
Autonomous Braking and End to End Learning using Single Shot

Detection Model and Convolutional Neural Network

Marwan Elkholy, Kirollos Nagy, Mario Magdy and Hesham H. Ibrahim a
 Mechatronics Department, German University in Cairo, New Cairo, Egypt

Keywords: DQN Deep Q-Network, CNN Convolutional Neural Network, Relu Rectified Linear Unit, MSE Mean Square

Error.

Abstract: Safety issues concerning autonomous vehicles are becoming increasingly striking. Therefore, taking security

issues of autonomous driving into account such as detection and identification of the vehicle in the

surrounding is necessary to apply warning messages and braking based on the state of the vehicle. This paper

develops an end to end deep learning, using different recognition algorithms, to promote the safety of

autonomous vehicles in terms of controlling the steering and speed of a self-driving car. Two convolutional

neural network architectures are presented with different number of filters in their layers. The networks were

trained to take images as input data and scan the raw pixels and convert them directly into steering angle

command and speed value. Also, an object recognition algorithm is provided which detects and determines

the objects and their distances from the controlled car to have a collision warning system by using a pre-

trained single shot detector model. All predicted speed values and steering angles, alongside the object

detection model, are then translated into throttle and braking values while evaluating the models using a

simulator and real road videos.

1 INTRODUCTION

Autonomous cars are vehicles that are able to drive

using digital technologies without having human

interventions. Also, less space on road is employed

by autonomous vehicles, so they reduce traffic jams

and decrease accidents (Szikora, 2017). Traditionally,

the implementation of self-driving cars requires going

through several stages such as low-level perception,

scene parsing, path planning, and vehicle control, but

end-to-end learning contributed in reducing the

number of stages into one stage which is a deep neural

network. End to End learning gives the neural

network the chance to transform the raw pixels of

images into steering commands automatically using

convolution neural networks (CNN), as the important

processing steps such as detecting useful road

features are learned by the model by only having the

steering angle and the model develops all the

processing steps together (Bojarski, 2016). Although

the control of steering angle has shown great

performance as an end to end application in

controlling the vehicle, only the steering angle is not

a https://orcid.org/0000-0002-1388-5739

enough for the vehicle control. In the current work, it

is proposed to control the steering angle, speed, and

braking values simultaneously by using the produced

models to predict these values and also apply object

detection and classification on the road to help in

controlling the vehicle while driving.

Several researches were done in order to improve

the system of self-driving cars using end to end

learning. (Pomerleau, 1988) was the first one to

introduce autonomous vehicles using the neural

network by inventing Autonomous Land Vehicle in a

Neural Network (ALVINN) using fully connected

layers and it was the first trial of end to end learning.

(Bojarski, 2016) proposed one of the first successful

end-to-end learning for self-driving cars network that

train convolution neural network to transform pixels

from the front-facing camera to steering angle

without passing through other processes by detecting

useful road features with only steering angle as

training signal with great accuracy. (Farag, 2019)

described an end-to-end CNN architecture model that

is used for detecting useful road features to control

the steering wheel angle instead of going through the

Elkholy, M., Nagy, K., Magdy, M. and Ibrahim, H.
Autonomous Braking and End to End Learning using Single Shot Detection Model and Convolutional Neural Network.
DOI: 10.5220/0010398003090316
In Proceedings of the 7th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2021), pages 309-316
ISBN: 978-989-758-513-5
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

309

process of lane marking detection and path planning.

The architecture consists of seventeen layers named

BCNet containing convolution layers and fully

connected layers that produce the output steering

angle. (Zhao, 2019) suggested a new deep model for

achieving autopilot technology by predicting the

coming model path from the vehicle’s state by using

a deep learning algorithm which is an end to end

learning, as it designed a CNN model that has a

simpler structure in order to decrease the model

number of parameters which consists of seven layers.

