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Abstract: Pollution is one of the main problems faced by cities nowadays, due to the increase in emissions from 
anthropogenic sources resulting from economic, industrial and demographic development. High values of 
pollutants, such as atmospheric particulate matter, lead to adverse effects on the environment and human 
health, causing the spread of respiratory, cardiovascular and neurological problems. For instance, recent 
work shows a connection between the spread of the Covid-19 pandemic and environmental pollution. In this 
context, urban monitoring of pollutants can allow to evaluate and perform actions aimed at reducing 
pollution in order to safeguard citizens’ health. This study proposes a method to design an urban air quality 
monitoring system. It uses the AHP multi-criteria decision-making technique to define the initial positioning 
of the sensors, and the cellular automata mathematical model for the following optimization, from which the 
final configuration of the network is derived. In the present case study, the monitoring concerns atmospheric 
particulate matter (PM10 and PM2.5) and is carried out with six sensors that constitute a LoRaWAN 
network, as often used for monitoring activities in smart cities. 

1 INTRODUCTION 

The economic, industrial and demographic 
development of the last two centuries has led to a 
considerable improvement in the quality of human 
life, but it has caused at the same time significant 
consequences for the environment. Indeed, 
anthropogenic sources such as industrial processes, 
vehicular traffic and domestic heating are identified 
as the main causes of pollution (Samad & Vogt, 
2020). According to World Health Organization 
(2006), four main air pollutants can be identified: 
particulate matter (PM10, PM2.5), nitrogen dioxide 
(NO2), sulfur dioxide (SO2) and ozone (O3). In the 
event that the concentrations of these pollutants 
reach high values, human health is likely to be 
compromised with the insurgence of respiratory, 
cardiovascular and neurological problems (Ghorani-
Azam et al.,2016) and the balance of ecosystems is 
put at risk (De Marco et al., 2019). During the year 
2016, according to the WHO, 91% of the world 
population lived in places where air quality did not 

meet the levels established by the guidelines; also in 
the same year, air pollution caused 4.2 million 
deaths worldwide. A reduction of particulate matter 
from 70 to 20 micrograms per cubic metre is 
estimated to reduce mortality by 15%, also lowering 
the incidence of diseases (Ambient (outdoor) air 
pollution, 2018). Kurt et al. (2016) studied the 
effects of pollution on the respiratory system and 
identified ozone and particulate matter as the main 
responsible of cardiopulmonary diseases. In 
particular, children have been found to be the most 
sensitive to pollution-induced effects. A study 
conducted on 265 children from two Indian cities 
with different levels of pollution found a greater 
amount of dysfunction in the respiratory tract in 
children with long-term exposure to high pollution 
values (De, 2020). Moreover, scientific research 
showed the role of pollutants in the spread of 
viruses, especially particulate matter. A more 
significant presence of the Avian Influenza Virus 
was identified in air samples collected during the 
days of Asian dust storms, when concentrations of 
PM10 and PM2.5 are higher. This showed the role 
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of dust storms in the long-range transport of virus 
(Chen et al., 2010). Then, following the spread of 
the SARS-CoV-2 virus (known as Covid-19 
pandemic), numerous studies were carried out to 
evaluate the role of pollution in the spread of the 
disease and its consequences on the severity of the 
effects caused and on mortality rates. This disease, 
similar to the severe acute respiratory syndrome 
(SARS) that occurred in 2002, broke out in Wuhan 
(China) in December 2019 and then spread 
worldwide. In Italy, the first cases of infection were 
officially reported at the end of February 2020, 
particularly in the northern regions. In March, a 
relationship was hypothesized between air pollution 
and the spread of SARS-Cov-2 infections. A 
position paper (Setti, Passarini, De Gennaro, Di 
Gilio et al., 2020) on this topic was published by 
some experts of the Società Italiana Medicina 
Ambientale (SIMA) together with researchers from 
Italian universities. The authors analysed the daily 
concentration of PM10 and the number of infections 
by Covid-19, for each province. They found a 
relationship between the exceedances of PM10 limit 
values recorded in the period February 10th -
February 29th 2020 and the number of COVID-19 
cases updated to March 3rd, considering that the 
infection is diagnosed with a latency time of 14 
days. One month after the publication of the position 
paper, SIMA claimed to have ascertained the 
presence of the new coronavirus in particulate matter 
from the extraction of SARS-Cov-2 RNA (Setti, 
Passarini, De Gennaro, Barbieri et al., 2020). The 
analysis was carried out on 34 samples of PM10 
collected for three weeks (from February 21th to 
March 13th 2020) in industrial sites located in the 
province of Bergamo. The results were confirmed on 
12 samples for the three genes E, N, RdRP used as 
molecular markers. European Public Health Alliance 
(2020) stated that those who live in cities with high 
concentrations of pollutants are more exposed to the 
risks deriving from Covid-19. This hypothesis was 
made on the basis of statements made by the 
European Respiratory Society (ERS): people with 
chronic lung and heart diseases caused by long-term 
exposure to poor air quality are less able to fight 
lung infections and therefore also Covid-19. To 
confirm the hypothesis, results of a study conducted 
in 2003 on SARS (Cui et al., 2003) were also used. 
This study found that people living in regions with a 
moderate air pollution index present an 84% higher 
chance of death than inhabitants of regions with a 
low index. Research by Wu et al. (2020a, 2020b) 
showed that, in the long run, a difference of one 
microgram in the average of PM2.5 is sufficient to 

