
Problem of Inconsistency in Textual Requirements Specification

David Šenkýř a and Petr Kroha b

Faculty of Information Technology, Czech Technical University in Prague, Czech Republic

Keywords: Textual Requirements Specification, Text Processing, Inconsistency, Patterns, Domain Model.

Abstract: In this contribution, we investigate the inconsistency problem in the textual description of functional require-
ments specifications. In the past, the inconsistency problem was investigated using analysis of the UML
models. We argue that some sources of inconsistency can be revealed in the very first steps of textual re-
quirements analysis using linguistic patterns that we developed. We cluster the sentences according to their
semantic similarity given by their lexical content and syntactic structure. Our contribution focus on revealing
linguistic contradictions (e.g., a combination of passive voice, antonyms, negated synonyms, etc.) of facts
and rules described in different parts of requirements together with contradictions of the internally generated
model.

1 INTRODUCTION

Requirements specifications, their elicitation and
analysis belong to the very first phase of the soft-
ware development, and it is well-known that mis-
takes done in this phase are the most expensive ones.
Using inconsistent information in requirements leads
to the wrong model. After implementation and test-
ing, the resulting program has to be later laboriously
enhanced.

Textual requirements do not always contain con-
sistent information about the system to be con-
structed. The reason is that they might be written by
independent groups of stakeholders who have differ-
ent interests, goals, backgrounds, and/or (incomplete)
knowledge of the domain.

The conflicts may erase in the case when more
than one requirement, i.e., a set of requirements
SR, refers to the same object of the domain. It
will be denoted as an overlap between requirements
(Spanoudakis and Finkelstein, 1998). In this paper,
we identify two kinds of the core sources of the in-
consistency of textual requirements. First, semantic
overlaps of requirements sentences, e.g., at least two
contradicting assertions exist that concern the same
subject and the corresponding verb with the object.
Second, the incompleteness of requirements (we dis-
cussed it in our paper (Šenkýř and Kroha, 2019b)).
Our goal is to reveal at least some of the inconsisten-

a https://orcid.org/0000-0002-7522-3722
b https://orcid.org/0000-0002-1658-3736

cies, and to generate questions or warning messages
that have to be answered by domain experts and an-
alysts. The answers have to be used to edit the text
of requirements. The text of the requirements is the
only source of information. We divided the text anal-
ysis into two phases. The first phase builds a UML
model from sentences using the grammatical inspec-
tion (Šenkýř and Kroha, 2018) – see Example 1 in
Section 3.2. The second phase provides an analy-
sis of sentences using our linguistic patterns with the
goal to find contradictions in them. Part of it is the
using information already stored in the UML model.
We use the part-of-speech and dependency analysis
of sentences to construct the corresponding oriented
graphs, and we analyze sentences that describe the
same event. We present our patterns that may indi-
cate candidates for inconsistency.

Our paper is structured as follows. In Section 2,
we discuss related work. In Section 3, we describe
sources of inconsistency that we are trying to iden-
tify. Our approach is presented in Section 4. Our im-
plementation is described in Section 5. Used data,
experiments, and results are discussed in Section 6.
In Section 7, we summarize the achieved results and
conclude.

2 RELATED WORK

The problem of inconsistency of requirements spec-
ification has been investigated since the late '80s

Šenkýř, D. and Kroha, P.
Problem of Inconsistency in Textual Requirements Specification.
DOI: 10.5220/0010421602130220
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 213-220
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

213



(Hunter and Nuseibeh, 1998). As basic papers and
surveys, we can denote (Spanoudakis and Zisman,
2001) and (Kamalrudin and Sidek, 2015).

Some works are based on semi-formal specifica-
tions in the form of UML diagrams (Torre et al., 2018)
and use methods of formal specifications (Schamai
et al., 2016) to check the consistency. However, the
adoption of formal methods is still not widely ac-
cepted by industries (Fanmuy et al., 2012). Other
works use ontologies (Kroha et al., 2009) or OCL
(da Silva and Fernandes, 2018).

