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Abstract: One in every three trucks in developing countries are overloaded, causing damage to roads and susceptible to 

accidents. Conventionally, vehicle’s weight is measured at fixed weigh stations and result in high traffic 

congestions at toll booths. To improve highway traffic and enhance regulation, we propose a low-cost, 

portable sensor-based system viable for continuous real-time assessment of vehicle’s weight. A smartphone-

based sensing device is installed in vehicle and weight is estimated by applying multiple linear regression 

model on acceleration data. In this paper, we include statistical features having relationship with target 

variable. A consistent model performance of vehicle’s weight estimated at all speed ranges is established; we 

also evaluate the improvised model under engine idling state. An increased accuracy is obtained with error of 

2% in engine idling state and overall system error of 6% with vehicle in motion. A heterogenous data source 

(such as vehicle class, load condition, goods, sensor locations, etc.,) of vehicle operating on Indian highway 

segment are collected to evaluate model robustness. With exploitation of big data and advanced analytics; 

advent of this solution will leverage contribution in Intelligent Transport System, focused towards smart and 

sustainable transportation for ASEAN region. 

1 INTRODUCTION 

Logistics is one of the important sectors for a 

country’s economy. Efficiency improvement in this 

area can boost economic growth, increasing export 

through global supply chains and helps in generating 

employment. The robust growth in manufacturing 

envisioned in developing countries like India is 

through Government initiatives like “Make in India”, 

which demands high level of logistic efficiency. It has 

been reported, due to poor logistics, management has 

led to unsafe practices such as overloading of trucks, 

compromising road safety both for truck drivers and 

other road users. In reports from developing countries 

such as India, it is stated that National highways 

connecting the major corridors to metro cities like 

Delhi, Kolkata, Chennai, Kochi, Mumbai account for 

less than 0.5% of the road network capacity but still 

carry more than 40% of the freight movement by road 

(NITI Aayog, 2018). Trucks spend just 40% of their 

time moving on the road. The rest of the time is taken 

up at checkpoints and tollgates. India Government in 

July 2018 announced the increase in axle load limit to 

25%. While experts feel overloading will continue, 

and industry players expect the “life of roads” to 

decrease. With the revised permissible weight for the 

transport vehicles, the state enforcement authorities 

are requested to rigorously enforce the regulations 

and take strict action against overloading by goods 

vehicles on roads. Similar issue exists in other 

developing countries too, for example according to a 

case study of Indonesia as provided by (APEC 

Vietnam, 2017), 22% of trucks exceed the legal 10 

tonne single axle dual tyre limit. In Central Java, 38% 

of trucks exceed pavement design limit. 6.5% of the 

axle loadings that exceeded the 10-tonne limit caused 

90% of pavement damage. 

Overloaded trucks also add to air pollution in the 

city as well, as emissions from such vehicles is 

significantly higher than trucks weighing within the 

prescribed limits.  

Challenges associated with Weigh-in-Motion 

(WIM) system is installing sensors in the roadway 

pavement. They require temporary roadway closure, 

pavement cuts for placing the sensors. Pavement at 

the site must be sufficiently smooth for a minimum 
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distance before and after the location of the weight 

sensor to minimize the influence of vehicle dynamics 

on the weight measurements as mentioned in (Weigh-

in-motion, Pocket Guide, 2018). A huge maintenance 

and rehabilitation cost of WIM is required to increase 

lifespan of WIM installation.  

As a potential use case of ITS solution for Traffic 

Safety on highways serving central and state 

requirement to curb overloaded vehicle on national 

and state highways, we propose a smart IoT sensor-

based technology. This system is easy to handle by its 

users, portable, and requires minimum cost to 

maintenance, difficult to defeat and provide reliable 

information to the concerned regulators by 

continuously monitoring and estimate weight from 

moving vehicles on road. 

Vehicle’s weight and its relationship to road 

management is been identified as an important topic 

of research in Transportation Engineering. In this 

paper, we brief accelerometer-based sensing 

techniques that are being used to determine 

behaviours of vehicle dynamics in real-world 

scenario of heavy-duty vehicles. The state-of-the art 

Vehicle’s Weight Estimation by (Phong X. Nguyen et 

al., 2018) uses smartphone’s acceleration data with 

statistical features to predict the weight. However, the 

method requires the vehicle to be at certain speed 

range of 20-22 kmph to estimate vehicle’s weight 

accurately and inconsistent for other speed ranges. In 

real-time scenarios the vehicle’s weight requires to be 

monitored continuously for violations, which limits 

above method for such deployment.  

In this paper, we aim to extend the method to 

overcome the mentioned challenges, (a) evaluate 

model performance consistency at different vehicle 

speed profiles while vehicle is in motion on road, also 

including vehicle in static state i.e., engine idling 

condition; and (b) assess the optimal sensor location 

for deployment on vehicle by evaluating with 

heterogenous vehicle data.  

