
Generating Automatic Unit Tests of JavaScript Code from UML
Class and Activity Diagrams

Agnieszka Malanowska a and Adrianna Małkiewicz-Błotniak
Warsaw University of Technology, Institute of Computer Science, Nowowiejska 15/19, Warsaw, Poland

Keywords: Automatic Test Generation, Unit Tests, JavaScript, UML, Class Diagram, Activity Diagram, Jest, StarUML,
Test-driven Development.

Abstract: As testing phase plays a significant role in the software lifecycle, all facilitations that can speed up and
automate this process seem to be very useful. One of the biggest group of approaches covers automatic test
generation. In this paper, we describe our solution for fully automated unit test generation from UML class
and activity diagrams. We have adapted and completely redesigned two algorithms from the literature. The
first of them tests conformance of types of attributes and method return values between the class diagram and
class implementation. The second one serves as a basis for testing all paths of the activity diagram. As a result,
we generate tests in dynamically typed language, JavaScript, in the format required by Jest testing framework.
We have implemented this approach in the extensible UML2Test tool, a plug-in to StarUML modeling
environment. The tool generates complete executable unit tests from the UML model, so it can be used in
conjunction with the test-driven development methodology. Usefulness of our approach and tool was
successfully verified on the exemplary system for recruitment support.

1 INTRODUCTION

Software testing is a crucial activity necessary to
ensure that the implemented software can be released
without significant errors. Unfortunately, this process
requires also much time and effort, so all facilitations
that can speed up the testing phase of software
lifecycle are worth a careful consideration. One
category of such facilitations is test automation,
among which automatic test generation plays a
significant role. Quite often tests are generated on the
basis of the UML (OMG, 2017) model.

There are various approaches to automatic test
generation from UML diagrams. Testing compliance
of the UML model and the source code is particularly
important when the teams working on the design and
the implementation are disjoint. Checking
compatibility of types used in the implementation is
especially vital in dynamically typed programming
languages, where it is impossible to determine
variable type before the code execution. It seems that
among many test generation approaches, there is a
lack of solutions suited for dynamically typed
languages, such as JavaScript (JS). This fact and the

a https://orcid.org/0000-0001-8876-9647

popularity of the UML as a modeling language and JS
as a programming language motivated our work on
the UML-based JS tests generation.

In this paper, we present an approach to fully-
automated generation of JS unit tests from the UML
class and activity diagrams. To achieve this, we have
modified two algorithms from the literature and
combined them into one solution (Małkiewicz-
Błotniak, 2020). The first algorithm we used is an
adaptation of (Pires et al., 2008) method to generate
JUnit tests which check the conformance of the class
implementation and the class diagram. The second
approach is based on the (Kurth et al., 2014) solution,
in which test data to cover all paths on the activity
diagram are obtained. Our modifications of
algorithms led to generation of complete unit tests in
JS, according to the syntax defined by Jest (Jest)
testing framework. We have also implemented them
in UML2Test tool (Małkiewicz-Błotniak, 2020), an
extensible plug-in to StarUML (StarUML) modeling
environment. The main novelty of this work is the
adaptation of algorithms to support test generation in
dynamically typed language, JS. Our contribution is
also the new design of the test generator architecture

Malanowska, A. and Małkiewicz-Błotniak, A.
Generating Automatic Unit Tests of JavaScript Code from UML Class and Activity Diagrams.
DOI: 10.5220/0010401401890196
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 189-196
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

189

and combination of two independent algorithms into
one useful tool, which was successfully verified on
the exemplary system for recruitment support.

The rest of the paper is organized as follows. In
Section 2, we briefly discuss the related work on
UML-based test generation. Section 3 describes the
original algorithms we have taken advantage of. In
Section 4, there is an exhaustive description of our
solution, including modifications of original
algorithms and architecture of our tool. Section 5
presents the example of usage of this tool and results
of experiments. Section 6 concludes the paper.

2 RELATED WORK

The topic of test generation is very wide and one of
its many branches uses UML model as an input.
Below we present only a small excerpt from the very
rich literature on UML-based test generation.
Different approaches exploit various types of the
UML diagrams. Generated tests can also take many
diverse forms. Although the most useful are
automatically generated tests ready to be executed,
such full solutions are not as common as one may
expect.