(Heylen, 2018) introduced a neural network to

anticipate steering angle command depending on the

images that were fed into the network. The

architecture used for the model was based on the

AlexNet, however by applying some variation for the

original architecture to improve performance.

(Fujiyoshi, 2019) proposed a model that will be able

to control the steering of the vehicle and. the throttle

in different driving scenarios by getting dashboard

images and the vehicle’s speed which is given to the

network which consists of five layers of convolution

layers that went through the pooling process and then

flattened and connected to three fully connected

layers. (Eneh, 2014) discussed acceleration reduction

of the car once an obstacle is detected 250m ahead by

an autonomous braking control system using an

artificial neural network. Deep reinforcement

learning was used to develop a new autonomous

braking system that determines automatically

whether to apply the brake at each step when a

collision is about to happen using the information

acquired by the sensors, the brake control strategy is

taught using the reinforcement learning approach

known as deep Q-network (DQN) (Chae, 2017).

(Bamigboye, 2016) used artificial neural networks

which consist of a pool of simple processing units that

communicate with each other by sending signals over

a large number of weighted connections to reduce the

vehicle acceleration once an obstacle is detected

100m ahead. Digital image processing and computer

vision methods were used to detect rear tail lights of

front cars, and to detect and classify various objects

(Bamigboye, 2016). In (Liu, 2015), the method

differs from the literature (Bamigboye, 2016) in the

detection task as literature (Liu, 2015) combines

between the vehicle detection and RGB color

difference to define the state of moving cars brake

lights by recognizing the specified vehicle from the

area of interest. Then, consecutive frames are

compared to detect the brake light state by using the

color difference threshold of RGB color space to

develop a rear-end collision warning about the front

vehicle. (Fujiyoshi, 2019) illustrated how deep

learning is used in the image processing field and how

it is related to autonomous driving because it is not

easy to detect the object from the input image directly

as it needs to identify the number of tasks first such

as image identification, object detection, image

classification, Scene understanding, and specific

object detection.

 So far, the previous papers have introduced the

idea of controlling the speed and the steering of the

car using end to end learning and different types of

deep neural networks. Also, digital image processing

method was used to detect and recognize traffic lights

of the front vehicles.

 To the author’s knowledge, no previous work has

combined the control of speed and steering angle

using end to end learning with object detection to

achieve braking.

The proposed work is implementing a model that

can be used for controlling the main factors of driving

a vehicle which are steering commands, speed, and

brakes. NVidia and DNet-3 networks will be used for

achieving two models for controlling the steering

wheel and also two-speed models to predict speed

values, so they can be compared. Moreover, the speed

values and steering angles will be used for calculating

the throttle and braking values for the vehicle. The

pre-trained model SSD will be employed in detecting

the objects that surround the vehicle in its

environment for increasing the safety.

2 AUTONOMOUS VEHICLE

CONTROL

2.1 Steering and Speed Control using
End to End Learning

This proposed work is using two different deep neural

networks which are NVidia and DNet-3 for end to end

learning for steering prediction and also for speed

values prediction which contains convolution neural

layers that differ in the number of filters for each

network, therefore two different models will be

produced for each parameter to be compared with

each other to see which is better for controlling the

steering wheel and the speed of the vehicle.

Moreover, the predicted speed values and steering

angles will be used in calculating throttle and braking

values. The pre-trained model which is SSD

MobileNet V1 coco is implemented for detecting and

classifying the objects that surround the car to add

more safety for the self-driving car on the road and

also it affects the value of braking and speed based on

VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems

310

the closeness of the object to the controlled self-

driving car. Figure 2.1 is showing a flowchart that

describes the whole process for the proposed work.

Figure 2.1: Processes implemented to control autonomous

car flowchart.

