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Abstract: Safety issues concerning autonomous vehicles are becoming increasingly striking. Therefore, taking security 

issues of autonomous driving into account such as detection and identification of the vehicle in the 

surrounding is necessary to apply warning messages and braking based on the state of the vehicle. This paper 

develops an end to end deep learning, using different recognition algorithms, to promote the safety of 

autonomous vehicles in terms of controlling the steering and speed of a self-driving car. Two convolutional 

neural network architectures are presented with different number of filters in their layers. The networks were 

trained to take images as input data and scan the raw pixels and convert them directly into steering angle 

command and speed value. Also, an object recognition algorithm is provided which detects and determines 

the objects and their distances from the controlled car to have a collision warning system by using a pre-

trained single shot detector model. All predicted speed values and steering angles, alongside the object 

detection model, are then translated into throttle and braking values while evaluating the models using a 

simulator and real road videos. 

1  INTRODUCTION 

Autonomous cars are vehicles that are able to drive 

using digital technologies without having human 

interventions. Also, less space on road is employed 

by autonomous vehicles, so they reduce traffic jams 

and decrease accidents (Szikora, 2017). Traditionally, 

the implementation of self-driving cars requires going 

through several stages such as low-level perception, 

scene parsing, path planning, and vehicle control, but 

end-to-end learning contributed in reducing the 

number of stages into one stage which is a deep neural 

network. End to End learning gives the neural 

network the chance to transform the raw pixels of 

images into steering commands automatically using 

convolution neural networks (CNN), as the important 

processing steps such as detecting useful road 

features are learned by the model by only having the 

steering angle and the model develops all the 

processing steps together (Bojarski, 2016). Although 

the control of steering angle has shown great 

performance as an end to end application in 

controlling the vehicle, only the steering angle is not 
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enough for the vehicle control. In the current work, it 

is proposed to control the steering angle, speed, and 

braking values simultaneously by using the produced 

models to predict these values and also apply object 

detection and classification on the road to help in 

controlling the vehicle while driving. 

Several researches were done in order to improve 

the system of self-driving cars using end to end 

learning. (Pomerleau, 1988) was the first one to 

introduce autonomous vehicles using the neural 

network by inventing Autonomous Land Vehicle in a 

Neural Network (ALVINN) using fully connected 

layers and it was the first trial of end to end learning. 

(Bojarski, 2016) proposed one of the first successful 

end-to-end learning for self-driving cars network that 

train convolution neural network to transform pixels 

from the front-facing camera to steering angle 

without passing through other processes by detecting 

useful road features with only steering angle as 

training signal with great accuracy. (Farag, 2019)  

described an end-to-end CNN architecture model that 

is used for detecting useful road features to control 

the steering wheel angle instead of going through the 
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process of lane marking detection and path planning. 

The architecture consists of seventeen layers named 

BCNet containing convolution layers and fully 

connected layers that produce the output steering 

angle. (Zhao, 2019) suggested a new deep model for 

achieving autopilot technology by predicting the 

coming model path from the vehicle’s state by using 

a deep learning algorithm which is an end to end 

learning, as it designed a CNN model that has a 

simpler structure in order to decrease the model 

number of parameters which consists of seven layers. 

(Heylen, 2018) introduced a neural network to 

anticipate steering angle command depending on the 

images that were fed into the network. The 

architecture used for the model was based on the 

AlexNet, however by applying some variation for the 

original architecture to improve performance. 

(Fujiyoshi, 2019) proposed a model that will be able 

to control the steering of the vehicle and. the throttle 

in different driving scenarios by getting dashboard 

images and the vehicle’s speed which is given to the 

network which consists of five layers of convolution 

layers that went through the pooling process and then 

flattened and connected to three fully connected 

layers. (Eneh, 2014) discussed acceleration reduction 

of the car once an obstacle is detected 250m ahead by 

an autonomous braking control system using an 

artificial neural network. Deep reinforcement 

learning was used to develop a new autonomous 

braking system that determines automatically 

whether to apply the brake at each step when a 

collision is about to happen using the information 

acquired by the sensors, the brake control strategy is 

taught using the reinforcement learning approach 

known as deep Q-network (DQN) (Chae, 2017). 