Initially, a feasibility study was conducted to 

estimate the vehicle’s weight method on data 

obtained from different sources. The method failed to 

provide a stable result due to variability of data source 

as identified in Table 1. We then study in detail 

different speed profiles of vehicle undergone during 

the journey and propose an improved multiple linear 

regression model by extracting more statistical 

features from linear acceleration data which shows 

high significance with load factor. The improved 

method estimates vehicle’s weight with an average 

error of 1800 kg, which accounts for 5.5% of true 

average vehicle’s weight with vehicle in idling 

condition; and 1932 kg, which accounts for 5.7% with 

vehicle under constant speed range. We also compare 

the model performance with other speed profile. We 

extend the validation of our improvised method on 

Indian road segment considering variability of data 

with combinations of vehicle factors such as vehicle 

class type, manufacture make, load, and goods. The 

results obtained confirm the validity of applying the 

improved method for determining the weight of 

vehicle across vehicle class types and for all speed 

ranges.  

As a pilot project we likewise mount sensors on 

three different locations in each vehicle to evaluate 

the performance of our proposed solution and assess 

which sensor location mount is ideal for our solution 

considering as a system.  

The rest of the paper is organized as follows. 

Section 2 discusses related work on vehicle’s weight 

estimation. Section 3 presents our proposed method. 

In Sections 4 and 5 we present our experimental setup 

and evaluation of the experimental results. In Section 

6, we discuss the strengths and weaknesses of our 

method. We conclude in Section 7 with a summary 

and details on future work. 

2 RELATED WORK 

We identify that Weigh-in-Motion (WIM) 

technology (Magdalena et al., 2020) is the closest 

competitor to the technology under development, 

some of which have accuracy more than 95%. 

However, the technology is based on static sensors 

over which the vehicle moves at low speed (LTBP, 

2016). This solution however is limited to toll way 

deployment. (Kadlecek et al., 2005) describes a 

weight estimation method that measures the energy 

output from engine of a given vehicle and measures 

the acceleration derived of it. Here, we take the 

inspiration of including energy as one of the 

explanatory features to our model. (Jyotishman 

Ghosh et al., 2017 and Nan Lin et al., 2019) describes 

a real-time vehicle mass estimation from CAN data 

and drivetrain torque observation. This technique 

considers different driving forces acting on 

longitudinal motion, where majority of contribution 

is due to traction and braking forces. (Viengnam 

Douangphachanh et al, 2014), describes collecting 

sensing data from android smartphone. They find a 

relationship of acceleration data with road roughness 

condition and its significance partially dependent on 

speed. This work is being investigated in frequency 

domain to analyse the behaviour of road roughness on 

an average speed. (Joshua E. Siegel et al., 2015), 

explore a novel application of fault detection in 
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wheels tires and related suspension components in 

vehicles. The smartphone is mounted vertical on 

dashboard of a vehicle and validation is performed on 

at least two different vehicle model. The approach 

mentioned in this research, is referred for further 

analysis in our proposed development. (Phong X. 

Nguyen et al., 2018), uses smartphone-based sensor 

to estimate vehicle overloading, and claims to achieve 

an average 5.89% error on true vehicle's weight, 

however the model requires the vehicle to run at 

certain speed range only. For other speed ranges, the 

model error is high, and smartphone is placed on 

truck chassis within an encapsulated box. These two 

factors inspire us to derive at a more robust solution 

experimenting on different vehicle model and roads 

of Indian highways.  

The benefit with the proposed method is, we will 

be able to assess at what speed zone the model 

performance is high; and which placement of mobile 

sensor on vehicle gives least accuracy error against its 

actual weight. For vehicle overload detection as a 

system, one can further make use of the classification 

method, provided, payload weights are known prior; 

and included as an exploratory variable to model as 

described by the author, which is currently not in 

scope of this work. 

3 IMPROVISED VEHICLE’S 

WEIGHT ESTIMATION 

METHOD  

 

Figure 1: Vehicle Overloading Control System (Phong, 

2018). 

Described in Figure 1, is the proposed ubiquitous 

system for detecting suspicious overloaded vehicle 

running on highway and send notification to 

concerned authorities in real-time. A smartphone 

mounted on the vehicle is enabled for capturing the 

vehicle registration, driver information and transmit 

along with data collected by sensors via cellular 

network to the centralized server. The capture of data 

is enabled batch-wise, which is received at analytics 

data server where our proposed model is deployed for 

prediction of weight as part of backend process. The 

estimated weight is compared with legal permissible 

weight to determine if vehicle is overloaded in the 

system. If vehicle is determined to be overloaded, the 

vehicle and driver information are notified to the road 

authorities, traffic police, and logistic company. 

Based on the event information shared to the 

authorities a penalty will also be processed and sent 

to the driver of vehicle. All these processes are 

automated, and remotely monitored with high 

efficiency.  