The network used to produce the first model for

steering and the speed model is based on the NVidia

model with having some adjustments which are

adding batch normalization after each layer to avoid

overfitting (Bojarski, 2016).The network architecture

of the NVidia model starts with the normalization

layer and then 5 convolution layers for extracting

features from the images starting with 24 feature

maps and ending with 64 feature maps in the last layer

which have 2x2 strides and 5x5 kernels in the first

three convolution layers and non-strided convolution

layer in the last two layers. Moreover, the output of

the convolution layers is flattened and connected into

three fully connected layers to produce the predicted

steering angle and speed value.

The second network used for producing the

second steering model is based on the drive network-

3 (DNet-3) (Pal, 2019). The DNet-3 network

architecture also starts by normalizing the raw data

and has five convolution layers and four fully

connected layers. The convolution layers start with

having 18 feature maps and end with 48 feature maps.

The 2x2 strides and 5x5 kernels were used in the first

three layers and the non-strided convolution layer

with 3x3 kernels was used in the last two layers.

Besides, the output is flattened and connected to the

fully connected layers for producing the steering

angle.

In the current work, steering angle commands and

speed values are calculated by sending the images

recorded from center, right and left cameras into the

CNN model. The calculated steering angle and speed

value are compared with the desired steering angle

and speed for this image and produce an error that is

the difference between the two steering angles and the

two-speed values. Mean squared error (MSE) is the

loss function used to reduce the error between the

predicted and desired values to make them closer to

each other as MSE is always used for regression

networks (Kocic, 2019). MSE loss function is

calculating the average of the sum of the squared

differences between predicted and desired steering

angles and speed values. The equation of MSE is

(1/N * ∑ (y j – y hat j)2) (Kocic, 2019).

Adam optimizer is used for optimizing the loss for

all the models since it is always used for training deep

learning applications and it outstands other traditional

stochastic gradient descent methods. Each batch

includes 20,032 images and the batch size used is 64

through the training process and the optimum total

number of epochs is 50.

All the models implemented are done in python

using Keras which is the Tensorflow backend. The

training for the CNN models was done on the desktop

laptop that is running on Intel i5 and CPU was used

for running the training code. Dropout was used after

the last convolution layer with a value of 0.5 to avoid

overfitting. Furthermore, batch normalization was

used for all the network architectures after each layer

to reduce overfitting. Relu was selected as the

activation function for the entire convolution and

fully connected layers for all the networks except the

final fully connected layer uses softmax activation

function as it is usually used for producing one

output.

In the current work, an open-sourced simulator

was used which is made by Udacity and is built in the

Unity game development environment, as it is used to

simulate end-to-end learning for self-driving cars

(Kocic, 2019). It includes two tracks which are the

valley track and mountain track that contains different

and many road features such as right angle curves,

bridges, rams, and lakes trying to represent real road

features to improve the learning process for the

vehicle (Pal, 2019). There are two types of modes

included in the simulator that is the Training mode

and the Autonomous mode. The training mode is used

for collecting datasets, as the human driver drives the

vehicle using a keyboard in the simulator through the

track while having three cameras mounted on the

vehicle for capturing video from all the three views

(Kocic, 2019). The autonomous mode is used for

Autonomous Braking and End to End Learning using Single Shot Detection Model and Convolutional Neural Network

311

testing and evaluating the model after training. The

vehicle in the simulator is controlled by python code

using http sockets, as it sends steering angle, speed,

and throttle values to the simulator to drive the car

(Pal, 2019).

Data collection was done in the training mode of

the simulator while driving the car through the whole

track several times. Images are captured using the

center, left and right cameras which are mounted on

the car, therefore there will be three frames for every

moment and this will give us the chance to increase

the number of frames in the dataset and cover more

road features for the better learning process. After

finishing the training mode, the frames with their

image title will be stored and a CSV file will be

created that contains the image title of all the frames

with their corresponding steering command, throttle,

brake, and speed values. The steering command is

represented by 1/r as r is the turning radius in meters,

and 1/r is used instead of r to avoid singularity while

moving straight (Bojarski, 2016). The value of 1/r

will be positive while turning the steering wheel in

the right direction and will have a negative value

while turning the steering wheel in the left direction

and will be zero while moving straight (Bojarski,

2016). The human driver should try to keep the

vehicle driving in the center lane while the data is

being collected, so the car will imitate the driver’s

way in autonomous driving (Kocic, 2019).