Our approach uses informal specifications written
in natural language. There is some similarity to the
approach described in (Gargiulo et al., 2015). The
difference is that in (Gargiulo et al., 2015), the au-
thors use only RDF triplets representation of the tex-
tual requirements specifications, whereas we use the
complete text. The knowledge represented in RDF
consists of triplets 〈subject, predicate, object〉. How-
ever, it reduces the semantic meaning of most sen-
tences drastically because of the omitted information
carried by omitted words in sentences. We use struc-
ture similar to RDF triplets only to cluster sentences.

Computational linguistics is engaged in a problem
of text entailment (in query answering). The edit dis-
tance of two sentences (text and hypothesis) is used
as a measure. A similar approach to the contradiction
of two sentences is used in (de Marneffe et al., 2008)
– see Section 3.1.1. The difference to our approach is
that linguists do not use the information stored in the
UML model (Šimko et al., 2013) – see Example 1 in
Section 3.2 to check the completeness that can be a
source of inconsistency.

3 SOURCES OF INCONSISTENCY

In our investigation, we distinguish the following
sources of inconsistency: inconsistency caused by se-
mantic overlaps of sentences (Section 3.1), inconsis-
tency caused by incompleteness (Section 3.2), and in-
consistency caused by external information. Because
of the limited scope of this paper, we do not discuss
the last case here. However, we analyze it in our paper
about default consistency rules (Šenkýř and Kroha,
2021).

3.1 Semantic Overlaps as Sources of
Inconsistency

The idea of inconsistency starts from the intuitive con-
cept of contradiction, which means that a statement
and its negation are found to hold simultaneously
(Gargiulo et al., 2015). A semantic overlap between

two sentences occurs if these two sentences express
their statements about the same situation. The prob-
lem is how to reveal the contradiction of statements
because they are often expressed in some “camou-
flaged” forms using synonyms, antonyms, and others
“linguistic tricks” (Section 3.1.1).

3.1.1 The Linguistic Sources of the
Inconsistency

In (de Marneffe et al., 2008), there is a list of con-
tradiction types from a linguistic point of view. We
adapted it for purposes of our patterns as follows:

• using antonyms,

• using a negation,

• using a combination of synonyms together with
changed roles of subject and object, passive voice,
and negation, e.g., “the user can edit a document”
contra “the user cannot correct a document in this
mode” (here, we suppose that the verbs “to edit”
and “to correct” have the same meaning) contra
“a document cannot be corrected by the user”,

• using numerically different data, e.g., “you will
start the function by double click” contra “you
will start the function by one click”,

• using factive contradiction in the sense of
attributes of the subject,

• using lexical contradiction, e.g., “to obtain results
stay joined and wait” contra “to obtain results
restart the application” contra “to obtain results
restart the system”,

• using world knowledge to indicate the contradic-
tion, e.g., “there is public access to your private
data”.

Additionally, some words may change, influence, or
limit the sense of the sentence, e.g., but, except, how-
ever, instead of, when, so that, that.

3.2 Inconsistency between the Text and
the UML Model

Using the grammatical inspection in the first phase
of our process, we construct a skeleton of the UML
model, e.g., classes, attributes and their values, meth-
ods. When we later compare the sentences, in which
the attribute and its values are mentioned, we test
whether all attribute values are mentioned in formu-
lations defining decisions about the object’s behav-
ior. If some of them are not mentioned, then this
incompleteness can cause inconsistency, because it
may happen that the behavior is not defined for the
missing attribute values. Further, we test whether the

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

214



chains of applied methods are the same in sentences
of the similar semantics – see Example 2. In this way,
we can find conflicts among descriptions of instances,
classes, and relations of the static model, and also
among descriptions of sequence diagram and state di-
agram of the dynamic model. We search for sentences
that describe the same event and compare them. More
details are given in Section 4.1.

In general, we suppose that the textual description
of requirements specification contains:

• The sentence S1, in which an attribute value of an
object O is expected to be V1 to start a specific
action A in a specific context Cont.

• The sentence S2, in which an attribute value of
an object O is expected to be V2 to start the same
specific action A in a specific context Cont.

Example 1: Attributes of A Button.

Maybe, the following sentences are a part of a require-
ments specification:

1. To exit the application, the user has to press the
red button.

2. To exit the application, the user has to press the
square-shaped button.

3. To exit the application, the user has to press the
EXIT-button.
Analyzing these requirements, we can derive that
the class Button has the Button-attribute color, the
Button-attribute shape, and the Button-attribute label.
This means, these sentences as part of the require-
ments are confusing, but they are not inconsistent be-
cause a red, square-shaped button with the label EXIT
may exist, i.e., it is possible to construct an object of
class Button, whose attributes color, shape, and label
have the described values.