One of the oldest publications on test generation
from UML diagram is the one by (Offutt et al., 1999).
The authors propose the UMLTest tool which
generates system tests using UML state machine
diagram as an input. Their tool does not generate fully
automatic tests, but only test input data, test scenario
and expected results. This approach covers 3 of 4 test
coverage levels defined by the authors, i.e. transition
coverage level, full predicate coverage level and
transition-pair coverage level. The complete
sequence coverage level was not implemented, as it
requires additional information about the real use case
of the software (Offutt et al., 1999).

Similar output is also generated by the UTG tool
proposed by (Samuel et al., 2009) and implemented
in Java. In this case, the activity diagram is used to
prepare test data, test scenario and test postcondition.
The authors use program slicing approach. They map
the activity into the flow dependency graph and
execute the edge marking algorithm. This approach
covers all paths of the activity diagram. At least one
test case for each path is obtained, boundary testing
criterion is also applied.

Sequence and state machine diagrams serve as an
input to the method and tool described by (Barisas et
al., 2013). Again, only test input data and test
scenarios for manual execution are generated. They
cover integration testing level and their approach

offers twofold method of test data generation. Input
data are generated either randomly or using symbolic
execution. One of the biggest drawbacks of this
approach is that, although the generated tests should
be as independent of the application code as possible,
the tests cannot be obtained without the existing
source code and have to be created again after
introduction of changes in the code.

Quite different approach is presented by (Arora et
al., 2020). The activity diagram serves as an input for
test scenario generation. In this case, the modified ant
colony algorithm is exploited. To overcome the
difficulties resulting from this algorithm (long
execution time and danger of local optimum
selection), the authors have modified it and added the
orientation factor. As this approach is based on the
heuristic, it still takes quite long to obtain the results,
but the authors indicate that it gives better results than
traditional genetic algorithm and basic ant colony
optimization. The described method can be used only
for a concurrent part of the activity diagram.

3 ALGORITHMS USED

Our approach for JS automatic unit test generation is
based on two algorithms from the literature. Here we
present the original approaches and highlight some
issues with them.

3.1 Testing Conformance of Class
Definition with Class Diagram

The first algorithm that inspired our work was
proposed by (Pires et al., 2008). The authors describe
generation of fully automated design tests from the
class diagram using Model Driven Architecture
(MDA) approach (OMG, 2014a), implemented as an
Eclipse plug-in. They claim to have succeeded in
obtaining executable JUnit tests for simple design
rules which check the conformance of Java classes
and their design on the class diagram in terms of
(Pires et al., 2008): attributes and method signatures
(conformance of type names), generalization and
association.

Only the first category of design tests is described
in (Pires et al., 2008) and we have focused only on it.
Although the tests that only check the compatibility
of types of attributes and return values of methods
between the class diagram the source code may not
seem practically useful, especially when other
automation mechanisms (e.g. UML-based code
generation) are exploited, they turned out to be quite
valuable in our case. Firstly, in the dynamically typed

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

190

language, there is no easy way to check the
conformance of types in the implementation with
expectations. Secondly, there are still many projects
in which developers manually implement the
designed architecture. Moreover, often the design and
implementation are performed by the separate teams,
so the probability of error introduction increases. It all
convinced us that the idea of type conformance
testing is worth a new adaptation.

(Pires et al., 2008) implement their approach
using the MDA framework. They used existing UML
metamodel published by OMG as a source and Java
Abstract Syntax as a target Java metamodel available
in Eclipse. The concrete models of those source and
target metamodels are class diagrams and Java or
JUnit code. The rules of transformation between the
input and output model are defined using the ATL
language. To access the information about the code
structure, Pires et al. reuse their previously developed
DesignWizard (DesignWizard) library, which offers
an API to access the structure of the code by reading
Java bytecode. The ATL transformation rule defined
by (Pires et al., 2008) consists of names of the:
transformation module, input and output metamodels
(i.e. UML2 and Java Abstract Syntax), rule, source
element from the input metamodel (i.e. Class) and
target elements to which the source will be
transformed (i.e. Java output). The authors present
only the extract of the whole transformation rule.