(Bamigboye, 2016) used artificial neural networks 

which consist of a pool of simple processing units that 

communicate with each other by sending signals over 

a large number of weighted connections to reduce the 

vehicle acceleration once an obstacle is detected 

100m ahead. Digital image processing and computer 

vision methods were used to detect rear tail lights of 

front cars, and to detect and classify various objects 

(Bamigboye, 2016). In (Liu, 2015), the method 

differs from the literature (Bamigboye, 2016) in the 

detection task as literature (Liu, 2015) combines 

between the vehicle detection and RGB color 

difference to define the state of moving cars brake 

lights by recognizing the specified vehicle from the 

area of interest. Then, consecutive frames are 

compared to detect the brake light state by using the 

color difference threshold of RGB color space to 

develop a rear-end collision warning about the front 

vehicle. (Fujiyoshi, 2019) illustrated how deep 

learning is used in the image processing field and how 

it is related to autonomous driving because it is not 

easy to detect the object from the input image directly 

as it needs to identify the number of tasks first such 

as image identification, object detection, image 

classification, Scene understanding, and specific 

object detection. 

 So far, the previous papers have introduced the 

idea of controlling the speed and the steering of the 

car using end to end learning and different types of 

deep neural networks. Also, digital image processing 

method was used to detect and recognize traffic lights 

of the front vehicles. 

 To the author’s knowledge, no previous work has 

combined the control of speed and steering angle 

using end to end learning with object detection to 

achieve braking. 

The proposed work is implementing a model that 

can be used for controlling the main factors of driving 

a vehicle which are steering commands, speed, and 

brakes. NVidia and DNet-3 networks will be used for 

achieving two models for controlling the steering 

wheel and also two-speed models to predict speed 

values, so they can be compared. Moreover, the speed 

values and steering angles will be used for calculating 

the throttle and braking values for the vehicle. The 

pre-trained model SSD will be employed in detecting 

the objects that surround the vehicle in its 

environment for increasing the safety. 

2  AUTONOMOUS VEHICLE 

CONTROL 

2.1 Steering and Speed Control using 
End to End Learning 

This proposed work is using two different deep neural 

networks which are NVidia and DNet-3 for end to end 

learning for steering prediction and also for speed 

values prediction which contains convolution neural 

layers that differ in the number of filters for each 

network, therefore two different models will be 

produced for each parameter to be compared with 

each other to see which is better for controlling the 

steering wheel and the speed of the vehicle. 

Moreover, the predicted speed values and steering 

angles will be used in calculating throttle and braking 

values. The pre-trained model which is SSD 

MobileNet V1 coco is implemented for detecting and 

classifying the objects that surround the car to add 

more safety for the self-driving car on the road and 

also it affects the value of braking and speed based on 
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the closeness of the object to the controlled self-

driving car. Figure 2.1 is showing a flowchart that 

describes the whole process for the proposed work. 

 

Figure 2.1: Processes implemented to control autonomous 

car flowchart. 

The network used to produce the first model for 

steering and the speed model is based on the NVidia 

model with having some adjustments which are 

adding batch normalization after each layer to avoid 

overfitting (Bojarski, 2016).The network architecture 

of the NVidia model starts with the normalization 

layer and then 5 convolution layers for extracting 

features from the images starting with 24 feature 

maps and ending with 64 feature maps in the last layer 

which have 2x2 strides and 5x5 kernels in the first 

three convolution layers and non-strided convolution 

layer in the last two layers. Moreover, the output of 

the convolution layers is flattened and connected into 

three fully connected layers to produce the predicted 

steering angle and speed value.  

The second network used for producing the 

second steering model is based on the drive network-

3 (DNet-3) (Pal, 2019). The DNet-3 network 

architecture also starts by normalizing the raw data 

and has five convolution layers and four fully 

connected layers. The convolution layers start with 

having 18 feature maps and end with 48 feature maps. 

The 2x2 strides and 5x5 kernels were used in the first 

three layers and the non-strided convolution layer 

with 3x3 kernels was used in the last two layers. 

