks at techni-
cal level seem however beyond the reach of formal
validation tools such as the direct control of the com-
munication stream unless this is explicitly prohibited
through the use of secured channels.

Tamarin has been widely used for verifying secu-
rity protocols. Related to IoT, it has been applied to
the formal analysis of the Sigfox, LoRa and MQTT
protocols (Kim et al., 2017). Those authors show that
the majority of IoT protocols are vulnerable to cryp-
tographic DoS attacks and propose a protection based
on a server puzzle. In this work, we did not model
such attacks at this point but identified blockchain de-
sign providing a more intrinsic protection to such at-
tacks due to the absence of single pointer of failure at
server repositories. However, we did not investigate
possible performance or scalability issues related to
this technology.

Another formal verification approach is to con-
sider statistical model checking where attack success
has some probability. A simulation-based approach is
used to reason about precise properties specified in a
stochastic temporal logic (Legay et al., 2019). How-
ever, these techniques are currently used to perform a
more abstract form of security analysis based on at-

ForSE 2021 - 5th International Workshop on FORmal methods for Security Engineering

806

tack and defense trees. This results in quantitative
analysis techniques using tools such as Uppaal (Ku-
mar and Stoelinga, 2017) or PRISM (Aslanyan et al.,
2016). In our work, we identified threats and coun-
termeasures but did not organise them in a systematic
attack-defense tree. This could be another comple-
mentary approach to analyse the system security.

6 CONCLUSION AND NEXT
STEPS

In this work, we reviewed a representative sample of
firmware update protocols and identified how they can
cope with security requirements and related attacks.
We highlighted the need of a more formal verifica-
tion approach. We proposed a partial modelling of
the UpKit protocol and could successfully verify key
integrity and freshness properties. Although partial
and anchored in a specific protocol, our results so far
show several commonalities and the modelling and
verification approach can be generalised to most pro-
tocols and security properties. The sketched approach
can also be used to verify security properties on the
MQTT or Uptane protocols. The distributed nature of
the blockchain design requires specific techniques to
get security assurance. They can however be captured
by assumptions to carry out proofs on the interaction
between the device and the blockchain.

In the next steps of our research, we plan to cover
the lasts steps of the UpKit protocol and then to model
the more complex Uptane protocol, including mul-
tiple roles with related keys, secondary ECUs and
the use of a timeserver. We also plan to investigate
more deeply the blockchain-based designs and to bet-
ter structure security requirements, attacks and design
countermeasures using an attack-defense tree.

REFERENCES

Acosta Padilla, F. J. et al. (2016). The Future of IoT Soft-
ware Must be Updated. In IAB Workshop on Internet
of Things Software Update (IoTSU). Internet Archi-
tecture Board (IAB).

Aslanyan, Z., Nielson, F., and Parker, D. (2016). Quanti-
tative verification and synthesis of attack-defence sce-
narios. In Proc. 29th IEEE Computer Security Foun-
dations Symposium (CSF’16), pages 105–119. IEEE.

Asokan, N. et al. (2018). Assured: Architecture for secure
software update of realistic embedded devices. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11).

AWS (2020). FreeRTOS User Guide. https://docs.aws.
amazon.com/freertos/latest/userguide.

Basin, D., Cremers, C., Dreier, J., and Sasse, R. (2017).
Symbolically Analyzing Security Protocols Using
Tamarin. ACM SIGLOG News, 4(4):19–30.

Blanchet, B., Abadi, M., and Fournet, C. (2005). Auto-
mated verification of selected equivalences for secu-
rity protocols. In 20th Annual IEEE Symposium on
Logic in Computer Science (LICS’ 05), pages 331–
340.

Dolev, D. and Yao, A. (1983). On the security of public key
protocols. IEEE Transactions on Information Theory,
29(2):198–208.

Galibus, T. (2019). Securing software updates for trains.
In Critical Information Infrastructures Security - 14th
International Conference, CRITIS 2019, Linköping,
Sweden, Sept. 23-25,, volume 11777, pages 137–148.
Springer.

Gartner (2019). IoT endpoints 2020: the industries and
use cases driving growth. https://www.i-scoop.eu/
internet-of-things-guide/iot-endpoints-2020.

Grisham, P. S., Chen, C. L., Khurshid, S., and Perry, D. E.
Validation of a security model with the alloy analyzer.

Hong, D. (2020). On decentralized clocks: How time be-
came the biggest security threat on blockchain sys-
tems. https://unifiedh.medium.com.

Iansiti, M. and Lakhani, K. R. (2017). The Truth About
Blockchain. Harvard Business Review https://hbr.org/
2017/01/the-truth-about-blockchain.

Kim, J. Y., Holz, R., Hu, W., and Jha, S. (2017). Auto-
mated analysis of secure internet of things protocols.
In Proc. of the 33rd Annual Computer Security Appli-
cations Conference, ACSAC 2017, page 238–249.

Kumar, R. and Stoelinga, M. (2017). Quantitative security
and safety analysis with attack-fault trees. In 2017
IEEE 18th International Symposium on High Assur-
ance Systems Engineering (HASE).

Kuppusamy, T. K., DeLong, L. A., and Cappos, J. (2018).
Uptane: Security and customizability of software up-
dates for vehicles. IEEE Vehicular Technology Maga-
zine, 13(1):66–73.

Langiu, A., Boano, C. A., Schuß, M., and Römer, K.
(2019). Upkit: An open-source, portable, and
lightweight update framework for constrained iot de-
vices. In IEEE 39th Int. Conference on Distributed
Computing Systems (ICDCS), pages 2101–2112.

Lee, B. and Lee, J.-H. (2017). Blockchain-based se-
cure firmware update for embedded devices in an
internet of things environment. J. Supercomput.,
73(3):1152–1167.

Legay, A. et al. (2019). Statistical Model Checking, pages
478–504. Springer International Publishing, Cham.

Lo, N.-W. and Hsu, S.-H. (2019). A secure iot firmware
update framework based on mqtt protocol. In Proc.
of 40th Anniversary Int. Conf. on Information Systems
Architecture and Technology – ISAT 2019, pages 187–
198.

Mtetwa, N. S., Tarwireyi, P., Abu-Mahfouz, A. M., and Adi-
gun, M. O. (2019). Secure firmware updates in the
internet of things: A survey. In International Multi-
disciplinary Information Technology and Engineering
Conference (IMITEC), pages 1–7.

Towards Formal Security Verification of Over-the-Air Update Protocol: Requirements, Survey and UpKit Case Study

807

OASIS (2019). MQTT Version 5.0. https://docs.oasis-open.
org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

Samuel, J. et al. (2010). Survivable key compromise in soft-
ware update systems. In 17th ACM Conf. on Computer
and Communications Security, page 61–72.

Tamarin Team (2016). Tamarin-Prover Manual - Secu-
rity Protocol Analysis in the Symbolic Model. https:
//tamarin-prover.github.io/manual.

ForSE 2021 - 5th International Workshop on FORmal methods for Security Engineering

808