Our task is to generate a message saying that there
is a suspicion of inconsistency. In any case, this is a
not preferable style of writing textual requirements.

(End of Example)

Another case, we found, concerns the sequence of ac-
tions that is stored in a sequence diagram. If the chain
of actions differs in different sentences that should
have the same effect, we generate a warning message.

Example 2: A Missing Segment in A Chain of Ac-
tions.

Sentence 1: To edit a file, the user has to open the
file, make changes, save the file (or save the file as),
and close the file.

Sentence 2: To edit a file, the user has to open the
file, make changes, and close the file.

(End of Example)

4 PATTERNS AS OUR APPROACH

Our motivation and goal are to identify suspicious tex-
tual formulations that could be the source of inconsis-
tency.

Figure 1: The idea of inconsistency patterns.

The idea of our approach is shown in Fig. 1. The ba-
sic structure is given by subject–verb–object. How-
ever, they can be expressed by related synonyms,
antonyms, direct negation, and numerical data. So,
the spectrum of possible descriptions of one statement
is very rich. Our patterns should reveal it. Practical
examples of data used for experiments are given in
Section 6.1.

4.1 Model Construction and
Semantically Similar Sentences

For our methods, the sentences containing the stan-
dard couple of subject and verb or the to-infinitive
clauses are interesting. We benefit from mapping
such sentences to acts. One reason is that one sen-
tence can represent multiple acts. Our act is a tuple
containing: the original subject of the sentence, the
original verb of the sentence, the original object of the
sentence, an indicator of whether the sentence con-
tains negation, an auxiliary verb if present, an adver-
bial modifier (e.g., automatically) if present, a predi-
cate (e.g., only one, each ) if present, a condition act
if present, what is the point of interest if recognized,
who is responsible for the action if recognized.

To reduce the complexity of the analysis, we de-
fine semantically similar acts as follows:

Problem of Inconsistency in Textual Requirements Specification

215



Students may borrow books but not proceedings.
NN* AUX VB NN* CC PART NN*

ccaux dobj neg
nsubj conj

Figure 2: Matched Pattern #1 (Pure Negation).

• C1: acts having the same subject, verb, and object,

• C2: acts having the same subject and verb (passive
mode),

• C3: acts having the same subject (passive mode),

• C4: acts having the same subject and object,

• C5: acts having the same what-part and verb.

To understand the graphical representation of the pre-
sented sentence patterns, we explain it using the pat-
tern in Fig. 3. We use part-of-speech tags provided
by spaCy1 (based on Universal Dependencies v2 POS
tag set) where VB is a verb, NN is a noun, etc. Of-
ten, subjects and objects are represented by a compo-
sition of several nouns. Therefore, we introduce the
shortened notation NN*, which means that at least one
noun is required, but there should also be two or more
nouns connected via compound relation. In the first
phase, we need to consider the following steps:

• negation recognition – We check the pure nega-
tion of verbs (can–can not–can’t) or compound
nouns via Pattern in Fig. 3. In Fig. 2, there is
this pattern matched as a part of matching stan-
dard subject–verb–object(s) pattern. Besides the
not part, there are other words influencing the
negation of meaning. Let’s show the pattern of
the word except in Fig. 4 as an example.

not *
PART NN*/VB

neg

Figure 3: Pattern #1 (Pure Negation).

except *
CC NN*

pobj

Figure 4: Pattern #2 (Except).

• coreference recognition – Clustering of sentences
based on subject or object is challenging because
of the coreferences of pronouns. This means that
we are not simply looking for all sentences that
have the same subject or object.

• predicates recognition – We identify parts of sen-
tences that describe predicates – numeric ones
(see Fig. 5) or determiner ones (see Fig. 6). The
determiner should be represented by words like
each, every, all, any, etc. We use the simple first-
order logic definition saying that a predicate is a

1https://spacy.io/api/annotation#pos-tagging

statement about the properties of an object that
may be true or false depending on the values of
its variables. Predicates can affect actors of rela-
tions as with relation “borrow” in example sen-
tence in Fig. 7 or aspects and limits of classes via
auxiliary verb “be” (see Fig. 8). Mapped pred-
icates also may indicate cardinalities of relations
between actors or objects. We find predicates con-
cerning the same objects and the same attributes.

only one system administrator
ADV NUM NN*

advmod nummod

Figure 5: Pattern #3 (Numeric Predicate).

each system administrator
DT NN*

det

Figure 6: Pattern #4 (Determiner Predicate).