Many laps were done in the training mode of the

simulator to create the dataset, but even after

completing a lot of laps, the dataset is relatively small

for training a deep neural network that contains a

huge number of parameters, therefore the model will

be capable of overfitting the data which will increase

the error for autonomous driving (Kocic, 2019). In

addition, end-to-end learning also requires having a

large dataset to make the vehicle experience various

different environmental conditions that could happen

on the road. Data augmentation is the most used

technique for increasing the dataset and reduce

overfitting, as it helps in generating different artificial

conditions. There are many ways to implement data

augmentation on the images such as horizontal and

vertical shifts, brightness augmentation, shadow

augmentation, and rotation augmentation which are

used for augmenting images used for controlling

steering angle, but only brightness augmentation and

shadow augmentation are used for augmenting

images used for controlling speed, as the rotation of

images or applying shifts won’t affect the value of

speed.

Dataset is collected using the training mode in the

simulator by capturing video of manual driving.

Besides, the video is cut into several images which

are recorded with its corresponding speed, throttle,

braking, and steering angle in a log file and the

images are stored in a separate file. In the current

work, the dataset that includes 5 laps of driving the

car through the 2 tracks combined together was used.

The total number of the images recorded from the

simulator was 50,190 with a resolution of 320x160x3

as the height is 320, width is 160, and has 3 deep

channels. The steering angles are normalized between

-1 and 1 and the speed values are divided by 31 to be

normalized between 0 and 1. The data was split into

80% for training samples which are 40,152 images

and into 20% validation samples which are 10,038

images as shown in the following table 2.1

Table 2.1: Image split ratio for training the model.

 Total Sample

Images

Training

Samples

Validation

Samples

Valley Track 19,338 15,470 3,868

Mountain Track 30,852 24,682 6,170

Percentage split 100% 80% 20%

Images have gone through data pre-processing

techniques before training, as images have been

resized into 300x120x3 for training the model. In

addition, the sky at the top of the image and the car

front at the bottom were cropped to remove

insignificant information from the image to speed up

the training process, and also images are converted

from RGB to YUV. Figure 2.2 represents the image

after preprocessing.

Figure 2.2: Preprocessed Image.

All the images are normalized from a range value of

(0,255) to (-1, 1) by dividing the pixels by 127.5 and

subtracting 1 from each pixel.

VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems

312

2.2 Autonomous Braking based on the
Measured Data

Detecting objects in images could have been done for

a very long time. But detecting objects in images that

could be streamed like on videos at 15 or 20 frames

per second, especially if decent accuracy is required,

was a big challenge. So TensorFlow is used to make

the detection task easier.

To build an autonomous braking system, the

surrounding objects need to be detected and also

calculate their distances from the car. If they are far

away, then they are not a problem, but if they are

really close then action needs to be taken. The action

will be a displayed warning to avoid a collision.

First, a pre-trained model (ssd mobilenet v1

coco), which is a single shot detector, is downloaded

and used in detecting and classifying the various

objects in the image by generating a big number of

bounding boxes covering the full image. Next, visual

features are extracted for each of the bounding boxes.

They are evaluated and it is determined whether and

which objects are present in the boxes based on visual

features. Then, overlapping boxes are joined together

into a single bounding box, where each bounding box

represents a part of the image where a particular

object is detected and including the score which

indicates how the level of confidence for each of the

objects.

Then, iteration will be performed through boxes

in each frame and check the classes of those boxes if

they are cars, buses, or trucks. After that, the score of

each class needs to be greater than 50% to make sure

that the object is detected correctly.

Now, an approximate distance will be measured

by calculating the number of pixels the object is taken

widthwise on the screen.