increase the mortality rate of Covid-19 by 11%. The 
analysis compares the levels of particulate matter 
recorded in 3089 American counties with deaths for 
Covid-19 until June 18th 2020 and examines several 
variables: population size, hospital beds, weather, 
socioeconomic and behavioural conditions. A study 
on Italian territory (Fattorini & Regoli, 2020) 
focused on the role of chronic exposure to air 
pollutants. From the analysis of NO2, PM2.5 and 
PM10 values detected in Italy in the last 4 years, it 
was found that Northern Italy has been constantly 
exposed to high levels of atmospheric pollution and 
there is a correlation between these data and the 
Covid-19 cases for 71 provinces.  

In order to assess the level of atmospheric 
pollution and take action to ensure good air quality, 
limiting the spread of Covid-19 and other diseases, 
we intend to define the design of an urban 
monitoring system for air quality in smart cities of a 
size similar to that of the case study. The method 
takes into account the main anthropogenic sources of 
air pollution and it is applied in the smart city on the 
basis of the specific urban characteristics of the 
place under study and with the involvement of 
citizen science, creating a participatory process. 

2 LITERATURE REVIEW 

Collecting air quality data through monitoring 
networks allows to assess pollution levels and, 
where appropriate, suggests actions that are to be 
taken in order to avoid the adverse effects of 
pollution on the environment and human health 
(Kainuma et al., 1990). The chosen measurement 
points must ensure the best possible 
representativeness of the area's air quality and also 
take into account the location of point sources such 
as industrial sites (Kibble & Harrison, 2005). 
Hacıoğlu et al. (2020) pinpointed the locations of 
two air quality monitoring stations among potential 
urban and rural sites by using two techniques: 
Analytic Hierarchy Process (AHP) and Elimination 
Et Choix Traduisant la Realité III (ELECTRE III). 
This was done on the basis of seven criteria: 
pollution levels, security, availability of electricity, 
collaborations, staff support, easy access, distance. 
Both methods have identified the same positions, 
thus validating each other. Mofarrah et al. (2011) 
divided the study area into a grid where each square 
represented a possible position for the air quality 
monitoring network sensor. With the criteria of air 
quality, location sensitivity, cost, population 
sensitivity and population density, a fuzzy matrix of 
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pairwise comparisons was formed and a score was 
assigned to each potential position. The optimal 
positions for the sensors were identified through the 
values obtained from the Fuzzy Analytical 
Hierarchy Process (FAHP) plus the degree of 
representativeness of the area. FAHP method was 
also used to evaluate the atmospheric environmental 
quality in five cities in China (Lv & Ji, 2019), 
achieving better results with an index system than 
the standard air pollution index. 

A mathematical model that can be used to 
describe and simulate environmental phenomena 
varying in time and space is the cellular automaton. 
Benjavanich et al. (2017) modelled and simulated 
the flow of pollution with cellular automaton in an 
area of 3x3 km. A variable number of sensors was 
considered, and each cell was provided with updated 
levels of pollution and wind action. Marín et al. 
(2020) used cellular automata to simulate the spread 
of air pollution considering gravity, diffusion and 
wind transport as calibration factors. Lauret et al. 
(2016) combined cellular automata with artificial 
neural networks to evaluate the atmospheric 
dispersion of methane in 2D. In particular, the neural 
networks were used for making predictions and 
cellular automata for space-time simulation.  