Each member can borrow magazines.
DT NN AUX VB NN

auxdet dobj
nsubj

Figure 7: Relation actor predicate.

penalty is same for all users
NN* AUX ADJ ADP DT NN*

attr prep detrelcl
pobj

Figure 8: Pattern #5 (Predicate and Auxiliary Verb).

• condition recognition – Describing actions often
includes a conditional part. The conditional parts
of two sentences may have the same subject–
verb–object. If one sentence considers the posi-
tive case and another sentence considers the nega-
tive case, then there would be a conflict generating
a warning because of the negation of the action.
We use these conditional parts as separate condi-
tional acts (affecting standard acts) in the conflict
resolution of the standard acts.

4.2 Example: Library Information
System

We use and extend the simple example of Library
information system requirements from (Spanoudakis
and Finkelstein, 1998).

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

216



Example 3: Functional Requirements.

FR 1. Users of the Library information system are
students and staff members.

FR 2. Users borrow books.

FR 3. Holding an item is limited in time.

FR 4. Holding an item beyond the time limit carries
a penalty, which is the same for all users.

FR 5. Students may borrow books but not procee-
dings.

FR 6. Staff members can borrow both books and pro-
ceedings.

FR 7. Students may borrow an item for up to 10 days.
Holding an item beyond this period carries a
penalty of 50 p per day.

FR 8. Staff members can borrow an item for up to
30 days. Holding an item beyond this period
carries a penalty of 10 p per day.

FR 9. Each user except an administrator needs to
change his/her password every three months.

(End of Example)

The purpose of this example is to show the contradic-
tion caused by teaching students. We use it to illus-
trate our approach. When using an algorithm to an-
alyze these textual requirements instead of a human
being analyst (like in (Spanoudakis and Finkelstein,
1998)), we can see the following problems:

1. In FR 1, there are two missing rules. In our
paper (Šenkýř and Kroha, 2021), we call them default
consistency rules. The first default consistency rule is
“All information systems need an administrator, who
is a unique, specific user”. The second default consis-
tency rule is “All libraries need library staff members,
who are specific users of the library information sys-
tems, too”.

So, the set of users is incomplete, and it has to be
completed. In this case, we model the classes and the
Is-a relation between user (as a superclass) and sub-
classes student and university-staff-member. Then,
we generate a question asking about the completeness
of this relation, i.e., whether the superclass user has
only these two mentioned subclasses. The right an-
swer contains not only the missing administrator and
the missing library staff member but also the missing
teaching students. After the subclasses administrator,
library staff member, and teaching student will be in-
cluded into the requirements, our system TEMOS will

complain of incompleteness because the loan time pe-
riods and penalties are not defined for these three sub-
classes.

2. In FR 2, the formulation “Users borrow books”
is misleading because users not only borrow books.
They hold them and have to return them, too. With-
out this information, the time limit mentioned in FR
4 and the period mentioned in FR 7 and FR 8 makes
no sense. Using linguistic analysis, we find that there
are only the verbs “borrow” and “change (the pass-
word)”. Here, we can see the incompleteness as the
source of the inconsistency again.

3. In FR 3, this formulation is understandable to
a human being but not to an algorithm. “Holding an
item” means “holding a borrowed item”. Our sys-
tem generates a message: “The requirements No. 3 is
not understandable”. The domain expert can answer:
“Users borrow books, hold them, and return them.”

4. In FR 5, there is matched Pattern #1 (Pure
Negation) as shown in Fig. 2.

5. In FR 7 and FR 8, we can detect an inconsis-
tency to FR 4. Either all library users pay the same
penalty or different penalty according to their status.

6. In FR 9, there is Pattern #4 (Determiner Pred-
icate) matched twice (“each user” and “every three
months” ) and Pattern #2 (Except) is matched once.