Furthermore, the middle point of each bounding

box that contains the detected object needs to be

calculated to know where the object is to determine if

the object is in the lane, far off to the right, or far off

to the left. And even if the detected vehicles were not

in the lane of the car and about to change their lane

into the car lane, that would trigger a warning

message due to their bounding box size. Based on

that, two levels of warning will be displayed

depending on how the obstacle is far away from the

camera.

The value of throttle is needed for applying brakes

as it will be calculated using the predicted steering

angle and speed values which are the outputs of

steering and speed models and the equation will be

throttle = 1 - (predicted steering angle)**2 –

(predicted speed)**2.

The value of the throttle will be negative if the

brakes should be used to slow down the car.

There are three cases that represent how the

obstacle is far away: the first case is (Safe) which

means that the obstacle is far away and there is no

need to decelerate. As the object is taking less than

40% of pixels widthwise on the screen. The second

case is (Watch Out) which means that the object is

taking between 40% and 60% of pixels widthwise on

the screen which means the obstacle is getting closer

and the car needs to decelerate which will be done by

applying the brake. The braking value will be

estimated by taking the modulus of the throttle value.

The third case is (Warning) which means that the

object is taking more than 60% of pixels widthwise

on the screen which means the obstacle is very close

and a collision is about to happen, so the car has to

brake and the braking value will be changed to 1

which is the maximum value for braking and also the

value of throttle will be 0.

Figure 2.3: Processes implemented to display a collision

warning flowchart.

3 RESULTS AND DISCUSSION

After finishing training for controlling the steering

angle and speed for the two different architectures

networks, the two networks will be compared with

each other based on the network parameters, training,

and validation loss for speed and steering models and

the computational time taken for training. Models

Autonomous Braking and End to End Learning using Single Shot Detection Model and Convolutional Neural Network

313

were produced from the training of the networks

which will be evaluated in the simulator to compare

their performances on the two tracks. Moreover,

speed, steering, and detection models will be

evaluated on a video from a real road.

3.1 Deep Neural Networks
Comparative Study

The two deep neural networks are compared to

determine the best-produced model to use in our

simulation. The number of trainable parameters

depends on the network, connection between the

nodes, number of layers, and type of layers which

have a huge effect on the computational time and size

of the trained model. DNet-3 has 1,214,513

parameters which are divided into 1,213,881 trainable

parameters and 632 non-trainable parameters, NVidia

network has 1,292,113 parameters that are split into

1,291,321 trainable parameters and 792 non-trainable

parameters. Table 3.1 will show the number of

parameters for convolution layers in each model as it

will be different as a result of the different number of

filters.

Table 3.1: Parameters for each layer.

CNN Models DNet-3 NVidia

Layer 1 1368 1824

Layer 2 1084 21636

Layer 3 18030 43248

Layer 4 9756 27712

Layer 5 15600 36928

Layer 6 1152100 1153610

BN 1264 1584

After seeing the values of table 1, it showed that

increasing the number of feature maps and decreasing

the number of strides will increase the number of total

parameters included in the convolution neural layers.

Moreover, there are several non-trainable parameters

as a result of using batch normalization to avoid

having overfitting. Also, the size of the trained model

and computational time were compared to evaluate

how the number of parameters affects them. DNet-3

model has a memory size of 14 MB and has taken 900

s for completing one epoch, while the NVidia model

has a memory size of 19 MB and has taken 1100 s for

completing one epoch which is shown in table 3.2.

These results show that the memory size of the model

and computational time take for training increases by

increasing the number of total parameters for the

network. NVidia model has a higher number of

parameters which help in extracting more features

from the images to increase its performance in

driving, but it led to an increase in the memory size

and computational time.

Table 3.2: Model size and Computational time.

CNN

Model

Memory

Size (MB)

Steering Time

per epoch (S)

DNet-3 14 MB 900 s

NVidia 19 MB 1100

3.1.1 Steering and Speed Models Training
and Validation Loss

Training and validation loss is tracked through the
whole training process. Table 3.3 shows the training
and the validation loss values for the two models after
completing the 50 epochs using the MSE loss
function.