At the beginning of the JUnit test generated by
(Pires et al., 2008), the DesignWizard object is
created on the basis of the indicated Java project.
Then, specific class under test is obtained from the
Java code using the DesignWizard object’s API.
Expected names and types of attributes and names
and return values of methods are read from the class
diagram and hardcoded in the string arrays. Then, two
separate loops check the conformance of types for
attributes and methods. In each case, the Java field or
method representation is obtained by the
DesignWizard object on the basis of the Java class
name and the name of the class member defined in the
UML model. Then, an assertion verifies whether the
string representing the UML type of the given
member is the same as the name of the member type
obtained from the DesignWizard representation of the
Java bytecode.

3.2 Testing Conformance of Method
Implementation with Activity
Diagram

The second approach we have taken advantage of is
proposed by (Kurth et al., 2014). That paper describes

a method of test data generation from the activity
diagram with OCL (OMG, 2014b) constraints. The
activity diagram is transformed into an AMPL
(AMPL) program describing all control flow paths of
the input diagram. Such program is then transferred
to a constraint solver to obtain values of variables for
each path of the original diagram, which form the test
data. The authors implemented their approach in the
tool called Activity Tester and claim that it can
generate fully automated unit tests in C++. Moreover,
this tool is said to be a part of the bigger Eclipse plug-
in, Partition Test Generator (ParTeG). However, the
paper (Kurth et al., 2014) focuses only on the UML-
AMPL transformation and experiments with different
constraint solvers. Generation of fully automatic C++
unit tests is not described there.

The input activity diagram supported by the
(Kurth et al., 2014) transformation should represent
one UML operation and can contain actions, control
nodes and control flows. OCL constraints can be used
for every action (as local postconditions, written in a
note) and control flow (as guards). All attributes of
the class owning the given method and all parameters
of this method can be referred to in constraints. The
constraints and properties and parameters used inside
the constraints will be represented in the resulting
AMPL model. The whole transformation is
performed by means of symbolic execution.

As the authors of (Kurth et al., 2014) indicate,
execution of each path of the activity diagram is
modelled as a series of states. They define the
activation set as a subset of all states in which the
given action or control flow is being executed and
indicate that there exists one such activation set for
each action with a local postcondition and each
control flow with a guard. OCL constraints are
represented as AMPL constraints and can be enabled
or disabled for each state (Kurth et al., 2014). Local
postconditions of actions can use the @pre mark,
which means that they refer to the value of the given
variable in the previous state. Guards describe only
the relationship between variables within a state.
Only integer, float and boolean variables are
supported in this approach.

The resulting AMPL code consists of declarations
of parameters and variables, specification of
constraints and activation sets for the constraints
(Kurth et al., 2014). The authors also point out that
boundary values of variables are much more useful
for testing purposes than the others, so they add the
linear objective function to the AMPL model to
enforce boundary values detection (Kurth et al.,
2014). The authors also introduce an early
elimination of infeasible paths (Kurth et al., 2014),

Generating Automatic Unit Tests of JavaScript Code from UML Class and Activity Diagrams

191

which uses the modification of the depth-first search
(DFS) algorithm. Feasibility of the given path is
verified by execution of the constraint solver on it.
There are also special parameters of the pruning
algorithm: number of steps of the algorithm
performed without feasibility checking, maximum
desired path length and maximum number of test
cases.

The paper (Kurth et al., 2014) mainly describes
the transformation from the activity diagram to the
AMPL program, an interface common for the
majority of constraint solvers. The AMPL model is
used as an input to the solver (selected for specific
problem nature), which is expected to generate values
of variables satisfying conditions specified on all
paths of the diagram. Those values form the test data.
Successful experiments with different types of
problems and solvers are reported by (Kurth et al.,
2014), but they are performed manually – no
automation of constraint solver usage is presented.

4 UML2Test

We have redesigned the algorithms described in
Section 3 and preserved only the core ideas of the
original methods. Those adaptations of two distinct
algorithms were also integrated into one tool,
UML2Test (Małkiewicz-Błotniak, 2020). It is a plug-
in to the StarUML (StarUML) modeler, which has a
JS API. Tests generated by UML2Test are prepared
for the Jest (Jest) testing framework and can be
executed fully automatically. As the generated tests
check the conformance of implementation with the
UML model, both the design and implementation
have to exist for the tests to be successfully created
and executed. However, to only generate tests without
running them, one does not need an existing
implementation of the designed system. It allows for
usage of our solution in a test-driven development
approach.