Table 1: Comparison of data specifications from two 

different sources.  

 
 

To improve the accuracy of Vehicle’s Weight 

Estimation (VWE), our methodology is based on the 

significant correlation of vehicle’s payload on 

vertical acceleration got from smartphone’s 

acceleration sensor data. Heavier the payload lesser 

dispersed are the vertical acceleration and vice versa 

for vehicle with no payload or partial payload. The 

payload material also significantly plays a role which 

can be considered as a future work considering the 

amount of data availability. Along with the statistical 

features being considered from the baseline method, 

we propose more features considering the higher 

order analysis and frequency analysis of vertical 

acceleration data. We continue to improve the 

multiple linear regression model to improve accuracy 

of VWE solution. The model is evaluated on 75-25 % 

ratio of dataset. In our observation, the vehicle at 

static i.e., idling condition and vehicle with constant 

speed profile shows stable response of vehicle’s 

vertical acceleration. Due to minimum impact from 

road surface condition; and engine response on 

acceleration/deceleration event. 
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Figure 2: Depiction of random pair of velocity profile segments ‘Flat’, ‘Accelerating’, and ‘Decelerating’ for ‘Empty’ and 

‘Loaded’ vehicle. 

Therefore, it is essential to consider the influence 

of such statistical factors including the vehicular 

velocity while considering a generic estimation 

model to predict weight.  

In this section, a comparison of data specification 

got from two different sources; observations of data 

analysis with vehicle under ‘Empty’ and ‘Loaded’ 

conditions; identification of vehicular speed 

category; and construction of estimation model are 

described below. Here, we do not consider the 

different load category within the class of vehicle 

model, since it is already proved in baseline model 

(Phong X. Nguyen et al., 2018). The supervised 

classification model result for identifying different 

vehicle load category, can be included as an encoded 

exploratory variable to improve estimation accuracy 

of multiple linear regression model.  

As indicated in Table 1 the accelerometer data 

received from vehicle source ‘A’ is compared with 

accelerometer data got from vehicle source ‘B’. It is 

observed, the sensor placement, mounting, insulation 

and vehicle trip parameters as mentioned are 

different; and thus, sets the challenge to existing 

baseline model to predict accuracy with high 

precision. Here, we compare the results and propose 

features which can be utilized for prediction of 

vehicle weight at different speed categories and 

smartphones positioned at different locations.  

3.1 Velocity Profile Analysis  

We observe in total the trip information has had 

varied range of speed pattern, which may be due to 

(a) terrain, (b) traffic conditions, and (c) road 

conditions. To evaluate the obtained data for 

feasibility study, we investigate the response of 

baseline VWE model with different patterns of 

velocity profiles. The different velocity profile is as 

presented in Figure 2. 

From the velocity profile, we consider sub-portion(s) 

of raw data as indicated in different colours in Fig. 2 

comprising off and classified to categories such as:  

i. Flat response (same range of speed)  

ii. Accelerating response (velocity ramp up) 

iii. Decelerating response (velocity ramp down) 

3.2 Feature Extraction 

The single trip vertical acceleration sensor data is 

investigated both in time and frequency domain. In 

time domain, we explore the relevance of statistical 

features derived from ‘Empty’ and ‘Loaded’ dataset 

to estimate vehicle weight. The details of time-

domain analysis are as mentioned in 3.2.1. In 

frequency domain, we analyse the spectral 

information of measured raw acceleration data, 

details are as mentioned in 3.2.2.  

3.2.1 Time Domain Analysis 

Considering z-axis of tri-axial accelerometer i.e., 

linear accelerometer; the vertical acceleration 

captures effect of longitudinal movement of a body 

i.e., vibration from road with effect of mass. From 

each dataset ‘Empty’ and ‘Loaded’, a defined length 

of window sample (here we consider 5 second), non-

overlap in nature; from which ‘N’ number of 

segmented outputs are generated. These segmented 

raw data are further used for feature extraction.  

 To analyse in detail, we consider the vertical 

acceleration (z-axis) data, with an average response 

of 10 segmented data for a defined window size (5 

seconds) is as shown in Figure 2. 

The features derived are further described below. 

i. Average of Upper and Lower Acceleration. 

The upper and lower acceleration threshold value is 

set +/- 1 of median value of vertical acceleration for 

each window sample computed. The mean of data 

points satisfying the condition is calculated. 

Acceleration value along z-axis of source ’B’ data is 

different from z-axis acceleration value of source ’A’ 
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dataset; this is due to change in sensor placement, 

orientation and vehicle model, refer Table 1. In case 

of such variations, a possible method to rectify can be 

by applying Euler transformation. To negate the 

effect of different orientation with placement of 

sensor, one possible solution is to consider the 

transformation in android application interface. In 

this experiment, we have considered the 

transformation matrix to be included for sensor axis 

correction in our second phase of evaluation where 

we consider different sensor position. 

