Bureau of Meteorology.  ([s.d.]).  Recuperado  20  de 
dezembro  de  2018,  de  https://www.dropbox.com/s/ 
mo2zac1ahmcqcsj/BOM_csv.zip?dl=0 
Caliński, T., & Harabasz, J. (1974). A dendrite method for 
cluster analysis. Communications in Statistics, 3(1), 1–
27. https://doi.org/10.1080/03610927408827101 
Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. 
Mobile Networks and Applications,  19(2),  171–209. 
https://doi.org/10/f5xhcd 
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree 
Boosting  System.  Proceedings of the 22nd ACM 
SIGKDD International Conference on Knowledge 
Discovery and Data Mining - KDD ’16,  785–794. 
https://doi.org/10.1145/2939672.2939785 
Costa, F. S., Nassar, S. M., & Dantas, M. A. R. (2019). A 
three  level  sensor  ranking  method  based  on  active 
perception. IECON 2019 - 45th Annual Conference of 
the IEEE Industrial Electronics Society, 1, 2889–2895. 
https://doi.org/10.1109/IECON.2019.8927612 
Costa,  F.  S.,  Nassar,  S.  M.,  Gusmeroli,  S.,  Schultz,  R., 
Conceição, A. G. S., Xavier, M., Hessel, F., & Dantas, 
M. A. R. (2020). FASTEN IIoT: An Open Real-Time 
Platform  for  Vertical,  Horizontal  and  End-To-End 
Integration.  Sensors,  20(19),  5499.  https://doi.org/10/ 
ghc8cq 
Davies,  D.  L.,  &  Bouldin,  D.  W.  (1979).  A  Cluster 
Separation  Measure.  IEEE Transactions on Pattern 
Analysis and Machine Intelligence,  PAMI-1(2),  224–
227. https://doi.org/10.1109/TPAMI.1979.4766909 
Dilli, R., Argou, A., Pilla, M., Pernas, A. M., Reiser, R., & 
Yamin,  A.  (2018).  Fuzzy  Logic  and  MCDA  in  IoT 
Resources  Classification.  Proceedings of the 33rd 
Annual ACM Symposium on Applied Computing,  6. 
https://doi.org/10.1145/3167132.3167216 
Fathy, Y., Barnaghi, P., & Tafazolli, R. (2018). Large-Scale 
Indexing,  Discovery,  and  Ranking  for  the  Internet  of 
Things  (IoT).  ACM Comput. Surv.,  51(2),  53. 
https://doi.org/10.1145/3154525 
Hopkins, B., & Skellam, J. G. (1954). A New Method for 
determining  the  Type  of  Distribution  of  Plant 
Individuals.  Annals of Botany,  18(2),  213–227. 
https://doi.org/10/gfwpfs 
Intel Lab Data.  ([s.d.]).  Recuperado  20  de  dezembro  de 
2018, de http://db.csail.mit.edu/labdata/labdata.html 
Kertiou, I., Benharzallah, S., Kahloul, L., Beggas, M., 
Euler, R., Laouid, A., & Bounceur, A. (2018). A 
dynamic  skyline  technique  for  a  context-aware 
selection of the best sensors in an IoT architecture. Ad 
Hoc Networks, 81, 14. https://doi.org/10.1016/j.adhoc. 
2018.08.011 
Neha, & Saxena, S. (2016). Vector method for ranking of 
sensors  in  IoT.  2016 International Conference on 
Inventive Computation Technologies (ICICT),  3,  5. 
https://doi.org/10.1109/INVENTIVE.2016.7830231 
NOAA
.  ([s.d.]).  Recuperado  20  de  dezembro  de  2018,  de 
https://tidesandcurrents.noaa.gov/gmap3/ 
Nunes, L. H., Estrella, J. C., Perera, C., Reiff-Marganiec, 
S.,  &  Delbem,  A.  C.  B.  (2018).  The  elimination-
selection  based  algorithm  for  efficient  resource 
discovery  in  Internet  of  Things  environments.  2018 
15th IEEE Annual Consumer Communications 
Networking Conference (CCNC),  7.  https://doi.org/ 
10.1109/CCNC.2018.8319280 
Ostermaier,  B.,  Römer,  K.,  Mattern,  F.,  Fahrmair,  M.,  & 
Kellerer, W. (2010). A real-time search engine for the 
Web  of  Things.  2010 Internet of Things (IOT),  1–8. 
