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Abstract: With the embarkment of this technological era, a significant demand over programming modules can be 
observed among university students in larger volume. When figures grow exponentially, manual assessments 
and evaluations would be a tedious and error-prone activity, thus marking automation has become fast 
growing necessity. To fulfil this objective, in this review paper, authors present literature on automated 
assessment of coding exercises, analyse the literature from four dimensions as Machine Learning approaches, 
Source Graph Generation, Domain Specific Languages, and Static Code Analysis. These approaches are 
reviewed on three main aspects: accuracy, efficiency, and user-experience. The paper finally describes a series 
of recommendations for standardizing the evaluation and benchmarking of marking automation tools for 
future researchers to obtain a strong empirical footing on the domain, thereby leading to further advancements 
in the field. 

1 INTRODUCTION 

1.1 Background and Motivation 

Programming assignments are an essential element in 
computer programming modules taught at university. 
With the growth of class sizes, evaluating 
assignments become challenging (Higgins, Gray, 
Symeonidis, & Tsintsifas, 2005) and researchers 
explore novel methods to automate assessments. 
Marking automation has advantages like speed, 
consistency, reduced need for post-marking 
moderation, better utilisation of human-hours, and 
eliminate favouritism and bias from the marking 
(Ala-Mutka, 2005). As an illustrative example, the 
authors’ university has 10 programming modules in 
the undergraduate programs, each with 2 
assignments, with an average of 1000 students, 
resulting in 20,000 programming assignments per 
semester. An average time of 20 minutes was 
estimated to mark each programming assignment 
which results in 400,000 human hours spent on 
marking each academic semester. 

 

Figure 1: Hierarchy of marking automation approaches. 

Automatic marking approaches can fall into two 
broad categories – Blackbox testing and Whitebox 
testing as shown in Figure 1. 

Blackbox testing, as per its definition, focuses on 
the program producing the expected output for a 
given input. A number of Blackbox testing 
approaches like Unit Testing exists and is used in a 
number of commercial and non-commercial tools 
(Rahman, Paudel, & Sharker, 2019) like REPL.it, 
GradeScope, Moodle-Extension, Stacscheck by St 
Andrews, etc. The major drawback of Blackbox 
testing is that (a) programs should be developed with 
an interface or API to provide inputs and obtain outputs 
(via console, files, methods arguments and return 
values, etc.) and (b) to produce an output, the program 
should be syntactically correct, and run without errors 
– both of which cannot be guaranteed with student 

Kuruppu, T., Tharmaseelan, J., Silva, C., Arachchillage, U., Manathunga, K., Reyal, S., Kodagoda, N. and Jayalath, T.
Source Code based Approaches to Automate Marking in Programming Assignments.
DOI: 10.5220/0010400502910298
In Proceedings of the 13th International Conference on Computer Supported Education (CSEDU 2021) - Volume 1, pages 291-298
ISBN: 978-989-758-502-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

291



submissions. On the other hand, Whitebox Testing 
assigns a mark by reading the submitted source code, 
whether Blackbox testing is possible or not. It is usual 
practice in universities to include a marking rubric that 
has both a Blackbox and Whitebox component e.g. 50 
marks for the program producing the correct outputs 
for a given set of inputs, and 50 marks by reading the 
source code – looking for correctness, neatness and 
good coding practices, etc. 

1.2 Contributions and Organisation 

The main objective of carrying out this research work 
is to study the holistic domain of marking automation 
of programming assignments and provide a 
panoramic view of the existing research approaches 
in the domain. As illustrated in Fig.1, authors will 
study only Whitebox testing approaches from four 
different aspects, i.e., Machine Learning (ML) 
approaches, source graph (SG)-based approaches, 
programming languages (PLs) based approaches and 
static code analysis (SCA) approaches. As 
programming assignments, authors consider a piece 
of any computer program provided as students’ 
answers. This paper does not address parts of the 
assignment which have a different component in the 
SDLC (e.g. design), where submissions may have 
flowcharts, UML diagrams, test reports, coverage 
reports, and integration reports etc.  