Decisions made during the adaptation of original
algorithms result from the selected development
environment and availability of JS libraries. As our
modifications of methods are closely related to the
UML2Test architecture, we firstly describe the latter
and then present the former.

4.1 Architecture

UML2Test consists of three main modules. The first
one loads the project from the StarUML modeler and
transforms it to the internal representation defined for
our tool. The second module is responsible for test

code generation. It prepares textual representation of
files with JS tests compatible with Jest framework.
Both modules offer easy extensibility, as they
implement simple interfaces and the rest of the
implementation refers only to those interfaces. The
third module is used to generate test cases and is
necessary only for the algorithm based on (Kurth et
al., 2014) approach. Test cases store input data and
expected output for all paths of the activity diagram.
The module responsible for test case generation
employs a constraint solver (to find test data and
expected results, as in (Kurth et al., 2014)) and a
parser (to parse OCL constraints from the activity
diagram). All modules are managed by the main class
of the plug-in, called UML2Test. The latter is run by
the StarUML environment using its public API. The
high-level illustration of UML2Test architecture is
presented in Figure 1.

Figure 1: UML2Test architecture.

4.2 Modifications of Algorithm based
on Class Diagrams

The approach described by (Pires et al., 2008) is
based on the MDA architecture and uses a specific
DesignWizard tool to perform code inspection of Java
classes statically. Our architecture, as well as the
target language, differs completely from theirs. We
only reuse their idea that from the class diagram tests
checking conformance of types can be generated. We
perform test generation for a dynamically typed
language in accordance with UML2Test control flow.

We assume that the input class diagram is correct
and only five JS primitive types (string, number,
boolean, bigint, object) can be used on this
diagram. In the first stage, StarUML representation of
the whole project is read by UML2Test and is

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

192

transformed into our internal representation. The
transformation uses Lodash (Lodash) library as a
functional paradigm helper. JS test generator is
executed on this internal representation and prepares
the textual output, which then will be saved in the test
files. Test generation itself consists of three stages
and is repeated for each class. All members of a given
class are considered, also those inherited from
superclasses, as all generalization hierarchy is
traversed during test generation.

Firstly, the class under test from the source code
is imported into the unit test file. Then, for each
attribute which has type defined in the class diagram,
a separate test is created. Unlike (Pires et al., 2008),
we test the code written in a dynamically typed
language, so types have to be determined in runtime.
Thus, in every test an instance of the tested class is
created. In the second line of each test there is a
comparison of types. We write an assertion to check
if the type of the implemented attribute is the same as
in the UML model. The type from the UML model is
read from our internal project representation and
hardcoded in the test code. The actual attribute from
implementation is obtained dynamically from the
previously created instance of the class under test. To
check its type, we use JS typeof operator.

The last stage of class test generation is similar.
Tests are generated for each method, for which the
return type was defined and is a primitive JS type.
Again, the type returned by the implemented method
can be obtained only dynamically, so the method
needs to be executed within the test. An instance of
the class is created in every such test. Moreover, to
execute a method, correct arguments need to be
provided. We achieve this by defining mock-ups of
all parameters. The only worth information is the type
of the return value, so we can pass any values of
arguments of expected types. We randomly select
values of parameters using Chance (Chance) library.
As the tests have to be repeatable, we define a
constant seed at the first usage of this library. The
result of method execution is assigned to a variable.
Finally, the assertion checks whether the type of this
variable is compliant with the hardcoded type
obtained from the class diagram.

4.3 Modifications of Algorithm based
on Activity Diagrams

Our adaptation of the method proposed by (Kurth et
al., 2014) is also very different from the original. The
aforementioned paper describes only test data
generation, while we propose a fully automatic
approach to unit tests generation. Here we assume the

correctness of the input diagrams again. The
constraint solver we use, Constrained (Constrained),
supports only integer variables, so we assume that all
variables in the input activity diagram are integers.
We also expect that the initial node of the diagram is
related to a note with a method signature. As in the
original solution (Kurth et al., 2014), all actions can
have notes with their local postconditions, possibly
with @pre marks, and guards can be placed on
control flows. All constraints should be written
according to the specified grammar (Małkiewicz-
Błotniak, 2020) for the subset of OCL language. Test
conditions are extracted automatically from the
activity diagram.