Table 3.3: Loss values for CNN models.

 DNet-3 NVidia

Steering Training loss 0.068 0.0624

Steering Validation loss 0.0541 0.0521

Speed Training Loss 0.0076 0.0070

Speed Validation Loss 0.0115 0.0112

3.1.2 Evaluation and Simulator

The steering and speed models of each network are
tested together on the Udacity self-driving car
simulation to evaluate their performance on the two
tracks in the autonomous mode. Table 3.4 presents
whether the CNN model was capable of completing
the entire lap or not.

Table 3.4: Performance Evaluation for CNN models.

CNN Model

Finished lap

on Valley

track

Finished lap

on Mountain

track

DNet-3 Yes No

NVidia Yes Yes

The table showed that increasing the number of

filters in the convolution layers helped in making the

NVidia model capable of successfully driving and

VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems

314

completing the entire lap in the mountain track which

has a lot of complex features by predicting accurate

steering angles before the right angle curves and

controlling the speed values based on the type of the

road, while DNet-3 didn’t finish the lap in the

mountain track as the predicted steering angle and

speed value wasn’t accurate enough which led into

making an accident. Furthermore, the models

successfully drove through the entire lap in the valley

track as it is much simpler in the road features than

the other track. After presenting the results, the

NVidia model is the better model to be used for speed

and steering prediction.

The next figure is showing the car while entering

on a left sharp turn, so the steering angle became

negative to turn the steering wheel left to continue

driving on the road. Moreover, brakes are applied to

decrease the speed of the car before entering the sharp

turn in order to drive smoothly through the sharp turn.

Figure 3.1: Autonomous driving in the simulator track.

3.2 Detection Model

After being able to detect and classify the multiple

objects, now the approximate distance between these

objects and the vehicle is determined by calculating

the number of pixels the object is taken widthwise on

the screen. After that, the middle point of each object

is calculated to know where the object is to determine

if the object is in the lane, far off to the right, or far

off to the left. Based on that, two levels of warning

are displayed depending on how the obstacle is far

away from the camera. There are three cases that

represent how distant the obstacle is:

Case 1 (Safe): It means the obstacle is far away

and there is no need to decelerate. As the object is

taking less than 40% of pixels widthwise on the

screen.

Case 2 (Watch Out): The object is taking between

40% and 60% of pixels widthwise on the screen

which means the obstacle is getting closer and the car

needs to decelerate.
Case 3 (Warning): The object is taking more than

60% of pixels widthwise on the screen which means
the obstacle is very close and a collision is about to
happen, so the car has to brake.

Figure 3.2: Second warning displayed when there is a close

car.

3.3 Real Road Video Evaluation

The last results have shown that NVidia models are

more accurate in predicting steering angles and speed

values as they have got the smaller number for the

losses, therefore they were used for the evaluation.

The steering and speed models are loaded to the code

and connected with the mobile SSD model used for

detecting the objects that surround the controlled car

and also the braking value will be calculated using

steering angles and speed values and also based on

the case the car is encountering. These models will be

tested on the video of the real road and the predicted

steering angle, speed and throttle, and brakes will be

shown respectively in the figure.

While the car was moving in the road, it was

turning left and also there was a car in front of it in

the watch out stage, therefore the steering angle

became negative to turn the steering wheel to the left

and the throttle value became negative to apply

brakes and slow down the car to avoid hitting the car

in front of it as shown in the next figure

Figure 3.3: Watch out case in real road video.

Autonomous Braking and End to End Learning using Single Shot Detection Model and Convolutional Neural Network

315

The car is still turning left, so the steering angle is
negative, but the distance between the controlled car
and the one in front of it decreased, therefore the
warning stage was entered as the car became very
close. Maximum brakes have been applied to force
the car to stop before hitting the other car and the
speed became zero as shown in the following figure.