 

Figure 3: Average response of z-axis vertical acceleration 

profile for ‘Empty’ and ‘Loaded’ dataset. 

ii. Proportion of Upper and Lower Acceleration. 

Based on the upper and lower acceleration threshold 

value set, we consider the ratio of data points in upper 

& lower proportion range to total number of samples 

in the window (refer Figure 3, red highlighted 

portion). 
 

iii. Standard Deviation. 

Is measured to quantify the amount of variation in 

signal. Consider the random time-series signal 𝑋𝑖 

Number of variables available in the data distribution 

and denoted by 𝑁. 

The standard deviation is calculated as shown in  
Equation 1. 

𝜎 =  √
∑ (𝑋𝑖 − 𝑋)2𝑁

𝑖

𝑁
 (1) 

 

iv. Mean Absolute Difference. 

Is measured to compute the average absolute 

difference of discrete values within a window sample. 

From Figure 3, it is observed the number of data 

points considered in Proportion of upper and lower 

acceleration (within highlighted red box), is lower in 

‘Loaded’ set when compared to ‘Empty’ set. This 

constitutes the relationship between mass and 

acceleration. The magnitude information got from 

continuous time-series data alone is in-sufficient for 

a model to predict the vehicle’s weight.  

 

Henceforth, in this feasibility study, in addition to 

already considered baseline features, we explore the 

influence of statistical features derived from higher 

order moment of probability distribution of each 

dataset. 

The primary hypothesis of this research is that the 

accelerometer data parameters both unique and 

derived has significant impact on the weight 

estimation of a vehicle. To validate the hypothesis, 

we consider the probability distribution of sample of 

data from each ‘Empty’ and ‘Loaded’ cases, 

respectively. The statistical hypothesis considered to 

evaluate the relation of histogram to weight is;   

 
𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝐻0: 

𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 ℎ𝑎𝑠 𝑛𝑜 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑤𝑒𝑖𝑔ℎ𝑡 

 
𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝐻1:  

𝐻𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 ℎ𝑎𝑠 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑤𝑒𝑖𝑔ℎ𝑡 

The formulation of test statistic is to compute the 

measure of significance of feature set and weight. We 

use p-value to weigh the strength of evidence against 

the null hypothesis. One-sample T-test in R is 

considered for the features mentioned here after, 

whose p-value <2.2e-16, indicates strong evidence 

against the null hypothesis. 

Probability distribution function (PDF) is a 

statistical function that describes all the possible 

values and likelihoods that a random variable can take 

within a given range. Here, we normalize the relative 

probabilities by a number 𝑁 (number of elements in 

the input data) as shown in Equation 2: 
 

𝑣𝑖 =
𝑐𝑖

𝑁
 (2) 

 

where, 𝑣𝑖  is the bin value 

𝑐𝑖  is the number of elements in the bin 

 

From PDF of 2 consecutive segmented data of 

‘Empty’ and ‘Loaded’ datasets (refer Figure 4), the 

corresponding ‘Median and ‘Standard Deviation’ are 

plotted. The green dotted line plotted in Figure 4, 

marks the median for (a) Empty (8.25 g) and (b) 

Loaded (8.65 g). The red dotted line indicates the 

Standard deviation (Sd) computed for (a) Empty 

(1.31) and (b) Loaded (0.52). 

The Standard deviation (Sd) has reduced for 

‘Loaded’ case, but not sufficient to validate 

null hypothesis H0. 

Henceforth, we consider alternative indicators of 

distribution, i.e., third and fourth order moment of 

distribution Skewness and Kurtosis. 
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Figure 4: An example of Probability density with quartiles, 

Sd, Median, and Mean for (a) ‘Empty’ and (b) ‘Loaded’ 

case. 

v. Skewness and Kurtosis. 

Skewness, measures the degree of distortion from the 

symmetrical bell curve or normal distribution. It is 

measured as the third moment of probability 

distribution as indicated in Equation 3. 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
∑ (𝑋𝑖 − 𝑋)3𝑁

𝑖

(𝑁 − 1) ∗ 𝜎3
 

(3) 

In general terms, a normal distribution will have a 

skew of zero under a bell curve; in our 

experimentation for Flat Response of velocity profile, 

on an average shows positive skewness; ‘Empty’ (on 

an average = 0.13) case being more skewed than 

‘Loaded’ (on an average = 0.037). This response is 

subject to vary case to case. 

Kurtosis is measured as the fourth moment of 

probability distribution as indicated in Equation 4. 

They measure extreme values in either tail, here 

in Figure 4(b), it is observed persistence of tail 

behaviour highlighted in red as an example; and 

narrow Peakiness of distribution for ‘Loaded’ (-0.02), 

when compared to ‘Empty’ (0.02) as seen in Fig. 4(a). 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
∑ (𝑋𝑖 − 𝑋)

4𝑁
𝑖

(𝑁 − 1) ∗ 𝜎4 
(4) 

vi. Quantiles. 