3 CASE STUDY 

The case study of this research is the town of Santa 
Maria degli Angeli (43°03′32″N 12°34′41″E), a part 
of the Municipality of Assisi (Italy) with 8470 
inhabitants. It is one of the main tourist destinations 
in the region, due to the presence of important 
religious sites. Over the years, the area has 
experienced an important urban development, 
becoming equipped with all the services necessary 
for residential settlement and, in addition, also with  
 

 
Figure 1: View of study area. 

industrial activities, favoured by the presence of the 
railway line and the proximity to the highway. These 
industrial activities are mainly concentrated in the 
south-west area, but there is also a foundry near the 
inhabited centre. Together with the road traffic, 
which concentrates on the three main axes of 
connection with important road arteries and with the 
nearby urban centers, these activities are the main 
sources of pollution for the town (Figure 1). 

4 METHODOLOGY 

Based on the studies in the literature and the 
importance of air pollution assessment in order to 
safeguard the health of citizens, we want to propose 
a design method for a low-cost urban monitoring 
system of air quality that can be implemented in any 
small-to-medium-sized smart city. In particular, we 
propose to create a LoRaWAN network, with the 
location of the sensors determined through the 
application of the Analytic Hierarchy Process (AHP) 
multi-criteria decision-making technique between 
many potential positions and optimized through the 
application of the mathematical model of cellular 
automata in order to ensure the best overall coverage 
of the polluted area. For the case study, the 
configuration of the LoRaWAN network, which 
consist of six sensors, is initially established among 
twelve alternatives by use of the AHP method. 
These positions are corrected using cellular 
automata, assigning a transition probability 
determined by the level of pollution present in the 
neighbourhood of the sensor. The sensors will detect 
the amount of PM10 and PM2.5 which, as discussed 
in the introduction, have been showed to play a key 
role in the spread of viruses.  

4.1 Analytic Hierarchy Process 

Analytic Hierarchy Process (AHP) is a multi-criteria 
decision-making technique, developed by Thomas 
Lorie Saaty in the 1970s, which allows to assign 
priorities to a series of decision-making alternatives 
and define them on a single scale, relating 
parameters that are not directly comparable, such as 
qualitative and quantitative evaluations. The method 
is applied in three steps: definition of a hierarchy of 
the problem, comparison of judgments and 
calculation of the priority vector, hierarchical 
recomposition (Analytic Hierarchy Process, n.d.). 
As regards the hierarchy, the final objective is 
placed at the highest level, then come the various 
criteria that contribute to the objective and finally 
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the different alternatives to be evaluated. In the 
second phase, in order to evaluate how much each 
criterion affects the final decision, a pairwise 
comparison matrix is constructed by assigning the 
judgments according to the values of the 
fundamental scale (Table 1). The matrix is square 
and of size equal to the number of elements of the 
hierarchical level being considered. For n criteria, 
with 𝑖, 𝑗 = 1,2, . . 𝑛, the matrix of pairwise 
comparisons is: 𝐴 = 𝑎  (1)

where 𝑎  indicates how much the i-th criterion 
is more important than the j-th. If 𝑎 1 , the 
element 𝑖 is preferred to 𝑗; if 𝑎 1, the opposite is 
true. In order to make consistent judgments, it must 
be established that: 

• 𝑎 = 1/𝑎  for 𝑖, 𝑗 = 1,2, . . 𝑛.  
• 𝑎 = Σ 𝑎 ⋅ 𝑎  for all 𝑖, 𝑘 = 1,2, . . 𝑛.  

The same type of pairwise comparison is carried out 
among the alternatives referred to each criteria.  

For each matrix considered, the priority vector is 
obtained from the components of the main 
eigenvector 𝑤 corresponding to the main eigenvalue λ  of the matrix 𝐴:  𝐴 ∙ 𝑤 = λ ∙ 𝑤 (2)

At this point, the consistency of the assessment is 
verified by calculating the Consistency Index (𝐶. 𝐼.): 

𝐶. 𝐼. = λ 𝑛n 1  (3)

if this is less than 10% of the Random 
Inconsistency (𝑅. 𝐼.) value for the corresponding is  
 

Table 1: The fundamental scale for pairwise comparison. 