The research paper is structured as follows: in 
section II, authors provide a review of four identified 
approaches i.e. ML, SG, PLs, and source code analysis. 
These are critically evaluated on three main benchmark 
criteria i.e. accuracy, efficiency, and user-experience 
(UE). The section III provides a ‘meta-review’ based 
on cross-literature-comparison to identify the strengths 
and weaknesses in the current state-of-the-art, thereby 
recognizing the suitability, scope, applicability, 
limitations, and research gaps. A discussion of the 
findings in sections II and III, providing the authors 
interpretation, insights, and arguments is available in 
the section IV. Finally, the section V provides 
recommendations based on the findings and 
discussion, for further advancement of the field. 

2 LITERATURE REVIEW 

2.1 Machine Learning (Ml) 
Approaches 

ML is one of the main approaches used to evaluate 
the source code marking. Some existing ML 
approaches follow the holistic approach. In the study 

of (Srikant & Aggarwal, 2014), Linear Ridge 
Regression and Support Vector Machine (SVM) 
combined with different kernels based on rubric and 
hand-graded predictions have been used as the 
regression techniques. Also, (Srikant & Aggarwal 
2014) uses random forests to determine the closeness 
of the logic. The studies used one-class modelling as 
the Prediction model. According to the results, 
ridge regression showed better cross-validation and 
error validation results than SVM regression. 
It showed that more than 80% of the predicted grades 
are within its corresponding expert rated grades. 
Moreover, regression against expert-grades can 
provide much better grading than the ubiquitous test-
case-pass based grading and rivals the grading 
accuracy in marking.  

Some studies provide personalized feedback for 
the student submissions using ML, based on factors 
like code quality and similarity (Zhou, et al., 2018) or 
either fix the code minimally and present feedback for 
a given solution against a marking rubric (Singh, 
Gulwani, & Solar-Lezama, 2013). In (Zhou, et al., 
2018) similarity model distances were found by 
transforming the features derived from the 
assignment. (Singh, Gulwani, & Solar-Lezama, 
2013) used a two-phase translation solution to 
find minimal corrections. The effectiveness of the 
tool was 64% of feedback for all incorrect attempts 
within 10 seconds on average. The results were more 
convincing in (Zhou, et al., 2018) approach that could 
be viable for marking automation with its efficiency 
and the accuracy rate. 

A Rule-based system and linear regression 
models had been used to predict the position of 
compilation errors and assess uncompilable codes 
(Takhar & Aggarwal, 2019). This was achieved using 
n-gram based token prediction approach which is 
called as Make Compliable (MC), Rule Relaxation 
(RR). Then a ML model was developed by combining 
MC and RR as RRMC. Performance measurements 
were median for MC is 0.73, a higher value than for 
RR (which was 0.69). RRMC approach resulted with 
a mean of 0.71 correlations offering best results with 
reduced time and effort. Another technique was 
feature extraction using ML approaches to automate 
marking student codes (Russell, et al., 2018). Linear 
Support Vector Classification (Linear SVC), 
Gaussian Naive Bayes and Multinomial Naive Bayes 
have been used as three practical algorithms to 
classify exam submissions and a holistic approach to 
pick up the pattern from manually marked 
submissions. Convolutional Neural Network (CNN) 
and Recurrent Neural Network were used for feature 
extraction (Russell, et al., 2018). It uses Linear SVC 

CSEDU 2021 - 13th International Conference on Computer Supported Education

292



and Naïve Bayes as scoring functions, and it was 
found that the Multinomial Naïve Bayes (MNB) over 
Gaussian Naïve Bayes (GNB) where the most 
accurate prediction gave a hit-rate of 73.39%. MNB 
with weighted scoring had a prediction accuracy of 
79.03%. Hence, Naive Bayes algorithm shows 
promising results. In (Russell, et al., 2018) the best 
results achieved using features learned via CNN and 
classified with an ensemble tree algorithm. 