Besides, the output is flattened and connected to the 

fully connected layers for producing the steering 

angle.  

In the current work, steering angle commands and 

speed values are calculated by sending the images 

recorded from center, right and left cameras into the 

CNN model. The calculated steering angle and speed 

value are compared with the desired steering angle 

and speed for this image and produce an error that is 

the difference between the two steering angles and the 

two-speed values. Mean squared error (MSE) is the 

loss function used to reduce the error between the 

predicted and desired values to make them closer to 

each other as MSE is always used for regression 

networks (Kocic, 2019). MSE loss function is 

calculating the average of the sum of the squared 

differences between predicted and desired steering 

angles and speed values. The equation of MSE is  

(1/N * ∑ (y j – y hat j)2) (Kocic, 2019). 

Adam optimizer is used for optimizing the loss for 

all the models since it is always used for training deep 

learning applications and it outstands other traditional 

stochastic gradient descent methods. Each batch 

includes 20,032 images and the batch size used is 64 

through the training process and the optimum total 

number of epochs is 50. 

All the models implemented are done in python 

using Keras which is the Tensorflow backend. The 

training for the CNN models was done on the desktop 

laptop that is running on Intel i5 and CPU was used 

for running the training code. Dropout was used after 

the last convolution layer with a value of 0.5 to avoid 

overfitting. Furthermore, batch normalization was 

used for all the network architectures after each layer 

to reduce overfitting. Relu was selected as the 

activation function for the entire convolution and 

fully connected layers for all the networks except the 

final fully connected layer uses softmax activation 

function as it is usually used for producing one 

output. 

In the current work, an open-sourced simulator 

was used which is made by Udacity and is built in the 

Unity game development environment, as it is used to 

simulate end-to-end learning for self-driving cars 

(Kocic, 2019). It includes two tracks which are the 

valley track and mountain track that contains different 

and many road features such as right angle curves, 

bridges, rams, and lakes trying to represent real road 

features to improve the learning process for the 

vehicle (Pal, 2019). There are two types of modes 

included in the simulator that is the Training mode 

and the Autonomous mode. The training mode is used 

for collecting datasets, as the human driver drives the 

vehicle using a keyboard in the simulator through the 

track while having three cameras mounted on the 

vehicle for capturing video from all the three views 

(Kocic, 2019). The autonomous mode is used for 
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testing and evaluating the model after training. The 

vehicle in the simulator is controlled by python code 

using http sockets, as it sends steering angle, speed, 

and throttle values to the simulator to drive the car 

(Pal, 2019). 

Data collection was done in the training mode of 

the simulator while driving the car through the whole 

track several times. Images are captured using the 

center, left and right cameras which are mounted on 

the car, therefore there will be three frames for every 

moment and this will give us the chance to increase 

the number of frames in the dataset and cover more 

road features for the better learning process. After 

finishing the training mode, the frames with their 

image title will be stored and a CSV file will be 

created that contains the image title of all the frames 

with their corresponding steering command, throttle, 

brake, and speed values. The steering command is 

represented by 1/r as r is the turning radius in meters, 

and 1/r is used instead of r to avoid singularity while 

moving straight (Bojarski, 2016). The value of 1/r 

will be positive while turning the steering wheel in 

the right direction and will have a negative value 

while turning the steering wheel in the left direction 

and will be zero while moving straight (Bojarski, 

2016). The human driver should try to keep the 

vehicle driving in the center lane while the data is 

being collected, so the car will imitate the driver’s 

way in autonomous driving (Kocic, 2019). 

Many laps were done in the training mode of the 

simulator to create the dataset, but even after 

completing a lot of laps, the dataset is relatively small 

for training a deep neural network that contains a 

huge number of parameters, therefore the model will 

be capable of overfitting the data which will increase 

the error for autonomous driving (Kocic, 2019). In 

addition, end-to-end learning also requires having a 

large dataset to make the vehicle experience various 

different environmental conditions that could happen 

on the road. Data augmentation is the most used 

technique for increasing the dataset and reduce 

overfitting, as it helps in generating different artificial 

conditions. There are many ways to implement data 

augmentation on the images such as horizontal and 

vertical shifts, brightness augmentation, shadow 

augmentation, and rotation augmentation which are 

used for augmenting images used for controlling 

steering angle, but only brightness augmentation and 

shadow augmentation are used for augmenting 

images used for controlling speed, as the rotation of 

images or applying shifts won’t affect the value of 

speed. 