Intensity of 
importance Definition 

1 Equal importance 
2 Weak importance 
3 Moderate importance 
4 Moderate plus importance 
5 Strong importance 
6 Strong plus importance 
7 Very strong importance 
8 Very, very strong importance 
9 Extreme importance 

Table 2: Values of Random Inconsistency (𝑅. 𝐼.). 𝑛 𝑅. 𝐼.  𝑛 𝑅. 𝐼. 
1 0.00  6 1.24 
2 0.00  7 1.32 
3 0.58  8 1.41 
4 0.90  9 1.45 
5 1.12  10 1.49 

number of elements 𝑛  (Table 2), the decision 
acceptable (Analytic Hierarchy Process (AHP), 
n.d.). Otherwise, the reasons for the inconsistency 
should be analysed and the judgments reviewed in 
order to reduce the inconsistency. In the last phase, 
the global weights of the alternatives are defined by 
applying the principle of hierarchical composition, 
determining their order of importance: the local (i.e. 
within a given level) weights of each alternative are 
multiplied by those of the corresponding higher-
order criteria and the products thus obtained are 
added together (Latora et al., 2018).   

4.2 Cellular Automata 

The concept of cellular automaton was introduced 
by J. von Neumann in 1947 and then applied in 
practice by J.H. Conway in "Game of life" in 1968. 
A cellular automaton is a discrete dynamic system: 
in such model space, time and properties of the 
automata can only assume a finite and countable 
number of states. It consists of a set of elements, 
called cells, organized in a regular spatial grid and 
taking on a finite number of states. The state of each 
cell at a certain moment evolves according to a 
given transition rule, with the updated state of a cell 
depending on the previous state of the cell itself and 
the states of the neighbourhood. The latter can be of 
various kinds, with most common examples 
including the von Neumann, Moore and Margolus 
neighbourhoods ((D’Ambrosio, 2003). 

5 RESULTS  

The application of the AHP method has made 
possible to identify the initial configuration of the 
sensor network for urban monitoring of air quality. 
In defining the AHP hierarchy, the final objective 
was placed at the top level, i.e. the identification of 
the most significant points for the monitoring 
activity, then the various criteria that contribute to 
the objective and therefore determine atmospheric 
pollution: home heating, traffic and presence of 

Design of an Urban Monitoring System for Air Quality in Smart Cities

97



industrial activities. Potential sensor positions were 
located at the lowest level of the hierarchy (Figure 
2). For the case study, these are twelve and were 
chosen in barycentric points of each urban sector (A-
L) identified by the three main roads axes and the 
roads of major importance that lead into them 
(Figure 3). Generally, the composition of the 
matrices, then the attribution of judgments, and the 
resulting final output are determined by a single 
individual or a group decision. In this case, a mixed 
approach was used: a participatory process, with the 
direct involvement of citizens through 
questionnaires, was used to determine the hierarchy 
of the criteria and a more objective method, with a 
single judgment, to evaluate the different sensor 
positioning alternatives. 

In the distributed questionnaire it was asked to 
express which is believed to be the main source of 
atmospheric pollution among home heating, traffic 
and the presence of industrial activities. In addition, 
it was asked how much the indicated source of 
pollution was more decisive than the other two, 
expressing a value in the scale from 1 to 9. The 
anonymous questionnaires were distributed to a 
heterogeneous sample of citizens, inhabitants of the 
study area, of different ages and gender. 38 
questionnaires were collected, mostly from people 
over the age of 60, 19 males and 19 females, who 
have been living in that area for more than 10 years 
and spend the whole day there. Of 38 questionnaire 
replies, 25 indicated industrial activities as the main 
source of pollution, 13 indicated traffic and 0 home 
heating. Given the values with which they expressed 
the importance of the main source of pollution 
compared to the other two, the geometric mean was 
calculated and approximated to the nearest integer 
number in order to compose the matrix of pairwise 
comparisons. In particular, it was obtained that the 
presence of industrial activities has a very, very 
strong importance (value 8) compared to home 
heating and strong importance (value 5) compared to 
traffic; instead, traffic has a very strong importance 
(value 7) compared to home heating. The same 
matrix is composed of the values 1 in the main 
diagonal, because it concerns the pairwise 
comparison of an element with itself, and of the 
reciprocal values of those already indicated, 
disallowing inconsistent judgments (Table 3). The 
eigenvector of the matrix was calculated and the 
weight of each criterion was found: 0.0544 for home 
heating, 0.2331 for traffic and 0.7125 for industrial 
activities. The Consistency Index (𝐶. 𝐼.) is equal to 
0.12 and therefore higher than 10% of the Random 
Inconsistency (𝑅. 𝐼.) value for three elements. Being 
 