Is statistical measure with cut points dividing the 

range of a probability distribution into continuous 

intervals with equal probabilities. In our experiment, 

it was observed the Standard deviation (σ) for normal 

distribution is not sufficient; hence Quantiles (2σ, 3σ) 

i.e., Q1, Q3 are considered. 

 

vii. Energy. 

From Figure 5, it is observed there is high 

significance of vehicle weight with amount of energy 

dissipated from vehicle. Heavier the load, higher the 

range of energy. Hence, in consideration to 

improvement of baseline model we include ‘energy’ 

variable in final regression equation. 

 

Figure 5: Relationship of Energy with weight of vehicle. 

Thus, in this experiment, with measure of 

Kurtosis, Skewness, Quantiles, and Energy derived 

from sample windows; we can validate the rejection 

of  null Hypothesis H0. 

3.2.2 Frequency Domain Analysis 

In this research, the frequency response of 

acceleration measured under two conditions with 

vehicle Engine in ON state and with payload (kg) are 

(a) vehicle idling and (b) vehicle in motion. For data 

measurement, the assumption is as the vehicle’s 

engine is ignited (ON), the sensor recording begins, 

by which the accelerometer measurement starts 

recording the vibration due to throttling of engine and 

chassis; and with payload added to empty vehicle, 

there is expected longitudinal force acting against the 

mass lowering the vibration amplitude when 

compared to information gathered from empty 

vehicle alone. Further to this, our proposition is, 

overload of vehicle occurs with payload added when 

vehicle is brought to a halt and idling (stationary with 

engine ON). Henceforth, we analyse for both vehicle 

in idling state along with vehicle in motion. We 

consider the Welch’s power spectral density (PSD) 

method, also called the periodogram method for 

estimating power of a signal at different frequencies. 

The PSD is computed for (a) Vehicle at Rest/Idle, and 

(b) Vehicle in motion with signals sampling 

frequency at 50 Hz. From power spectrum in Figure 

6, it is observed for (b) Vehicle in motion, there 

appears presence of prominent signal strengths as 

highlighted in red arrow in frequency range [5 to 20] 

Hz infused due to certain external factors unknown to 

trial. Whereas, in (a) Vehicle at Rest/Idle, the signal 

has a smoother roll-off when compared to PSD in (b); 

which indicates the signal is free from influence of 

other external factors except that of vehicle’s engine; 

and suitable for extracting information from vehicle’s 

linear accelerometer sensor data and its relationship 

with mass.  
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Figure 6: Power spectral density response of (a) Vehicle at 

Rest/Idle and (b) Vehicle in motion with sampling 

frequency of 50 Hz. 

viii. FFT Function. 

In addition, since the vibration component in this test 

experiment is unknown, we limit ourselves to 

compute amplitude and phase response of the signal 

only from each sample window; and add to the feature 

set list. 

The additional indicator features of accelerometer 

data derived from time-frequency analysis as detailed 

in 3.2 are listed in Table 2. This table contains 

features considered apart from time domain features 

considered in baseline solution. 

3.3 Estimation of Vehicle’s Weight  

During the evaluation process, stepwise bi-directional 

Akaike information criterion (AIC) regression 

algorithm is used to derive the best features from the 

accumulated feature set list (Total of 20 in number) 

as mentioned in 3.2. The final model may contain 

smaller number of features to reduce the complexity 

but maintain same level of accuracy or better. For 

evaluation purpose, 75% of data sample created are 

used for Training and remaining 25% for Testing. 

AIC regression algorithm was implemented over a 

batch of data samples considering the new set of 

feature list; a set of best features were provided as 

output and referred as final model. 

Table 2: Summary list of additional time-frequency 

statistical indicators considered. 

 

Results of evaluation on improvised method and its 

comparison with baseline model is presented in 

section 4 for further discussion. 

4 FEASIBILITY STUDY AND 

PRELIMINARY RESULTS 

Based on the input shared as ground truth, we identify 

the trip begin and end time-stamp in seconds for 

‘Empty’ and ‘Loaded’ vehicle trip respectively; here 

a continuous 2 hour sensor inputs of vehicle running 

with and without load condition are extracted from 

raw data for experiment evaluation. The sensor inputs 

extracted are GPS, 3-axis accelerometer, and 

gyroscope data information. The data is processed at 

a sampling rate of 50 Hz. As ground truth, for 

example, Empty refers to vehicle (truck) curb weight 

of 16000 kg; and Loaded refers to vehicle (truck) 

gross weight of 33900 kg after loaded with goods 

weighing 17900 kg. The reference to time of vehicle 

running with and without load are also captured. The 

afore mentioned analysis is conducted offline. We are 

currently in final phase on development of system 

that can automatically capture the above-mentioned 

sensor information in real-time.  