Similarly to the adaptation described in the
previous section, we transform the StarUML project
into our own internal representation. Then, test cases,
which will be stored in test files, are obtained. Here
we use our adaptation of (Kurth et al., 2014) method.
Firstly, it is necessary to generate all possible paths in
the graph representing the input activity diagram. We
use Graphlib (Graphlib) library to perform operations
on the graph. All paths are found using the modified
version of DFS algorithm. The authors of the original
method also used modified DFS, but their
modification focused on infeasible path elimination
(Kurth et al., 2014), while our version of DFS ensures
that all of the paths are found, even if they have some
nodes in common. We achieve this by marking
currently processed node on the stack as unvisited
after successfully finding a path.

Once all paths are obtained, values of test data (i.e.
parameters of the method, referenced attributes of the
enclosing class and expected return value) for each
path are generated. They are calculated with the help
of the constraint solver, we have chosen a JS tool
named Constrained (Constrained). This solver has
some limitations, e.g. it supports only integer
variables, but has also a great advantage – it always
finds boundary values satisfying given condition, so
no separate boundary value analysis is necessary.
Before using the solver, the string representations of
constraints are parsed. We have defined a simplified
grammar of a subset of OCL language, which can be
found in (Małkiewicz-Błotniak, 2020). The parser for
this grammar is implemented with the help of Nearley
(Nearley) library and employs a lexer defined using
Moo (Moo) library. To analyze abstract syntax trees,
we use functional paradigm utilities provided by the
Lodash (Lodash) library. All new variables and
constraints are added to the Constrained solver. As
this tool supports only non-strict inequalities, we have
added a transformation that allows for usage of all
types of inequalities on the input diagram. Strict

Generating Automatic Unit Tests of JavaScript Code from UML Class and Activity Diagrams

193

inequality symbols are replaced with their equivalents
which are true for integers (as only they can be used
on the diagram), i.e. > symbol is replaced with ‘>= 1
+’ string and < symbol is changed to ‘<= -1 +’. <>
symbol, used to express that two values are not equal,
is also defined – both rules for < and > operators are
applied. When all constraints on a given path are
parsed and transferred to the solver, the latter is used
to find values of variables that satisfy all conditions
on the path. The return value for this path is also
calculated, as it is just one of the variables specified
in OCL constraints.

Test data for all paths are then delivered to the JS
test generator, which prepares textual representation
of the test code. Firstly, there is an import of the JS
class owning the tested method. Then, separate tests
for each path are created. As those tests check the
behavioral properties of the system, the method needs
to be invoked on an instance of the tested class. Thus,
every test begins with creating such an instance.
Then, all parameters (including attributes of the given
class) are assigned values generated by the constraint
solver. Finally, an assertion checks whether the value
returned by the invocation of method on the created
instance with the specified parameters is equal to the
return value generated by the solver. At the end, the
string representation of the tests is saved in a test file.

Similarly to the authors of the original approach
(Kurth et al., 2014), we use the constraint solver to
generate values of parameters for each path. Unlike
them, we do not transform the diagrams into AMPL
model, but we pass the constraints directly to the
selected solver. We analyze the graph of activity with
the different modification of DFS than this used by
(Kurth et al., 2014). We have formally defined a
specific simplified OCL grammar and substitution
rules for some operators and built lexer and parser to
read the textual constraints. Although we guess that
Kurth et al. also must have used some parser, there is
no description of that in their paper (Kurth et al.,
2014). Moreover, we generate fully executable tests,
instead of test data only. Therefore, although the main
idea remains the same as in the original approach, we
have redesigned and reimplemented it completely,
with our own assumptions and improvements.

5 EVALUATION ON EXAMPLE

To verify the usefulness of our adaptation of
algorithms and UML2 Test tool, we have designed an
exemplary system supporting recruitment process in
a company. Due to the lack of space, we cannot
present the whole model and results here, but they can

be found in (Małkiewicz-Błotniak, 2020).
Unfortunately, we have no access to real-world UML
projects data, so we were unable to validate this tool
on the industrial example.

The purpose of the exemplary system is to
automate tasks related to recruitment tests and
accountancy. As a recruitment support, the system
estimates the level of knowledge of a candidate and
calculates the proposed salary. It is also responsible
for counting the value of the raise for an employee.