 
Figure 2: AHP hierarchy for the selection of sensor 
positions for the case study. 

 
Figure 3: Potential positions of the air quality monitoring 
sensors in the study area. 

a value deriving from a group decision and having 
used the geometric mean, it was still considered 
acceptable, without going to review the judgments. 
In fact, in the case of group decisions, three 
conditions must be verified: symmetry, linear 
homogeneity and concordance: the use of the 
geometric mean allows to respect all three and also 
to have reciprocity and separability (Analytic 
Hierarchy Process, n.d.). The evaluation of the 
twelve alternatives for the home heating criterion 
was made on the basis of the population data in each 
sector, recorded in the Municipality database. A 
higher population corresponds to a higher use of 
home heating. Sector B has the highest number of 
inhabitants while sector L has the lowest one. The 
population of each sector was compared with that of 
the others and the pairwise comparisons were made 
objectively, assigning the values in the fundamental 
scale. Regarding the traffic criterion, the analysis 
was carried out considering how each sector is 
enclosed by very busy roads, therefore by the 
connecting axes with the nearby urban centres and 
by the highway. The values associated with each 
sector were compared in pairs and the matrix was 
again formed using the fundamental scale of the 
AHP. The evaluation of each of the twelve 
alternatives with regard to the criterion of the  
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Table 3: Matrix of pairwise comparisons of the criteria. 

 Home 
heating Traffic 

Industrial 
activities 

Home heating 1 1/7 1/8 

Traffic 7 1 1/5 

Industrial activities 8 5 1 

presence of industrial activities was made 
considering the average distance of each sector from 
the foundry and the industrial area to the south-west 
of the town. Similarly to the two previous criteria, 
the values to include in the matrix were identified in 
a very objective way. The eigenvector of each 
matrix was calculated and the weights of each 
alternative relating to each criterion were obtained 
with the subsequent normalization. All the matrices 
were found to be consistent, having obtained in the 
order the following Consistency Indices ( 𝐶. 𝐼. ): 
0.1071, 0.099 and 0.1028, all less than 10% of the 
Random Inconsistency (𝑅. 𝐼.) value. 

Finally, the last step of the AHP method was 
carried out, namely the hierarchical recomposition, 
adding for each of the twelve alternatives the 
products of the local weights and the weights of the 
relative criteria (Table 4). The six alternatives to 
which correspond the highest global weights, that is, 
F, G, H, J, K and L, identify the initial configuration 
of the LoRaWAN network.  

In this work, cellular automata are used to 
establish the final positions of the air quality 
monitoring sensors, optimizing the configuration 
obtained with the AHP method with the aim of 
maximizing the coverage of polluted areas. Firstly, 
the dimensions of the grid cells to superimpose on 
the study area were established. They were defined 
to be 200x200 m, thus obtaining an 11x8 grid. 
Twofold information was assigned to each cell: one 
variable takes into account the presence or absence 
of a sensor in the cell under scrutiny, and another 
one is related to the level of pollution. More in 
detail, the first variable was determined from the 
results of the AHP method, and the second derives 
from the answers of citizens to the questionnaires. 
This information forms the initial state of the 
cellular automaton (Figure 4). The transition rules 
guiding the system’s dynamics are defined using 
Moore’s neighbourhood, which is made of eight 
cells plus the starting one. At a given step during the 
system evolution, the configuration determines the 
set of positions of the sensors in the grid. At each 
iteration the sensor can move to one of the eight 
surrounding cells or remain in its current position. 

Table 4: Results of AHP for the localization of monitoring 
sensors. 