2.2 Static Code Analysis (SCA) Tools 

Striewe & Goedicke (2014) suggested the two 
approaches regarding the analysis of source code as 
Abstract Syntax Tree (AST) and Abstract Syntax 
Graph (ASG). Furthermore, recursive methods can 
identify using ASG, based on the inter-dependency 
arcs in between operation declaration and its 
invocation (Striewe & Goedicke, 2014), (Striewe M. 
, 2014). In (Blumenstein, Green, Nguyen, & 
Muthukkumarasamy, 2004), the famous code 
analysis algorithms known as Abstract Interpretation 
for execution path analysis has been introduced. It 
produces higher accuracy, but results indicated lower 
efficiency ratio. The authors have suggested how the 
previous approach can be combined with the classic 
analysis algorithm and elevate the level of 
performance. Automated Static Analysis Tool 
(ASAT) had been considered by couple of tools 
proposed by different studies. Gallier (2015) 
discussed regarding the logical inference introduced 
with the tool called SMT solver. As illustrated in 
Rautenberg (2010), horn clauses and logic 
programming tools would be precursor to achieve the 
most optimum solution by combining abstract 
interpretation and the logical inference techniques 
(Ala-Mutka, 2005), (Cousot, Cousot, & Mauborgne, 
2013), (Vert, Krikun, & Glukhikh, 2013). 

Another study (Vert, Krikun, & Glukhikh, 2013) 
enumerated the most dominating SCA tools such as 
Coverty SAVE Platform, Astree, PC-Lint/Flex Lint, 
and Aegies. In addition, study of (Digitek-labs, 2011) 
would be beneficial due to its unique feature analysis 
considering the dimensions of accuracy and 
performance. In the study of (Buyrukoglu, Batmaz, & 
Lock, 2016), authors performed a comparative 
analysis of SCA tools to check the coding 
conventions of Java which explicitly discussed the 
single versus multi files analysis and their prevailing 
strengthens and weaknesses. Moreover, (Vetr`o, 
2014) suggested that the learning approach would be 
significant in detecting the raised false positives in the 
codebase and successfully removing them using the 

approach of Bayesian inference-based learning model 
with training a neural network. 

2.3 Programming Language based 
Approaches  

(Blumenstein, Green, Nguyen, & 
Muthukkumarasamy, 2004), (Souza, Felizardo, & 
Barbosa, 2016) provide an extensive list of 
assessment tools used to evaluate programming 
assignments and they had presented series of 
classification schemas like assessment types (manual, 
automatic or semi-automatic), approach (instructor-
centred, student-centred or hybrid), specialization 
(tools for contests or for quizzes or for testing) and a 
comprehensive analysis of tools (considering the type 
of verification, language compatibility, 
interoperability with IDEs and LMS, etc.)  that assist 
evaluation of programming assignments. Another 
segmentation is that dynamic analysis of codes 
assessing functionality, efficiency, and testing skills 
of student’s vs. static checks to analyze and provide 
feedback for style, programming errors, software 
metrics, and even design (Ala-Mutka, 2005). 

In (Blumenstein, Green, Nguyen, & 
Muthukkumarasamy, 2004), authors introduced a 
system to assess the student programming 
assignments which are written using Java and C. To 
extend the functionalities of the current system, 
authors have introduced a Java framework where new 
marker modules could be added manually. The 
system GAME caters a better UE by providing a 
simple GUI and the evaluation summery. Authors 
have increased the flexibility through java 
framework. It concluded that system could produce 
high accuracy results due to evaluation process of 
having specific rubric for assignments. A separate 
interpretation of the system will be accessible to the 
students to execute in future developments and 
collect the feedback. 

CourseMarker (Higgins, Gray, Symeonidis, & 
Tsintsifas, 2005) can be used to mark command-line 
driven Java and C++ programming assignments with 
correct configurations. The evaluation happens using 
several stages and internal tools as typographical tool 
(to check layouts), dynamic tool (solutions compared 
against test data), feature tool (check specific 
syntaxes such as “if-then-else” blocks), flowchart 
tool, object-oriented tool and logic tool (to check 
logic circuits) marks at least as well as humans do, 
provides on-demand, impartial feedback, and as a 
bonus saves hundreds of marking hours for the 
academic staff. Another study (Buyrukoglu, Batmaz, 
& Lock, 2016) employs semi-automatic code 
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assessing, considering the program structures like 
sequence and iteration. Novice’s code is compared 
with the manually marked sample and using code 
similarity the rest of the scripts are assessed. Human 
markers may also provide feedback. The process 
includes a segmentation stage, codifying process, 
grouping, and marking.   