5 IMPLEMENTATION

Our tool TEMOS is a single-page web application.
The current version of the back-end is written in
Python, and it is powered by spaCy2 NLP framework
in version 2.2. We use texts written in English, and
for this purpose, we use the pre-trained model called
en core web lg (available together with spaCy instal-
lation).

The workflow of our implemented tool extends the
original one presented in (Šenkýř and Kroha, 2018).
First, we use the base text classification provided by
spaCy. It includes tokenization, sentence segmenta-
tion, part-of-speech tagging, lemmatization, depen-
dency recognition, and co-reference recognition.

The next step is to check the text against inaccura-
cies. This check is optional but recommended before
our tool starts to generate the output model. So far,
we tackle the ambiguity and incompleteness issues.
Based on the methods presented in this paper, we im-
plemented the module denoted to acts clustering and
inconsistency revealing.

2https://spacy.io

Problem of Inconsistency in Textual Requirements Specification

217



The system has only one system administrator.
DT NN AUX ADV NUM NN*

advmoddet nsubj nummod
dobj

Figure 9: Consistency rule from Example 2.

6 DATA, EXPERIMENTS,
AND RESULTS

To test our methods, we need the first version of tex-
tual requirements in its “raw” form. Unfortunately,
there are not collections of textual requirements spec-
ifications available that would be large enough. Soft-
ware companies hold them classified as confidential.
So, our experimental data were of limited size. We
checked the same collection of requirements that we
checked in (Šenkýř and Kroha, 2019a). However, we
did not find direct contradictions in these specifica-
tions. Because of that, we constructed a benchmark
described below.

6.1 Data

To test our set of patterns, we needed a large set of tex-
tual requirements sentences to evaluate the precision
and the recall of our method. Moreover, we needed to
know the number of sentences suspicious from incon-
sistency before computing the numbers of true/false
positive and true/false negative cases. The only way
we have seen was to construct benchmark data.

We decided to focus on antonyms; negations;
a combination of synonyms together with swapped
roles of subject and object, passive voice, and nega-
tion; and numerically different data described in Sec-
tion 3.1.1.

We used the text of the user guide describing the
functionality of a known information system that is
used to support stock market trading. The text volume
is 1,108 pages. It consists of 14,114 sentences. We
transformed the rules described in Section 3.1.1 into
linguistic patterns, and we applied the patterns to find
semantically overlapping sentences as candidates for
inconsistency (see below).

6.1.1 The List of Antonyms

The list of antonyms used to test the inconsis-
tency: source—destination, first—last, all—selected,
open—close, at the front—at the end, send—
receive, numeric—alphabetic, high—low, valid—
invalid, insert—delete, locked—unlocked, unique—
duplicated, chronologically sorted—alphabetically
sorted, able—unable, in only one—in one or more,
private—public, at the bottom—at the top, expanded

list—reduced list, upper-right corner of the win-
dow—upper-left corner of the window, undo com-
mand—redo command, enable—disable, more—
less, appear—disappear, manually—automatically.

6.1.2 The List of Negations

The list of negations used to test the inconsistency:
• simple negations of verb forms (modal verbs, e.g.,

“it is the same”, “it is not the same”, standard
verbs, e.g., “it exists”, “it does not exist” ),

• negation of the similar meaning, e.g., “imported
data can’t be modified” contra “you can modify
the imported data”,

• complex negations of the sentence meaning, e.g.,
“you can display it if you are in the Mode Check-
ing” contra “you can display it at any time”.

6.1.3 The List of Numerically Different Data

The numerical data can be given by digits, by words,
or by other means, e.g., Max-Int. We test the similar
sentences and generate warnings when some suspi-
cious formulations are found. For example: “There
is an unused field that should be set to zero.” contra
“There is an unused field that should be set to Max-
Int.”

Example 4: A Unique Object.

Sentence 1: The system has only one system ad-
ministrator.

Sentence 2: All system administrators have the
same access rights, but each of them has his/her pass-
word.

Here, Pattern #3 (Numeric Predicate) is matched
as shown in Fig. 9. We generate a warning message,
because “only one system administrator” in the first
sentence and “All” and “each of them” (system ad-
ministrators) in the second sentence contradict each
other.