Sector Home 
heating 
(0.0544) 

Traffic 
(0.2331) 

Industrial 
activities 
(0.7125) 

Global 
weights 

A 0.171 0.0214 0.0141 0.0244 
B 0.3174 0.0149 0.0114 0.0288 
C 0.1315 0.0546 0.0434 0.0508 
D 0.0364 0.0434 0.0114 0.0202 
E 0.0251 0.0159 0.0411 0.0344 
F 0.08 0.0346 0.129 0.1043 
G 0.1034 0.2832 0.2008 0.2147 
H 0.0156 0.0271 0.1515 0.1151 
I 0.0482 0.0546 0.0674 0.0634 
J 0.0431 0.0689 0.2008 0.1614 
K 0.0156 0.1685 0.1017 0.1126 
L 0.0127 0.2128 0.0275 0.0698 

The displacement of each sensor is determined 
stochastically according to the following procedure: 

1) The coefficient 𝑘  of polluted areas 
coverage is calculated for the current 
location of the sensor and for the other 
future possible positions, that is, the eight 
cells in its neighborhood. Given a certain 
cell, the  𝑘  coefficient is defined as the 
weighted sum of polluted cells within the 
Moore neighborhood of the cell under 
consideration; the weights are chosen to 
decrease exponentially with the distance 
from the central cell in which the sensor is 
located. The matrix of weights is therefore 
the following: 0.24 0.37 0.240.37 1 0.370.24 0.37 0.24  (4)

2) A probability 𝑝  is assigned to each 
possible displacement on the basis of the 
calculated coefficients:  

𝑝 = 𝑒∑ 𝑒  (5)

3) The future position of the sensor is 
determined by random extraction among 
the nine possibilities, according to the 
probabilities 𝑝 . 

The new sensor configuration of is then compared 
with the previous one in order to assess whether it 
determines a greater overall coverage of polluted 
areas. The overall coverage is computed as the sum 
of the 𝑘  coefficients of all sensors, also adding 
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negative penalties if pairs of sensors lie in adjacent 
cells or in the same cell. The new configuration is 
accepted if it results in an increase of global 
coverage, otherwise it is discarded and the system 
remains in the previous configuration. According to 
this rule, the positions of the sensors in the case 
study were changed compared to the initial state and 
the configuration shown in Figure 4 was determined, 
ensuring a wider coverage of the polluted area.  

6 CONCLUSIONS 

This study focuses on the definition of a design 
method for an air quality urban monitoring system, 
useful for assessing pollution levels which derive 
from different sources. The method allows to 
identify the most significant positions for monitoring 
within the study area. Due to the nature of the 
problem, which required to evaluate different 
alternatives and to take into account more criteria, 
we applied the AHP multi-criteria decision-making 
technique. Citizens were involved in the decision-
making through questionnaires, where they were 
asked to fill in the pairwise comparison matrix of the 
criteria. The group decision has identified the 
following scale of criteria: industrial activities 
(0.7125), traffic (0.2331) and home heating 
(0.0544). The twelve sensor position alternatives 
were evaluated with regard to the three criteria, in an 
objective way and with a single judgment, 
considering the specific features of each sector: 
number of inhabitants, exposure to very busy roads 
and average distance from industrial activities. The 
hierarchical recomposition produced the global 
weights and determined the order of preference of 
the alternatives. The first six sectors, namely sectors 
F, G, H, J, K and L, are the one where the six 
LoRaWAN sensors for urban monitoring of 
atmospheric particulate matter (PM10 and PM2.5) 
should be placed. However, in order to maximize 
global coverage of polluted areas, an optimization of 
the mentioned AHP configuration was carried out 
using a cellular automaton. After defining the grid 
and the type of neighbourhood, a procedure was 
devised, allowing the evolution of the state 
(presence/absence of sensor) of the cells based on a 
transition probability determined as a function of 
coverage coefficients 𝑘  of the cells in the 
neighbourhood. Using this model, the positions of 
the sensors that had been found with the AHP 
method were corrected to achieve greater coverage 
of the polluted area, thus establishing the final 
configuration of the network.  

 
Figure 4: Evolution of sensor positions from the initial 
state (a) to the final configuration (b) through the cellular 
automaton. 