Figure 2: Class diagram for the recruitment support system.

Figure 3: Activity diagram for computeLevel method.

The StarUML project for this system consists of
three models: Core (basic classes), Structure (of a
company) and Recruitment (candidates and

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

194

recruitment data). The project contains three class
diagrams (13 classes in total) and three activity
diagrams. The latter were designed for methods that
operate on integers, as only those are supported by
our solution. For brevity, we present here only the
extracts of the whole project and generated tests. As
an example, the class diagram for the Recruitment
model is presented in Figure 2. It is a typical class
diagram, we just assume that only specific JS
primitive types can be used. Tests which check
conformance of the class implementation with its
design are very similar for each class. Below we
present three exemplary tests generated for the
Employee class.

test("checks seniority attribute to
have number type", () => {

 const instance = new Employee();
 expect(typeof

instance.seniority).toBe("number");
});
test("checks fieldOfStudy attribute

to have string type", () => {
 const instance = new Employee();
 expect(typeof

instance.fieldOfStudy).toBe("string");
});
test("checks computeRaise operation

return value to have number type", ()
=> {

 const instance = new Employee();
 const mockedNewLevel =

7347197741891584;
 const result =

instance.computeRaise(mockedNewLevel);
 expect(typeof

result).toBe("number");
});

The test file contains a set of tests dynamically
checking the conformance of types of attributes
between the diagram and implementation. They are
generated for the owned attributes of the Employee
class (first test above), attributes inherited from
superclasses (second test), return values of the owned
methods (third test) and inherited methods. If the
method has some parameters, they are mocked with
random values. UML2Test generated 13 test files
using this algorithm, as there are 13 classes in the
project. Each class contains in average 3 fields or
methods and in this case, total time necessary for test
generation was 12 ms. As a result, 70 simple unit tests
(stored in 13 files) were created.

Figure 3 presents the activity diagram for
computeLevel method. This operation is
responsible for assigning level of knowledge to the
candidate on the basis of the recruitment test score

and time. The initial node of the diagram contains a
note with method signature. All actions that cause a
change of variable values also have corresponding
notes. The @pre mark, indicating the value from the
previous state, is used. We refer to attributes of the
class owning the method under test (i.e. Test class)
using the self keyword. Local variables, such as
level and returnValue, also appear on the
diagram. It is worth noting that the activity diagram
shown in Figure 3 presents a method which operates
only on class attributes, but diagrams describing
methods which exploit both external parameters and
internal attributes of the enclosing class were also
successfully tested, what can be found in
(Małkiewicz-Błotniak, 2020).

As can be seen from the diagram, there are five
possible paths of execution of the computeLevel
method. For every path, a corresponding test was
automatically generated. Tests for two first paths of
this method look as follows.

test("checks path #1 for method
computeLevel", () => {

 const instance = new Test();
 instance.score = 29;

expect(instance.computeLevel()).toBe(0)
;

});
test("checks path #2 for method

computeLevel", () => {
 const instance = new Test();
 instance.score = 80;
 instance.duration = 60;

expect(instance.computeLevel()).toBe(3)
;

});

In each test, an instance of Test class is created,
its attributes which appear on the given path are
assigned values obtained from the constraint solver
and an assertion is invoked on the expected and actual
return values. Due to the usage of the Constrained
(Constrained) solver, the attributes used within the
diagram are assigned boundary values in the test
code. In case of this algorithm, 3 test files were
generated, as there were 3 input activity diagrams. It
took 125 ms to create all 41 individual unit tests.
Although the time required for this algorithm to
complete is much bigger than for the first one, it is
still unnoticeable for a human. It suggests that the
results can be obtained in a reasonable time even for
projects with many more diagrams.

All unit tests generated by UML2Test can be
executed using Jest (Jest) testing framework.
However, if the tests are to be successfully run, a

Generating Automatic Unit Tests of JavaScript Code from UML Class and Activity Diagrams

195

ready implementation of the corresponding JS classes
has to exist. On the other hand, the implementation is
necessary only to run the tests, what allows for usage
of test-driven development approach.