Dataset is collected using the training mode in the 

simulator by capturing video of manual driving. 

Besides, the video is cut into several images which 

are recorded with its corresponding speed, throttle, 

braking, and steering angle in a log file and the 

images are stored in a separate file. In the current 

work, the dataset that includes 5 laps of driving the 

car through the 2 tracks combined together was used. 

The total number of the images recorded from the 

simulator was 50,190 with a resolution of 320x160x3 

as the height is 320, width is 160, and has 3 deep 

channels. The steering angles are normalized between 

-1 and 1 and the speed values are divided by 31 to be 

normalized between 0 and 1. The data was split into 

80% for training samples which are 40,152 images 

and into 20% validation samples which are 10,038 

images as shown in the following table 2.1 

Table 2.1: Image split ratio for training the model. 

 Total Sample 

Images 

Training 

Samples 

Validation 

Samples 

Valley Track 19,338 15,470 3,868 

Mountain Track 30,852 24,682 6,170 

Percentage split 100% 80% 20% 

Images have gone through data pre-processing 

techniques before training, as images have been 

resized into 300x120x3 for training the model. In 

addition, the sky at the top of the image and the car 

front at the bottom were cropped to remove 

insignificant information from the image to speed up 

the training process, and also images are converted 

from RGB to YUV. Figure 2.2 represents the image 

after preprocessing. 

 

Figure 2.2: Preprocessed Image. 

All the images are normalized from a range value of 

(0,255) to (-1, 1) by dividing the pixels by 127.5 and 

subtracting 1 from each pixel. 
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2.2 Autonomous Braking based on the 
Measured Data 

Detecting objects in images could have been done for 

a very long time. But detecting objects in images that 

could be streamed like on videos at 15 or 20 frames 

per second, especially if decent accuracy is required, 

was a big challenge. So TensorFlow is used to make 

the detection task easier. 

To build an autonomous braking system, the 

surrounding objects need to be detected and also 

calculate their distances from the car. If they are far 

away, then they are not a problem, but if they are 

really close then action needs to be taken. The action 

will be a displayed warning to avoid a collision. 

First, a pre-trained model (ssd mobilenet v1 

coco), which is a single shot detector, is downloaded 

and used in detecting and classifying the various 

objects in the image by generating a big number of 

bounding boxes covering the full image. Next, visual 

features are extracted for each of the bounding boxes. 

They are evaluated and it is determined whether and 

which objects are present in the boxes based on visual 

features. Then, overlapping boxes are joined together 

into a single bounding box, where each bounding box 

represents a part of the image where a particular 

object is detected and including the score which 

indicates how the level of confidence for each of the 

objects. 

Then, iteration will be performed through boxes 

in each frame and check the classes of those boxes if 

they are cars, buses, or trucks. After that, the score of 

each class needs to be greater than 50% to make sure 

that the object is detected correctly. 

Now, an approximate distance will be measured 

by calculating the number of pixels the object is taken 

widthwise on the screen. 

Furthermore, the middle point of each bounding 

box that contains the detected object needs to be 

calculated to know where the object is to determine if 

the object is in the lane, far off to the right, or far off 

to the left. And even if the detected vehicles were not 

in the lane of the car and about to change their lane 

into the car lane, that would trigger a warning 

message due to their bounding box size. Based on 

that, two levels of warning will be displayed 

depending on how the obstacle is far away from the 

camera. 

The value of throttle is needed for applying brakes 

as it will be calculated using the predicted steering 

angle and speed values which are the outputs of 

steering and speed models and the equation will be  

throttle = 1 - (predicted steering angle)**2 – 

(predicted speed)**2. 

The value of the throttle will be negative if the 

brakes should be used to slow down the car. 