https://doi.org/10.1109/IOT.2010.5678450 
Pascual,  D.,  Pla,  F.,  &  Sánchez,  J.  S.  (2010).  Cluster 
validation using information stability measures. Pattern 
Recognition Letters, 31(6), 454–461. https://doi.org/10/ 
dsk4hq 
Pattar, S., Buyya, R., Venugopal, K. R., Iyengar, S. S., & 
Patnaik, L. M. (2018). Searching for the IoT Resources: 
Fundamentals, Requirements, Comprehensive Review, 
and Future Directions. IEEE Communications Surveys 
Tutorials,  20(3),  31.  https://doi.org/10.1109/COMST. 
2018.2825231 
Perera, C., Zaslavsky, A., Liu, C. H., Compton, M., 
Christen,  P.,  &  Georgakopoulos,  D.  (2014).  Sensor 
Search  Techniques  for  Sensing  as  a  Service 
Architecture for the Internet of Things. IEEE Sensors 
Journal, 15(2), 15. https://doi.org/10.1109/JSEN.2013. 
2282292 
Phenonet. ([s.d.]). Recuperado 24 de fevereiro de 2019, de 
https://www.dropbox.com/s/sizmdrh7l78n1v5/csv.tar.
gz?dl=0 
Ruta,  M.,  Scioscia,  F.,  Pinto,  A.,  Gramegna,  F.,  Ieva,  S., 
Loseto,  G.,  &  Di  Sciascio,  E.  (2019).  CoAP-based 
collaborative sensor networks in the Semantic Web of 
Things.  Journal of Ambient Intelligence and 
Humanized Computing,  10(7),  18. 
https://doi.org/10.1007/s12652-018-0732-4 
Schiffman,  H.  R.  (2001).  Sensation  and  Perception:  An 
Integrated Approach. In Sensation and Perception: An 
Integrated Approach (Edição: 5th, p. 12). John Wiley 
& Sons. 
Shi, H., Wang, H., Huang, Y., Zhao, L., Qin, C., & Liu, C. 
(2019).  A  hierarchical  method  based  on  weighted 
extreme  gradient  boosting  in  ECG  heartbeat 
classification.  Computer Methods and Programs in 
Biomedicine,  171,  1–10.  https://doi.org/10.1016/j. 
cmpb.2019.02.005 
Skarmeta, A. F., Santa, J., Martínez, J. A., Parreira, J. X., 
Barnaghi, P., Enshaeifar, S., Beliatis, M. J., Presser, M. 
A., Iggena, T., Fischer, M., Tönjes, R., Strohbach, M., 
Sforzin,  A.,  &  Truong,  H.  (2018).  IoTCrawler: 
Browsing  the  Internet  of  Things.  Proceedings of The 
2018 Global IoT Summit (GIoTS),  6. 
http://epubs.surrey.ac.uk/846315/ 
Wang, H., Tan, C. C., & Li, Q. (2010). Snoogle: A Search 
Engine  for  Pervasive  Environments.  IEEE 
Transactions on Parallel and Distributed Systems, 
21(8), 15. https://doi.org/10.1109/TPDS.2009.145 
Wang, W., Yao, F., De, S., Moessner, K., & Sun, Z. (2015). 
A  ranking  method  for  sensor  services  based  on 
estimation of service access cost. Information Sciences, 
319, 17. https://doi.org/10.1016/j.ins.2015.05.029 
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 
8(3),  338–353.  https://doi.org/10.1016/S0019-
9958(65)90241-X