4.1 Baseline Evaluation 

We evaluate the vertical acceleration with baseline 

model considering the null hypothesis that velocity 

has no relationship with weight of vehicle. In Table 

3, in 2nd and 3rd column we project results of VWE’s 

mean absolute percentage error (MAPE) for baseline 

solution with and without velocity condition 

respectively; in 4th column VWE response with 

improved model without any velocity conditions, and 

in 5th column i.e., last column we represent the 

results obtained of improved VWE model 

considering a flat response pattern of vehicle velocity. 

Note: In this vehicle data, the highest speed range 

observed is 15.0 to 20.0 m/s. 

Table 3: Baseline vs Proposed model with and without 

velocity condition. 
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Table 4: Error rate (MAPE) of different velocity profile vs 

engine idling state. 

 

4.2 Evaluation on Velocity Profiles 

Considering the improved model to efficiently predict 

vehicle’s weight we continue to evaluate data for 

possible different scenarios.  

 
(a) 

 
(b) 

Figure 7: Error rate measure of flat response trials vs Engine 

idle state (a) with ‘mean.vel’; (b) without ‘mean.vel’ 

variable. 

As described in Figure 2, section 3.1, different 

velocity profile of vertical acceleration is considered, 

and their respective MAPE (error rate) are tabulated 

in Table 4. We also compare results against the 

Engine Idle state as explained in frequency domain 

analysis in 3.2.2. For this experiment, a 5 sec window 

size for each of the responses are considered; the 

prediction performance is gathered individually for 

‘Empty’ and ‘Loaded’ case and an overall error rate 

of model against each of the response is tabulated in 

last row in Table 4. 

Additionally, we evaluate the VWE model and its 

dependency with velocity for various random pair of 

flat response segments as shown in bar graph in 

FigureFigure 7. The error rate results are projected 

where (a) refers to VWE response considering its 

dependency with velocity within the segment, and (b) 

without considering velocity variable in improvised 

model.  

5 RESULTS OF ACTUAL DATA 

After the feasibility study of improved VWE method, 

we evaluate this model on actual data collected from 

Indian road segment. Here, the smartphones are 

mounted at three different locations on to the chassis 

of each vehicle as shown in Figure 8. The smart-

phones in Placement 2 &3 are put in a case to restrict 

any free movement of smartphone within the case 

during the journey as shown in Figure 9. The 

smartphone in Placement 1 is placed over the 

dashboard of the vehicle and tapped to avoid any 

lateral shifts or any accidental fall-off. We do not 

make use of mobile holders here, as it may lead to 

additional vertical vibration infused to the 

acceleration data.  

The process flow considered for VWE model is as 

shown in Figure 10. Each of the steps are explained 

in detail in below sub-section. 

 

Figure 8: Illustration on placement positions of mobile 

sensor on vehicle planned for data collection. 

 

Figure 9: Examples of smartphone placements on vehicle. 

5.1 Data Collection 

The data collection method is carried out based on the 

below mentioned conditions and were collected from 

Indian roads.  

▪ To confer two or more reference vehicles from 

target vehicle group with repeated runs (trips). 

▪ The reference vehicles will be driven on its 

regular routes, with different load condition, thus 
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study is conducted under dynamic vehicle 

environment unlike in a controlled setup. 

▪ Details of each vehicle regarding their 

manufacture make, age, suspension types, 

number of axles, goods being carried, route(s) 

considered, running start and end time, and goods 

loading factor are gathered in a checklist and 

referred as ground truth information per trip.  

▪ The actual gross weight (GVW) of vehicle are 

also recorded for each vehicle trip as ground truth 

to evaluate the model.  

 

Figure 10: Process flow of VWE project. 

5.2 Smartphone Orientation 
Calculation  

Knowledge of smartphone’s placement on vehicle at 

three different position is important to assess the 

reliability of collected data. On vehicle’s placement-

1 position, a mobile phone is installed on dashboard 

secured with double tape. In placement-2 and 

placement-3 the smartphones are packed inside an 

insulated case and secured at the bottom of the vehicle 

chassis at around centre of gravity (CoG) and near 

rear axle suspension. The two smartphones are 

restricted of free movement inside the box. However, 

it is observed, with different vehicle make, the 

provision for tying the insulated case with 

smartphone would need to be different (as shown in 

Figure 11); which in turn results in rotation of sensor 

axis with reference to vehicle’s reference frame (x-

axis, y-axis, and z-axis).  

 

Figure 11: Smartphone installation under vehicle chassis 

and their different orientations. 

In order to acknowledge the relation between 

smartphone-to-vehicle orientation as referenced by 

(Johan et al., 2019), in their study on “Smartphone 

placement within vehicle” and the smartphone’s 

placement in the vehicle, we compute a 3-axis Euler 

rotation in Equation 5, as a pre-liminary step to 

correction. 