There are three cases that represent how the 

obstacle is far away: the first case is (Safe) which 

means that the obstacle is far away and there is no 

need to decelerate. As the object is taking less than 

40% of pixels widthwise on the screen. The second 

case is (Watch Out) which means that the object is 

taking between 40% and 60% of pixels widthwise on 

the screen which means the obstacle is getting closer 

and the car needs to decelerate which will be done by 

applying the brake. The braking value will be 

estimated by taking the modulus of the throttle value. 

The third case is (Warning) which means that the 

object is taking more than 60% of pixels widthwise 

on the screen which means the obstacle is very close 

and a collision is about to happen, so the car has to 

brake and the braking value will be changed to 1 

which is the maximum value for braking and also the 

value of throttle will be 0. 

 

Figure 2.3: Processes implemented to display a collision 

warning flowchart. 

3 RESULTS AND DISCUSSION 

After finishing training for controlling the steering 

angle and speed for the two different architectures 

networks, the two networks will be compared with 

each other based on the network parameters, training, 

and validation loss for speed and steering models and 

the computational time taken for training. Models 
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were produced from the training of the networks 

which will be evaluated in the simulator to compare 

their performances on the two tracks. Moreover, 

speed, steering, and detection models will be 

evaluated on a video from a real road. 

3.1 Deep Neural Networks 
Comparative Study  

The two deep neural networks are compared to 

determine the best-produced model to use in our 

simulation. The number of trainable parameters 

depends on the network, connection between the 

nodes, number of layers, and type of layers which 

have a huge effect on the computational time and size 

of the trained model. DNet-3 has 1,214,513 

parameters which are divided into 1,213,881 trainable 

parameters and 632 non-trainable parameters, NVidia 

network has 1,292,113 parameters that are split into 

1,291,321 trainable parameters and 792 non-trainable 

parameters. Table 3.1 will show the number of 

parameters for convolution layers in each model as it 

will be different as a result of the different number of 

filters. 

Table 3.1: Parameters for each layer. 

CNN Models DNet-3 NVidia 

Layer 1 1368 1824 

Layer 2 1084 21636 

Layer 3 18030 43248 

Layer 4 9756 27712 

Layer 5 15600 36928 

Layer 6 1152100 1153610 

BN 1264 1584 

After seeing the values of table 1, it showed that 

increasing the number of feature maps and decreasing 

the number of strides will increase the number of total 

parameters included in the convolution neural layers. 

Moreover, there are several non-trainable parameters 

as a result of using batch normalization to avoid 

having overfitting. Also, the size of the trained model 

and computational time were compared to evaluate 

how the number of parameters affects them. DNet-3 

model has a memory size of 14 MB and has taken 900 

s for completing one epoch, while the NVidia model 

has a memory size of 19 MB and has taken 1100 s for 

completing one epoch which is shown in table 3.2. 

These results show that the memory size of the model 

and computational time take for training increases by 

increasing the number of total parameters for the 

network. NVidia model has a higher number of 

parameters which help in extracting more features 

from the images to increase its performance in 

driving, but it led to an increase in the memory size 

and computational time. 

Table 3.2: Model size and Computational time. 

CNN 

Model 

Memory 

Size (MB) 

Steering Time 

per epoch (S) 

DNet-3 14 MB 900 s 

NVidia 19 MB 1100 

3.1.1 Steering and Speed Models Training 
and Validation Loss 

Training and validation loss is tracked through the 
whole training process. Table 3.3 shows the training 
and the validation loss values for the two models after 
completing the 50 epochs using the MSE loss 
function. 

Table 3.3: Loss values for CNN models. 

 DNet-3 NVidia 

Steering Training loss 0.068 0.0624 

Steering Validation loss 0.0541 0.0521 

Speed Training Loss 0.0076 0.0070 

Speed Validation Loss 0.0115 0.0112 

3.1.2 Evaluation and Simulator 

The steering and speed models of each network are 
tested together on the Udacity self-driving car 
simulation to evaluate their performance on the two 
tracks in the autonomous mode. Table 3.4 presents 
whether the CNN model was capable of completing 
the entire lap or not. 

Table 3.4: Performance Evaluation for CNN models. 