Automated assessments using a Domain Specific 
Language (DSL) called Output semantic-similarity 
Language (OSSL) had been proposed in (Fonte & 
Cruz, 2013). A Flexible Dynamic Analyzer 
architecture with the components like OSSL and its 
grammar to specify output specification are 
extensively discussed. The approach supports for 
partial marking of code scripts and for 
interoperability with any automated grading system 
that support for Learning Objects. Immediate 
evaluation is possible by running the program over a 
set of predefined tests and comparing each result (the 
actual output produced by the submitted code) against 
an expected output specification. Yet, authors had not 
conducted a proper evaluation of the approach or the 
DSL, which may limit the paper as a conceptual 
model.   

2.4 Source Graph based Approaches 

Graph is a mathematical model that shows 
connections between elements where it describes 
rules over sets of nodes and edges of a graph. A 
program written in a PL can be transformed into a 
syntax tree by a parser. When additional information 
such as bindings are included in the representation, 
the syntax tree is extended into a syntax graph 
(Rensink & Zambon, 2009). One study gives a review 
of tools useful in automated grading and tutoring in 
the context of object-oriented programming with Java 
(Striewe & Goedicke, 2014). Authors emphasize on 
the necessity of tools being able to process multiple 
source files. According to authors, in pre-processing 
steps, extending syntax trees to syntax graphs with 
additional information helps achieving more flexible 
and exercise specific configurations. When such 
automated tools are more general, more effort is 
necessary to perform specialized tasks. Since learning 
scenarios may require very specialized and even 
exercise specific checks which are not among the 
standard checks offered by program analysis tools, 
these authors suggest that integration of several tools 
can be more productive.  

In (Striewe M. , 2014), the suitability of three data 
structures: Strings, Trees and Graphs has been 
evaluated. As mentioned, trees are limited because 
they only allow one parent per node hence, they could 

not represent different kinds of relations like “is 
defined in” and “is called by” between elements. To 
check for recursive methods, it is necessary to have 
this information. Graph-based representations can be 
used to store this information, because they allow an 
arbitrary number of connections between nodes. 
Therefore, authors concluded that the attributed 
graphs are an appropriate representation of any kind 
of code analysis. Study used TGraphs to handle 
attribute graphs where it designed for efficient 
handling and analysing of large graphs. Queries on 
this graph format are expressed using a query 
language named GReQL. The GReQL for queries on 
TGraphs can be extended by user defined functions. 
In (Striewe M. , 2014) two solutions have been used 
to analyse the syntax graphs: a graph transformation 
tool and a graph query engine. As concluded, both 
techniques can create pre-defined generic sets of rules 
that are independent of specific exercises.  

3 THE META-REVIEW 

3.1 Machine Learning based 
Approaches 

Grades for the programming assignments can be 
evaluated in many ways, among those, ML is 
outweighing the other approaches (Korkmaz & 
Correia, 2019). The reason behind this is the ability 
of “learning” of the model. It can analyse the new 
codes and learn, hence marking structure is up to date 
and more accurate. Here, the focus is on the accuracy, 
efficiency and configurability of different ML 
algorithms found in the literature. Linear ridge 
regression, random forests and kernel based SVM, 
Naive Bayes (Multinomial Naive Bayes and Gaussian 
Naive Bayes), SVM can be identified as most popular 
and effective algorithms used in the literature. When 
comparing, linear ridge regression largely shows 
better cross-validation and error validation results 
than random forests and kernel-based SVM (Srikant, 
& Aggarwal, 2014). Moreover, regression can 
provide much better grading than the test-case-pass 
based grading. When the uncompilable codes to be 
corrected up to some level where if the exams give 
more priority to algorithms and logic, not for the 
program syntaxes. In that case linear ridge regression 
models were best. However, results also shows that 
models built using both, semantic features and test-
cases shows better results. Moreover, developing of 
problem independent grading techniques which may 
be facilitated by efficient one-class modelling 
techniques is shown as a necessity. On the other hand, 
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the proposed algorithms need to train to use for more 
diverse problems which is a need in the future. 