𝑣′ = 𝐴𝑣 =  𝑅𝑧(𝛾)𝑅𝑦(𝛽)𝑅𝑥(𝛼) (5) 

where, 𝑅𝑥(𝛼) refers to counter clockwise rotation 
around x-axis;  
𝑅𝑦(𝛽) refers to counter clockwise rotation around y-
axis and 
𝑅𝑧(𝛾) refers to counter clockwise rotation around z-
axis. 

5.3 Data Calibration or Conditions 

It is observed the model performance alters for 

varying input sets such as (i) speed zone (very low, 

low, medium, high to very high); and (ii) sample 

window size (1 sec to 5 sec of epoch size).  

For automating the process of computation, we 

consider the following sequence combination of 

parameters of input vertical acceleration data i.e., 

sensor location, load condition (vehicle is loaded or 

empty), window size and speed zone. 

Initially, we considered the model performance 

evaluation, with varying non-overlapping sampling 

window ranging from 1sec to 5sec, at a sampling rate 

of 50 Hz. However, it was observed, as the sampling 

window increases the performance of model drops 

due to lack of continuous data; hence, for analysis 

purpose we resort to minimum 1sec sampling window 

with an assumption that each segment holds 

continuous datapoints.  

Additionally, we consider the average speed of 

each segmented dataset as an independent feature to 

regression model considered.  

5.4 Feature Extraction 

To evaluate the model, we make use of all the time 

and frequency domain features mentioned in section 

3.2.  

5.5 Model Evaluation 

We confer to two or more reference vehicles 

availability for this experiment. From 21 vehicle trips 

data available, four of the trip information had to be 

discarded due to loss of data. For model evaluation, 

from 17 trips, we identify three vehicle class dataset 

and their use cases defined are as indicated in Table 

5. The results of considered cases 1, 2 & 3 as 

mentioned are evaluated considering the statistical 

features derived from vertical acceleration data, 

including the average of speed considered per 

segment. Evaluation is represented in three different 

conditions of data sample. 
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Table 5: Test cases with varying vehicle and load 

conditions. 

Test 

Cases 

Vehicle 

Criterion 

Load 

Capacity 

Load 

Condition 
Goods Route 

Case1 Single Single Different Different Different 

Case2 Different Different Single Single Different 

Case3 Different Single Single Single Different 

5.5.1 Vehicle Running State 

We fit a multiple linear regression model which 

minimize sum of the squared residuals using 

accelerometer features. In this section, each of the 

smartphone placement results are presented for 

running condition of vehicle. We compare estimated 

results with actual weight as ground truth to evaluate 

the model. For error determination, we consider 

MAPE as before. This defines on an average what is 

the error of the model trained.  

Case 1: Light Duty Vehicle – Evaluation of single 

vehicle (12T capacity), with varying load condition 

(<50%, 75%, 100%), carrying different goods 

material. Consider all four loaded datasets; a k-fold 

cross-validation based evaluation method is carried 

out as the given number of data sample to split is 

limited with varying load condition.  

Case 2: Heavy Duty Vehicle – Evaluation of 

different vehicles, carrying different goods and load 

condition. 

For training we consider trips all loaded with same 

material, for example, cement on vehicle having 

tonnage capacity of 49T, 43T and 35T respectively. 

For testing, we consider unseen trips loaded with 

capacity of 49T, 31T, 36T and 43T carrying 

similar/same material.  

Case 3: Over Dimensional Cargo – Evaluation of 

Trailer type truck. Dataset comprises of different 

vehicle, same manufacture makes, with full load 

condition (100%), carrying same goods material, but 

comprises of only 3 instances.  

Considering the above cases, on an average the 

accuracy of different vehicle classes considered are as 

listed in Table 6. 

5.5.2 Vehicle Idling State 

Additionally, we also analyse the data for idling 

condition of vehicle. For comparison, we consider the 

vehicle running and idling state of Case1: Light Duty 

vehicle, since a single vehicle is being used for 

multiple trips. The accuracy measure of vehicle in 

idling state is as indicated in Table 7; however, the 

number of datapoints available are less.  

Table 6: Summary of VWE for different use cases. 

 

We then consider evaluating VWE with different 

speed condition of vehicle. The speed calculated from 

smartphone’s GPS feeds are divided into 5 different 

speed zones such as, speed zone1 range 0 to 3 m/s (0 

– 10 km/h); speed zone2 range 3 to 6 m/s (10 – 20 

km/h); speed zone3 range 7 to 10 m/s (20 – 40 km/h); 

speed zone4 range 11 to 14 m/s (40 – 55 km/h); and 

speed zone5 range 15 to 20 m/s (55 – 80 km/h).  

Table 7: Summary of VWE for Case1 with Vehicle 

Running and Idling State. 