CNN Model 

Finished lap 

on Valley 

track 

Finished lap 

on Mountain 

track 

DNet-3 Yes No 

NVidia Yes Yes 

 

The table showed that increasing the number of 

filters in the convolution layers helped in making the 

NVidia model capable of successfully driving and 
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completing the entire lap in the mountain track which 

has a lot of complex features by predicting accurate 

steering angles before the right angle curves and 

controlling the speed values based on the type of the 

road, while DNet-3 didn’t finish the lap in the 

mountain track as the predicted steering angle and 

speed value wasn’t accurate enough which led into 

making an accident. Furthermore, the models 

successfully drove through the entire lap in the valley 

track as it is much simpler in the road features than 

the other track. After presenting the results, the 

NVidia model is the better model to be used for speed 

and steering prediction. 

The next figure is showing the car while entering 

on a left sharp turn, so the steering angle became 

negative to turn the steering wheel left to continue 

driving on the road. Moreover, brakes are applied to 

decrease the speed of the car before entering the sharp 

turn in order to drive smoothly through the sharp turn. 

 

Figure 3.1: Autonomous driving in the simulator track. 

3.2 Detection Model 

After being able to detect and classify the multiple 

objects, now the approximate distance between these 

objects and the vehicle is determined by calculating 

the number of pixels the object is taken widthwise on 

the screen. After that, the middle point of each object 

is calculated to know where the object is to determine 

if the object is in the lane, far off to the right, or far 

off to the left. Based on that, two levels of warning 

are displayed depending on how the obstacle is far 

away from the camera. There are three cases that 

represent how distant the obstacle is: 

Case 1 (Safe): It means the obstacle is far away 

and there is no need to decelerate. As the object is 

taking less than 40% of pixels widthwise on the 

screen. 

Case 2 (Watch Out): The object is taking between 

40% and 60% of pixels widthwise on the screen 

which means the obstacle is getting closer and the car 

needs to decelerate. 
Case 3 (Warning): The object is taking more than 

60% of pixels widthwise on the screen which means 
the obstacle is very close and a collision is about to 
happen, so the car has to brake. 

 

Figure 3.2: Second warning displayed when there is a close 

car. 

3.3 Real Road Video Evaluation 

The last results have shown that NVidia models are 

more accurate in predicting steering angles and speed 

values as they have got the smaller number for the 

losses, therefore they were used for the evaluation. 

The steering and speed models are loaded to the code 

and connected with the mobile SSD model used for 

detecting the objects that surround the controlled car 

and also the braking value will be calculated using 

steering angles and speed values and also based on 

the case the car is encountering. These models will be 

tested on the video of the real road and the predicted 

steering angle, speed and throttle, and brakes will be 

shown respectively in the figure. 

While the car was moving in the road, it was 

turning left and also there was a car in front of it in 

the watch out stage, therefore the steering angle 

became negative to turn the steering wheel to the left 

and the throttle value became negative to apply 

brakes and slow down the car to avoid hitting the car 

in front of it as shown in the next figure 

 

Figure 3.3: Watch out case in real road video. 
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The car is still turning left, so the steering angle is 
negative, but the distance between the controlled car 
and the one in front of it decreased, therefore the 
warning stage was entered as the car became very 
close. Maximum brakes have been applied to force 
the car to stop before hitting the other car and the 
speed became zero as shown in the following figure. 

 

Figure 3.4: Warning case in real road video. 

4 CONCLUSIONS 

This research paper aims to build an autonomous car 

system using deep learning techniques by controlling 

steering, speed, and braking. The work done was 

implementing two deep neural networks that differ in 

the number of filters used for the convolution layers 

which were DNet-3 and NVidia with adding 

adjustments using CNN to control the steering angle 

and speed for the vehicle. Steering angles and speed 

values are used to calculate the throttle and braking 

values which also depend on the three warning cases 

applied by the detection model which is a pre-trained 

SSD model that detects objects surrounding the 

vehicle and calculate the distance between these 

objects and the controlled vehicle to choose the 

warning case accordingly. Increasing the number of 

filters plays a great role in improving road feature 

extraction allowing the trained models to drive on 

complex roads with great performance, but it comes 

with the expenses of increasing the model memory 

size and computational time for the training process. 
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