Pattern #4 (Determiner Predicate) is matched two
times. First, it is applied in the part “All system ad-
ministrators”. Second, it is applied in the part “each
of them” when the co-reference to system administra-
tors is resolved.

(End of Example)

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

218



Table 1: Clusters: Numbers, Cardinalities, and False Positives.

False FP FP
Cluster Positives Total -BR -NLP
C1: The same SUBJECT, VERB, and OBJECT 10 = 8 + 2
#: 881 Cardinalities: 2–97
C2: The same SUBJECT and VERB 7 = 5 + 2
– passive mode, without OBJECT
#: 167 Cardinalities: 2–69
C3: The same SUBJECT 2 = 2 + 0
– passive mode, without OBJECT
#: 138 Cardinalities: 2–31
C4: The same SUBJECT and OBJECT 12 = 11 + 1
#: 883 Cardinalities: 2–97
C5: The same WHAT-part and VERB 0 = 0 + 0
#: 400 Cardinalities: 2–71

Legend: FP-BR – false positives matched because of too complex sentences or sentences across different contexts,
FP-NLP – false positives matched because of bad recognition of part-of-speech tag and/or dependency.

6.1.4 The Incomplete List of Items

We identify this source of inconsistency using the
UML model that we obtained in the first phase of
the processing. In the model, the attribute values are
given by a list of values, but in some sentences, only
a subset of them is mentioned. Often, this is a signal
that a reaction to some state of the system has been
forgotten. In this case, the incompleteness (Šenkýř
and Kroha, 2019b) is the source of the inconsistency.

6.2 Benchmark Construction

To finish the benchmark data construction, we used
the words given above in sections 6.1.2, 6.1.2, 6.1.3,
and 6.1.4 to construct similar sentences (similar to the
original) that should have the contradict meaning.

We interlarded the original text with our con-
structed sentences, and we noticed the numbers and
positions of our artificially constructed sentences that
are in contradiction with the original sentences to
get precision and recall results when evaluating our
method of inconsistency identification.

6.3 Experiments and Results

As mentioned in Section 6.1, our original text has
1,108 pages. There were 14,114 sentences found.
Additionally, we constructed sentences (using words
and phrase given above) that contain contradictions to
some of the original sentences. In numbers, they were
added:

• 21 sentences containing the antonyms as the con-
tradiction source – testable in clusters C2, C3, C4,
and C5,

• 435 sentences containing the negations as the con-
tradiction source – testable in all clusters,

• 9 sentences containing the numerically different
data – testable in all clusters,

• 32 sentences containing an incomplete list of at-
tribute values.

Doing this, we obtained a new text having 14,611 sen-
tences. As can be seen in the list above, some issues
can be detected directly on the clusters (as proposed
in Sec. 4.1), some only when compared with the in-
ternal model. After applying our method, we have
got the results shown in Table 1. We recognized all is-
sues of our added sentences, but there were, of course,
some false positives. In the result table, we show the
reasons. The first category represents false positives
matched because of too complex sentences or sen-
tences in different contexts where the current version
of our acts and patterns are not enough. The second
category represents false positives matched because
of bad recognition of part-of-speech tag and/or de-
pendency provided by the NLP framework.

7 CONCLUSIONS

Textual formulations of requirements specification
may contain (and usually contain) some sources of
contradiction that may cause inconsistency. This fact
increases the software development costs because of
the need for repairs during the development, tests, and
maintenance.

In this paper, we described our method that sup-
ports the identification of inconsistency in textual re-
quirements specification at the very first phase of the

Problem of Inconsistency in Textual Requirements Specification

219



software development. Using linguistic modules, we
find occurrences of patterns that are typical for formu-
lations containing inconsistency. We have used syn-
onyms, antonyms, negations, and numerically differ-
ent data as the most simple linguistic sources of con-
tradiction.

The natural language and the semantics of the
described reality are too rich in possibilities how to
describe it. Consequently, we speak about suspi-
cious formulations and generate warning messages
and questions on domain experts. We do not try to
solve or correct the found inconsistencies automati-
cally.

One of the limits of our method is its scalability,
even though the data from our experiments (see Table
1) obtained for a text volume of 14,611 sentences are
promising. Our plan is to combine our patterns con-
cerning ambiguity, incompleteness, and inconsistency
in a large industrial case study. Further, we suppose
that the situation could change if we had the domain
ontologies to construct consistency rules.