3.2 Static Code Analysis Tools  

Number of SCA tools exponentially grow with the 
advancement of the technology and those support for 
different PLs in different scale, and this paper mainly 
focuses on their contributions over evaluating 
programming assignments. To analyse the source 
code there are two approaches that can be used as 
AST and ASG and the ASG is an enriched version of 
the tree, but it comprises additional arcs (Striewe & 
Goedicke, 2014). Compared to the AST, the ASG 
contains a couple of advantages as it can easily detect 
irrelevant pieces of code, for instance, unused 
methods can be identified using the method 
declaration nodes and ASG is capable of easily 
identifying recursive methods based on the cyclic 
dependency arcs in-between method declaration and 
method call nodes (Novak & Krajnc, 2010). 
Consequently, most SCA tools tend to use ASG as its 
main analytical technique. Some studies suggest 
generating ASG from AST to increase the accuracy 
as a valuable pre-processing step before evaluating 
the source code in programming assignments 
(Striewe & Goedicke, 2014), (Striewe M. , 2014), 
(Gallier, 2015), (Rautenberg, 2010), (Cousot, Cousot, 
& Mauborgne, 2013), (Vert, Krikun, & Glukhikh, 
2013). 

Furthermore, when analysing large volumes of 
programming assignments, efficiency and accuracy 
are the most significant factors to be considered. But 
when increasing the accuracy, the performance factor 
would compensate, hence achieving an optimum 
performance for the highest precision is the key 
concern here. To increase the accuracy, “Abstract 
interpretation” is a well-known code analysis 
algorithm (Cousot P. , 1996) which analyses every 
execution path without violating the reliability of the 
analysis. It analyses paths separately to achieve 
maximum accuracy, but it degrades the performance 
factor in a significant ratio. As a solution the joint 
path analysis could be used, which assumes joining 
variable values at flow conjunction point. However, 
that leads to lower accuracy, but it gains satisfactory 
performance level. Another possible approach to 
increase the precision while using the joint path 
analysis is combining the classic analysis algorithm 
(Glukhikh, Itsykson, & Tsesko, 2012). Nevertheless, 
this dependency analysis partially compensates on 
reducing the level of accuracy because of joining 
paths during the analysis. To further optimize the 
situation dependency analysis implemented using 
logical inference methods and tools such as first and 
higher-order logic (Gallier, 2015), SMT solvers, and 
Horn clauses and logic programming tools would be 
instrumental. Considering the literature Patric Cousot 
suggested a mathematical model of integrating 
abstract interpretation with a logical inference as the  

Table 1: Emerged Static Code Analysis Tools. 

Tool Capability Language support Related work 

Coverity 
SAVE  

1. Provide accuracy 80% - 90% 
2. Detects 7 errors per 1000 LOC 
3.Understand Patterns and Programming idioms (Design Patterns 
intelligence) 
4.Seamless integration with any build system 

C/C++, Java and C# 
(Vert, Krikun, & 
Glukhikh, 2013) 

Astree 

1. Capable of identifying run-time errors 
2. capable of analyzing medium-scale industry-based projects.  
3. Analyze 100,000 (LOC) 
4. The tool can detect dead-code and uses abstract semantic 
domains 
5. Perform their main analysis procedure from top to bottom 

C language  
(Cousot, Cousot, 
& Mauborgne, 
2013) 

FlexeLint/ 
PC Lint  

1. This performs data flow/control flow analysis 
2. It performs the interprocedurally analysis 
3. Tool enhances user experience by user-defined semantic 
checking of functional arguments 

C/C++ programs 
(FlexLint for UNIX, 
Mac OS, Solaris 
platforms) PC-Lint 
for Windows 

(Vert, Krikun, & 
Glukhikh, 2013) 

Aegis 

1. Simple dependency analysis to increase the accuracy. 
2. Can be used as for defect detection and for decision of other 
program engineering tasks 
3. Used to analyze many open-source projects 

C90 and C++ 98 
source code 

(Digitek-labs, 
2011), 

Checkstyle 
1.Find naming convention errors 
2.Identify whitespaces, line, length specific errors, wrong use of 
brackets 

Java code 
(Ashfaq, Khan, 
& Farooq, 2019) 
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most optimized solution (Ala-Mutka, 2005), (Cousot, 
Cousot, & Mauborgne, 2013), (Vert, Krikun, & 
Glukhikh, 2013). Currently there are lots of elegant 
tools available, depicted in Table 1 as a result of 
research and development activities which gains high 
accuracy and performance levels. 