The future development of this work will deal 
with a more refined optimization of the sensors 
positioning, considering levels of pollution 
determined not only by the replies to the 
questionnaires but also by the data actually detected 
by the sensors and, importantly, the epidemiological 
data regarding respiratory and cardiovascular 
diseases associated with long-term exposure to high 
levels of pollution. Therefore, when the sensors will 
be installed in the final configuration determined in 
the present study, and when a significant amount of 
measurements of pollutants detected by those 
sensors will have been collected, the cellular 
automaton will be run again. It is important to stress 
that the method to define an urban air quality 
monitoring system proposed in this study lends itself 
to be implemented in other smart cities, with 
variable numbers of sensors and the possibility of 
taking into account more pollutants. 

ACKNOWLEDGEMENTS 

The authors would like to thank the Municipality of 
Assisi for their collaboration. The study presented in 
this paper is part of the PLANET project financed to 
Idea-re S.r.l. by Regione Veneto (IT) POR FESR 
2014-2020 Asse I Azione 1.1.1. 

REFERENCES 

Ambient (outdoor) air pollution. (2018, May 2). World 
Health Organization. https://www.who.int/news-room/ 
fact-sheets/detail/ambient-(outdoor)-air-quality-and-
health 

Analytic Hierarchy Process. (n.d.). Università degli Studi 
di Napoli. Retrieved September 15, 2020, from 
https://www.docenti.unina.it/webdocenti-be/allegati/ 
materiale-didattico/557402 

Analytic Hierarchy Process (AHP). (n.d.). Università Ca' 
Foscari Venezia. Retrieved September 15, 2020, from 
http://virgo.unive.it/paolop/papers/appunti_ahp.pdf  

SMARTGREENS 2021 - 10th International Conference on Smart Cities and Green ICT Systems

100



Benjavanich, S., Ursani, Z., & Corne, D. (2017, 
December). Forecasting the flow of urban pollution 
with cellular automata. In 2017 Sustainable Internet 
and ICT for Sustainability (SustainIT) (pp. 1-6). IEEE. 
10.23919/SustainIT.2017.8379801  

Chen, P. S., Tsai, F. T., Lin, C. K., Yang, C. Y., Chan, C. 
C., Young, C. Y., & Lee, C. H. (2010). Ambient 
influenza and avian influenza virus during dust storm 
days and background days. Environmental health 
perspectives, 118(9), 1211-1216.  

Cui, Y., Zhang, Z. F., Froines, J., Zhao, J., Wang, H., Yu, 
S. Z., & Detels, R. (2003). Air pollution and case 
fatality of SARS in the People's Republic of China: an 
ecologic study. Environmental Health, 2(1), 1-5.  

D’Ambrosio, D. (2003). Automi Cellulari nella 
modellizzazione di fenomeni complessi macroscopici e 
loro ottimizzazione con Algoritmi Genetici. Università 
degli Studi della Calabria. https://www.mat.unical.it/ 
spataro/teaching/modelli/TesiPhD_Dambrosio.pdf  

De Marco, A., Proietti, C., Anav, A., Ciancarella, L., 
D'Elia, I., Fares, S., Fornasier, M. F., Fusaro, L., 
Gualtieri, M., Manes, F., Marchetto, A., Mircea, M., 
Paoletti, E., Piersanti, A., Rogora, M., Salvati, L., 
Salvatori, E., Screpanti, A., Vialetto, G., Vitale, M., & 
Leonardi, C. (2019). Impacts of air pollution on 
human and ecosystem health, and implications for the 
National Emission Ceilings Directive: Insights from 
Italy. Environment international, 125, 320-333. 

De, S. (2020). Long-term ambient air pollution exposure 
and respiratory impedance in children: A cross-
sectional study. Respiratory Medicine, 170, 105795.  

European Public Health Alliance. (2020, March 16). 
Coronavirus threat greater for polluted cities. EPHA. 
https://epha.org/coronavirus-threat-greater-for-
polluted-cities/ 

Fattorini, D., & Regoli, F. (2020). Role of the chronic air 
pollution levels in the Covid-19 outbreak risk in Italy. 
Environmental Pollution, 114732.  

Ghorani-Azam, A., Riahi-Zanjani, B., & Balali-Mood, M. 
(2016). Effects of air pollution on human health and 
practical measures for prevention in Iran. Journal of 
Research in Medical Sciences, 21(1), 65.  