Figure 3.4: Warning case in real road video.

4 CONCLUSIONS

This research paper aims to build an autonomous car

system using deep learning techniques by controlling

steering, speed, and braking. The work done was

implementing two deep neural networks that differ in

the number of filters used for the convolution layers

which were DNet-3 and NVidia with adding

adjustments using CNN to control the steering angle

and speed for the vehicle. Steering angles and speed

values are used to calculate the throttle and braking

values which also depend on the three warning cases

applied by the detection model which is a pre-trained

SSD model that detects objects surrounding the

vehicle and calculate the distance between these

objects and the controlled vehicle to choose the

warning case accordingly. Increasing the number of

filters plays a great role in improving road feature

extraction allowing the trained models to drive on

complex roads with great performance, but it comes

with the expenses of increasing the model memory

size and computational time for the training process.

REFERENCES

Szikora, P. and Madarász N., 2017"Self-driving cars — The

human side," IEEE 14th International Scientific

Conference on Informatics, Poprad, 2017, pp. 383-387.

Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B,

Flepp, B., Goyal, P. , Jackel, L. D., Monfort, M.,

Muller, U., Zhang, J. , Zhang, X., Zhao J., and Zieba.

K. 2016. “End to End Learning for Self-Driving Cars”.

ArXiv preprints arXiv: 1604.07316v1.

Pomerleau D. A. 1988.” ALVINN: AN Autonomous Land

vehicle in a Neural Network”. In Proceedings of the 1st

International Conference on Neural Information

Processing Systems.

Farag. W. 2019 “Cloning Safe Driving Behavior for Self-

Driving Cars using Convolutional Neural Networks”.

Recent Patents on Computer Science.

Zhao Y. And Chen. Y. 2019. “End-to-end autonomous

driving based on the Convolution neural network

model”. In Proceedings of APSIPA Annual Summit

and Conf.

Heylen, J, Iven, S., De Brabandere, B.,Van Gool J. O. M.,

L. and Tuytelaars, T. 2018."From Pixels to Actions:

Learning to Drive a Car with Deep Neural Networks,"

2018 IEEE Winter Conf. on Applications of Computer

Vision (WACV), Lake Tahoe, NV, pp. 606-615 .

Fujiyoshi, H., Hirakawa T., and Yamashita. T. 2019” Deep

learning-based image recognition for autonomous

driving”. Article in 2019 International Association of

Traffic and Safety Sciences.

Eneh, I.I. and Okafor, P.U. 2014 “Design of an automatic

brake control system using artificial neural network.”

Article in International Journal of Scientific and

Engineering Research, Volume 5, Issue 4.

Chae, H., Kang, C.M., Kim, B., Kim J., Chung, C., and

Choi, J.W. 2017 “Autonomous Braking System via

Deep Reinforcement Learning.” arXiv:1702.02302v2.

Bamigboye, O. O., and Obaje, S.E. 2016 “Intelligent

Automatic Car Braking Control System Using Neural

Network Classifier.” International Journal of

Engineering Inventions Volume 5, Issue 06, PP: 51-56.

Liu, W., Bao, H., Zhang J., and Cheng, Xu. 2015. “Vision-

Based Method for Forward Vehicle Brake Lights

Recognition.” International Journal of Signal

Processing, Image Processing and Pattern Recognition

Vol.8, No.6, pp.167-180.

Pal, B., Khaiyum. S. November 2019 “Low Memory

Footprint CNN Models for end-to-end Driving of

Autonomous Ground Vehicle and Custom Adaptation

to Various Road Conditions.” In Proceedings of

International Journal of Innovative Technology and

Exploring Engineering (IJITEE) ISSN: 2278-3075,

Volume-9, Issue-1.

Kocic, J., Jovicic, N. and Drndarevic, V. 2019” An End-to-

End Deep Neural Network for Autonomous Driving

Designed for Embedded Automotive Platforms”.

Sensors Book.

VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems

316