ACKNOWLEDGEMENTS

This research was supported by the grant of
Czech Technical University in Prague No.
SGS20/209/OHK3/3T/18.

REFERENCES

da Silva, A. R. and Fernandes, J. C. (2018). Variabil-
ity Specification and Resolution of Textual Require-
ments. In Proceedings of the 20th International
Conference on Enterprise Information Systems, pages
157–168. SciTePress – Science and Technology Pub-
lications.

de Marneffe, M.-C., Rafferty, A. N., and Manning, C. D.
(2008). Finding Contradictions in Text. In Moore, J.,
Teufel, S., Allan, J., and Furui, S., editors, Proceed-
ings of ACL-08: HLT, pages 1039–1047, Columbus,
Ohio. Association for Computational Linguistics.

Fanmuy, G., Fraga, A., and Llorens, J. (2012). Require-
ments Verification in the Industry. In Hammami, O.,
Krob, D., and Voirin, J.-L., editors, Complex Systems
Design & Management, pages 145–160, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Gargiulo, F., Gigante, G., and Ficco, M. (2015). A Seman-
tic Driven Approach for Requirements Consistency
Verification. Int. J. High Perform. Comput. Netw.,
8(3):201–211.

Hunter, A. and Nuseibeh, B. (1998). Managing Inconsis-
tent Specifications: Reasoning, Analysis, and Action.
ACM Trans. Softw. Eng. Methodol., 7(4):335–367.

Kamalrudin, M. and Sidek, S. (2015). A Review on Soft-
ware Requirements Validation and Consistency Man-
agement. International Journal of Software Engineer-
ing and Its Applications, 9(10):39–58.

Kroha, P., Janetzko, R., and Labra, J. E. (2009). Ontolo-
gies in Checking for Inconsistency of Requirements
Specification. In 2009 Third International Conference
on Advances in Semantic Processing, pages 32–37,
Sliema, Malta. IEEE Computer Society Press.

Schamai, W., Helle, P., Albarello, N., Buffoni, L., and Fritz-
son, P. (2016). Towards the Automation of Model-
Based Design Verification. INCOSE International
Symposium, 26(1):585–599.

Šenkýř, D. and Kroha, P. (2018). Patterns in Textual Re-
quirements Specification. In Proceedings of the 13th
International Conference on Software Technologies,
pages 197–204, Porto, Portugal. SciTePress – Science
and Technology Publications.

Šenkýř, D. and Kroha, P. (2019a). Patterns of Ambiguity
in Textual Requirements Specification. In Rocha, Á.,
Adeli, H., Reis, L. P., and Costanzo, S., editors, New
Knowledge in Information Systems and Technologies,
volume 1, pages 886–895, Cham. Springer Interna-
tional Publishing.

Šenkýř, D. and Kroha, P. (2019b). Problem of Incom-
pleteness in Textual Requirements Specification. In
Proceedings of the 14th International Conference on
Software Technologies, volume 1, pages 323–330,
Porto, Portugal. INSTICC, SCITEPRESS – Science
and Technology Publications.

Šenkýř, D. and Kroha, P. (2021). Problem of Inconsistency
and Default Consistency Rules. Prepared to be sub-
mitted.

Šimko, V., Kroha, P., and Hnětynka, P. (Prague, 2013). Im-
plemented Domain Model Generation. Technical Re-
port No. D3S-TR-2013-03, Department of Distributed
and Dependable Systems, Faculty of Mathematics and
Physics, Charles University.

Spanoudakis, G. and Finkelstein, A. (1998). A Semi-
automatic Process of Identifying Overlaps and Incon-
sistencies between Requirements Specifications. In
Rolland, C. and Grosz, G., editors, OOIS’98, pages
405–424, London. Springer London.

Spanoudakis, G. and Zisman, A. (2001). Inconsistency
Management in Software Engineering: Survey and
Open Research Issues. In Handbook of Software Engi-
neering and Knowledge Engineering: Volume I: Fun-
damentals, pages 329–380. World Scientific.

Torre, D., Labiche, Y., Genero, M., and Elaasar, M. (2018).
A Systematic Identification of Consistency Rules for
UML Diagrams. Journal of Systems and Software,
144:121–142.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

220