Hacıoğlu, H., Ari, A., Özkan, A., Elbir, T., Tuncel, S. G., 
Yay, O. D., & Gaga, E. O. (2016). A new approach for 
site selection of air quality monitoring stations: Multi-
criteria decision-making. Aerosol and Air Quality 
Research, 16(6), 1390–1402.  

Kainuma, Y., Shiozawa, K., & Okamoto, S. I. (1990). 
Study of the optimal allocation of ambient air 
monitoring stations. Atmospheric Environment. Part 
B. Urban Atmosphere, 24(3), 395-406.  

Kibble, A., & Harrison, R. (2005). Point sources of air 
pollution. Occupational Medicine, 55(6), 425-431.  

Kurt, O. K., Zhang, J., & Pinkerton, K. E. (2016). 
Pulmonary health effects of air pollution. Current 
opinion in pulmonary medicine, 22(2), 138.   

Latora, A., Trapani, N., & Nicosia, G. (2018, July).  
Una metodologia di Multi Criteria Decision Making  
a supporto dei processi di Public Management.  
Rivista italiana di Public Management, 1(2). 

https://www.rivistaitalianadipublicmanagement.it/una-
metodologia-di-multi-criteria-decision-making-a-
supporto-dei-processi-di-public-management/  

Lauret, P., Heymes, F., Aprin, L., & Johannet, A. (2016). 
Atmospheric dispersion modeling using Artificial 
Neural Network based cellular automata. 
Environmental Modelling & Software, 85, 56–69.  

Lv, W., & Ji, S. (2019). Atmospheric environmental 
quality assessment method based on analytic hierarchy 
process. Discrete & Continuous Dynamical Systems - 
S, 12(4–5), 941–955.  

Marı́n, M., Rauch, V., Rojas-Molina, A., López-Cajún, C. 
S., Herrera, A., & Castaño, V. M. (2000). Cellular 
automata simulation of dispersion of pollutants. 
Computational Materials Science, 18(2), 132–140.  

Mitchell, M., Gramss, I.T., Bornholdt, S., Gross, M., & 
Pellizzari, T. (2005). Computation in Cellular 
Automata: A Selected Review. Non-standard 
Computation. 

Mofarrah, A., Husain, T., & Alharbi, B. H., (2011). 
Design of Urban Air Quality Monitoring Network: 
Fuzzy Based Multi-Criteria Decision Making 
Approach. Air Quality Monitoring, Assessment and 
Management, 11, 25-39.  

Samad, A., & Vogt, U. (2020). Investigation of urban air 
quality by performing mobile measurements using a 
bicycle (MOBAIR). Urban Climate, 33, 100650.  

Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., 
Perrone, M. G., Borelli, M., Palmisani, J., Di Gilio, A., 
Torboli, V., Fontana, F., Clemente, L., Pallavicini, A., 
Ruscio, M., Piscitelli, P., & Miani, A. (2020). SARS-
Cov-2RNA Found on Particulate Matter of Bergamo 
in Northern Italy: First Evidence. Environmental 
Research, 109754. 

Setti, L., Passarini, F., De Gennaro, G., Di Gilio, A., 
Palmisani, J., Buono, P., Fornari, G., Perrone, M. G., 
Piazzalunga, A., Barbieri, P., Rizzo, E., & Miani, A. 
(2020). Position Paper Relazione circa l’effetto 
dell’inquinamento da particolato atmosferico e la 
diffusione di virus nella popolazione. SIMA-Società 
Italiana di Medicina Ambientale; 2020. 

World Health Organization. (2006). WHO Air quality 
guidelines for particulate matter, ozone, nitrogen 
dioxide and sulfur dioxide: global update 2005: 
summary of risk assessment. https://apps.who.int/iris/ 
bitstream/handle/10665/69477/WHO_SDE_PHE_OE
H_06.02_eng.pdf 

Wu, X., Nethery, R. C., Sabath, M. B., Braun, D., & 
Dominici, F. (2020a). Air pollution and COVID-19 
mortality in the United States: Strengths and 
limitations of an ecological regression analysis. 
Science Advances, 6(45), eabd4049.  

Wu, X., Nethery, R. C., Sabath, B. M., Braun, D., & 
Dominici, F. (2020b). Exposure to air pollution and 
COVID-19 mortality in the United States. medRxiv.  

 

Design of an Urban Monitoring System for Air Quality in Smart Cities

101