6 CONCLUSIONS

Testing process is one of the most important phases
of the software lifecycle and each improvement in it
is worth a consideration. In this paper, we have
presented our solution for fully automatic unit tests
generation. The tests are created on the basis of the
UML class and activity diagrams and written in JS,
according to the rules defined by Jest (Jest) testing
framework. To achieve this, we have modified two
already existing algorithms. The first one (Pires et al.,
2008) was intended to generate JUnit tests checking
conformance of types of attributes and method return
values between class design and implementation. The
second, proposed by (Kurth et al., 2014) and based on
the usage of the constraint solver, generates test data
for all paths from the activity diagram.

We have redesigned the original methods in order
to generate executable unit tests in a dynamically
typed language, JS. We decided to use this language,
as testing conformance of types for dynamically
typed language is much more valuable than for those
typed statically. Such testing is also particularly
useful in cases when design and implementation are
prepared by separate teams. Our solution is
implemented as an extensible and easy to use
StarUML (StarUML) plug-in, called UML2Test
(Małkiewicz-Błotniak, 2020). The approach
presented in this paper was verified on the exemplary
system supporting the recruitment process with
promising results.

The most serious limitation of the approach
described here is the fact that only integers can be
specified on the input activity diagram. The other
drawback is the lack of industrial evaluation of the
approach caused by the lack of the industrial data. As
the UML2Test generates simple unit tests checking
the conformance of class member types and covering
all paths of the methods, no additional constraints,
such as pre- or postconditions referring to the state of
the whole system are generated. Finally, some
disadvantages of the approach can be caused by the
fact that we rely on the UML models as inputs.
Although the UML has some drawbacks, e.g.
diagrams can be interpreted differently or used only
partially, its main advantages are popularity and ease
of understanding. In the future, we are planning to
perform experiments with other tools, e.g. constraint

solvers, as well as further modifications of the
algorithms or additions of the new ones. For instance,
tests checking conformance of types could be
extended to cover the types of class attributes coming
from association relationships.

REFERENCES

All URLs were valid on 21.11.2020

Arora, V., Singh, M., Bhatia, R., 2020. Orientation-based
Ant colony algorithm for synthesizing the test scenarios
in UML activity diagram. Inf Softw Technol. Vol. 123.
1–21. DOI: 10.1016/j.infsof.2020.106292.

Barisas, D., Bareisa, E., Packevicius, S., 2013. Automated
Method for Software Integration Testing Based on
UML Behavioral Models. In Communications in
Computer and Information Science. Vol. 403. Springer.
272-284. DOI: 10.1007/978-3-642-41947-8_23.

Kurth, F., Schupp, S., Weißleder, S., 2014. Generating Test
Data from a UML Activity Using the AMPL Interface
for Constraint Solvers. In Seidl M., Tillmann N. (eds)
Tests and Proofs. TAP 2014. Springer. 169-186. DOI:
10.1007/978-3-319-09099-3_14.

Małkiewicz-Błotniak, A., 2020. Generating tests based on
UML models [BSc thesis]. Warsaw University of
Technology, Institute of Computer Science (in Polish).

Offutt, J., Abdurazik, A., 1999. Generating tests from UML
specifications. In Intl Conf on UML. Springer. 416-429.
DOI: 10.1007/3-540-46852-8_30.

OMG, 2014. Model Driven Architecture (MDA): MDA
Guide rev. 2.0.

OMG, 2014. Object Constraint Language: Version 2.4.
OMG, 2017. Unified Modeling Language: Version 2.5.1.
Pires, W., Brunet, J., Ramalho, F., 2008. UML-based

design test generation. In SAC '08: Proc of 2008 ACM
symposium on Applied computing. ACM. 735-740.
DOI: 10.1145/1363686.1363859.

Samuel, P., Mall, R., 2009. Slicing-based test case
generation from UML activity diagrams. ACM
SIGSOFT SEN. Vol. 34. No. 6. ACM. 1-14. DOI:
10.1145/1640162.1666579.

AMPL, https://ampl.com/.
Chance, https://chancejs.com/.
Constrained, https://github.com/Wizcorp/constrained.
DesignWizard,

https://github.com/joaoarthurbm/designwizard.
Graphlib, https://github.com/dagrejs/graphlib.
Jest, https://jestjs.io/.
Lodash, https://lodash.com/.
Moo, https://github.com/no-context/moo.
Nearley, https://nearley.js.org/.
ParTeG, http://parteg.sourceforge.net/.
StarUML, http://staruml.io/.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

196