Problem in most code analysis tools is that those 
generate false warnings. It causes a significant drop 
in the precision level of the outcome. The literature 
attempted to fulfil the gap in removing static analysis 
warnings on software quality metrics. A neural 
network has been trained and the Bayesian inference-
based learning model (Vetr`o, 2014) used on top of 
the extracted byte code, and AST used as the 
underlying analysis technique which improves the 
prediction of false positive in SCA. 

3.3 Programming Language based 
Approaches 

Literature can be found with classifying student-led 
or teacher-led tools considering efficiency and 
extensibility has been addressed by LMS or IDE 
extension whereas usability has achieved using 
automated feedback or verification techniques 
(Souza, Felizardo, & Barbosa, 2016). GAME 
(Blumenstein, Green, Nguyen, & 
Muthukkumarasamy, 2004) tool offers a good UE 
with a simple GUI and a summary of the evaluation. 
Authors have increased the flexibility of the system 
by introducing a Java framework to extend the 
functionalities. Since the student answers are 
evaluating over a marking schema, accuracy of the 
results is high. CourseMaker (Higgins, Gray, 
Symeonidis, & Tsintsifas, 2005) can mark at least as 
well as humans do, though they have not given any 
statistics on the fact. The tool is reliable as it uses 
Java’s exception handling mechanisms and provide 
impartial feedback on demand while saving time. 
Extensibility has been considered by customizing the 
exercises or by customizing the marking server, 
enabling integration of additional features. In 
(Buyrukoglu, Batmaz, & Lock, 2016), humans need 
to mark only 32 from a sample of 153 (27%) which 
indicates a reduction of human effort. This system 
provides feedback to students. But the complete 
process of marking highly depends on the question 
preparation and teachers need to pay attention to 
detail at that stage. DSL based approach (Fonte & 
Cruz, 2013) had not carried out a proper evaluation 
study. Hence, accuracy of the tool or efficiency had 
not been addressed. Yet, authors claim that their 
approach is user-friendly and interoperable with any 
other system that support to Learning Objects. 

3.4 Source Graph based Approaches 

In (Striewe & Goedicke, 2014), a review on tools 
useful in automated grading and tutoring is 
conducted. In reviewing the tools, authors have given 
attention on graphs on how to increase the 
configurability of the tools when the syntax graphs 
are used. Authors have not given an attention 
specifically on syntax graphs on the context that how 
the syntax graphs affect on the accuracy or efficiency 
of a tool. But authors have made a general comment 
on how integration of different tools could increase 
efficiency. Syntax graphs are an appropriate 
representation for the code analysis (Striewe M. , 
2014). It makes the solutions more accurate and 
flexible. Authors mention that the attributed graphs 
make it efficient to handle large graphs. Also, authors 
have used a query language on the graphs, which 
provides the configurability on for the user defined 
functions. In another study, graph transformation had 
been used for source code analysis (Rahman, Paudel, 
& Sharker, 2019) which concluded that the graph 
transformations improve the accuracy and flexibility 
of the solution. 

4 DISCUSSION  

The existing literature review discussed four major 
approaches: ML, SG-based, PL-based, and SCA. The 
outcomes were critically evaluated based on the 
dimensions: accuracy, efficiency, and user 
experience. SG-based approach highlighted that, 
syntax graphs provide significant improvement in 
accuracy and flexibility. It further emphasized usage 
of ASG over AST as a valuable pre-processing step.   