 

Since, speed is considered as a feature, and to 

assess robustness of model, we further examine if 

model’s accuracy is consistent across different 

driving speed zones identified. Here, we consider all 

loaded data Placement1-Dashboard position of Light 

Duty vehicle only, to verify the variability or 

relationship of VWE with vehicle speed information 

as referenced in Figure 12. 

 

Figure 12: Graph of speed zone vs model error for all loaded 

conditions of Light Duty vehicle case. 

An Empirical Study on Low-cost, Portable Vehicle’s Weight Estimation Solution using Smartphone’s Acceleration Data for Developing
Countries

53



6 DISCUSSION 

VWE technology based on acceleration and GPS data 

collected by smartphone in logistics vehicle is 

validated using multiple linear regression model. We 

identified additional statistical features derived from 

vertical acceleration whose response shows 

significant importance pertaining to vehicle vibration 

information. 

• Considering the improvised multiple linear 

regression model, we evaluate real data with 

different velocity profile. From table 4, it 

indicates that (i) ‘Flat response’ shows better 

performance i.e., reduced error rate when 

compared to (ii) Accelerating response and (iii) 

Decelerating response. 

• Flat response shows reduced error rate of 6%. 

• To test further, we conducted few more trials by 

selecting random pairs of flat response segment. 

It is observed, vehicle speed responses with flatter 

(constant) velocity profile shows reduced error 

rate in prediction of VWE, when compared to 

trials which shows some amount of variation in 

vehicle speed. These variations can be attributed 

due to road surface condition and/or traffic 

conditions. 

• In this experiment, we confirm that in moving 

vehicle scenarios the “velocity of vehicle” has 

high influence in accurate prediction of vehicle’s 

weight. 
 

• Case 1: Light Duty Vehicle placement1-

Dashborad, sensor location shows on an average 

accuracy error of 6.87% for vehicle data 

comprising of 12T and 10T. 

• Since, single vehicle was used for to-and-from 

trips, we validate with assumption that vehicle is 

being driven by a single driver; hence, assuming 

driving pattern influence on vibration data to be 

unchanged. Stats from Figure 12, shows 

consistent model performance across varying 

speed zone, whereas, in (Phong et.al., 2018) 

research work it is observed model performs best 

under speed zone of 20 – 22 km/h. 

• We also validate results with vehicle in idling 

state, under the assumption, external factors such 

as vehicle dynamics, road condition, and other 

environmental parameters will not affect vibration 

data captured from sensors. We observe the idling 

values of data got from Light Duty vehicle class, 

shows improved accuracy by at least 5 % from its 

running state, i.e., with overall highest accuracy 

of 98% when compared to state of vehicle in 

motion as referenced from Table 7. 

• Case 2: Heavy Duty Vehicle from Table 6, 

considering model accuracy error on an average 

across all trips, shows that placement1 – 

Dashboard has an MAPE value of 5% lower error 

rate when compared to the other two sensor 

location. 

• When vehicle trip carrying different goods 

material was tested against Heavy Duty vehicle 

class model, the performance drops. This 

indicates the carrying goods material also has an 

inference on feature engineering during model 

learning process. However, it requires to be 

confirmed with exploratory data approach. 
 

• Case 3: Over dimensional cargo the configuration 

of vehicle regarding its design, axle distribution, 

number of wheels are different and require further 

studies. 

7 CONCLUSIONS 

A machine learning model considering statistical 

parameters of vertical acceleration applied for 

evaluation of overloaded vehicle using Indian vehicle 

dataset is introduced in this paper. The developed 

VWE model shows improved and consistent accuracy 

considering vehicle engine idle state and flat response 

of velocity for both ‘Empty’ and ‘Loaded’ dataset 

scenario. It is observed from our studies moving 

vehicle’s acceleration response is highly influenced 

by velocity measure of vehicle. For validation on 

installation location, three sensor placements on the 

vehicle are considered to determine the feasible 

sensor position for system integration. For which, the 

developed model was evaluated considering different 

vehicle class type based on their tonnage. It is 

observed, on an average, model performance gives 

low MAPE error on dashboard, for vehicle carrying 

same goods to full capacity. The model accuracy is 

observed to be consistent at all speed range of vehicle 

motion, which makes our technology reliable for real-

time assessment of vehicle’s weight.  

As a continued research we are investigating deep 

learning-based regressor model on time series data 

considering different rate of load filling on vehicle. 

Other candidates for research improvements are: 

• To study the impact of different axle 

configuration and vehicle’s suspension type 

on accelerometer data. 

• The impact of road grade condition, driving 

behaviour pattern, which in-turn influences 

vibration on vehicle.  
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As a system, we propose integration of VWE 

technology to on-board unit alike AIS-140 vehicle 

system which abides to the law enforcement 

regulation mandated by the government.  
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