PL based approaches suggested some tools that 
enhance the user experience, flexibility, and 
extensibility factors and few cases on how marking 
accuracy is more reliable when compared marking by 
a human-counterpart. Similarly, there are some tools 
discussed under SCA, how it reached the accuracy 
considering the metrices like LOC and types of 
errors. Moreover, SCA show strengths and 
weaknesses in algorithms to reach highest precision 
while keeping the optimum performance. It proposed 
a mathematical model that integrates abstract 
interpretation with a logical inference as the most 
optimized solution. Authors highlight the most 
popular algorithms that researchers used in the ML 
approaches. Linear ridge regression model could be 
predominant due to the unique capability of logic-
based evaluation over syntactical evaluation in 
programming assignments. In the literature of ML, it 

CSEDU 2021 - 13th International Conference on Computer Supported Education

296



is proposed that the algorithms should be trained for 
diverse problems to fulfil the future expectations. 

Across these four identified approaches, it was 
observed that some critical aspects had not been 
considered in the evaluations. Most works (except a 
very few (Singh, Gulwani, & Solar-Lezama, 2013)) 
have not compared their novel approaches against the 
obvious baseline condition – what if the same sample 
was marked by a human? Also, many had not 
considered inconsistencies of accuracy and 
unbiasedness in comparison with human marking. 
Previous studies could not be cross compared since 
authors had measured different aspects, e.g. some 
report on the efficiency of the solution (Striewe & 
Goedicke, 2014), (Novak & Krajnc, 2010) some 
(rarely) on the user-friendliness and configurability of 
the tools proposed (Ala-Mutka, 2005), (Striewe & 
Goedicke, 2014), (Novak & Krajnc, 2010), (Ashfaq, 
Khan, & Farooq, 2019) and some on the accuracy 
(Srikant & Aggarwal, 2014), (Takhar & Aggarwal, 
2019), (Novak & Krajnc, 2010). Therefore, it is not 
evident enough to conclude whether a solution is 
accurate yet inefficient, or accurate and efficient yet 
difficult to configure etc. Given the maturity of the 
domain and the plethora of marking automation 
techniques proposed, a strong empirical footing on 
each approach, measured using generic comparable 
metrics is overdue. 

 Lack of generic “test-samples” for evaluating the 
efficiency, accuracy and user-friendliness of each 
approach is identified a significant challenge. 
Currently, each method is evaluated with different 
marking samples made up by the authors, which 
therefore cannot be cross compared. Another major 
limitation in most work (except a few (Srikant & 
Aggarwal, 2014), (Takhar & Aggarwal, 2019)) is that 
they cannot be seamlessly integrated to existing 
educational platforms such as Moodle. Teachers need 
to install these tools, while configuring runtime 
environments and handling dependencies. Further, 
this process may include obtaining the submissions 
from the LMS platform, marking them using the tool, 
and uploading the marks back to the LMS. Hence, 
interoperability and portability of tools is a non-trivial 
consideration. Though some studies provide feedback 
(Zhou et al., 2018), (Singh, Gulwani, & Solar-
Lezama, 2013) many have not addressed providing 
feedback for student improvement. This is essential 
and becomes more challenging for human markers 
when addressing larger classes. 

 
 
 
 

5 RECOMMENDATIONS 

After scrutinizing the literature, authors would like to 
contribute with some recommendations for marking 
automation. A set of generic “marking-samples” to 
evaluate each proposed marking automation 
mechanism seems critical. This will provide a strong 
empirical footing on the accuracy of each method. As 
a baseline condition, these could be marked by a 
human for comparison. For further accuracy, a 
crowdsourcing approach could be used to obtain the 
human-given mark for the “marking samples”. 
Secondly, these marking samples need to be 
applicable across domains, such as assignments 
written in procedural, functional and object-oriented, 
as well as covering student-submissions that include 
meta-files (e.g. XML, properties, and other 
configuration files). Third, it is recommended to 
standardize a “recipe” of activities and measurements 
for evaluating the UE of each tool for both teacher 
and student. It is obvious that a tool which has utility 
has more tendency to be used if it is user friendly. 
Student feedback is key; hence novel marking 
automation tools need to provide feedback with 
marks within the same tool, or suite of tools which 
work together. Automatic tools emphasize the need 
for careful pedagogical design of assessment settings 
and these solutions need to be interoperable and 
portable. 

6 CONCLUSION 

This paper addresses how literature had studied 
marking automation domain. Strategies had been 
analysed on four specific approaches to propose a 
series of recommendations to be adhered for future 
research in this domain.  
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