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Abstract: AutoGE (Automatic Grammatical Evolution), a new tool for the estimation of Grammatical Evolution (GE) 
parameters, is designed to aid users of GE. The tool comprises a rich suite of algorithms to assist in fine tuning 
BNF grammar to make it adaptable across a wide range of problems. It primarily facilitates the identification 
of optimal grammar structures, the choice of function sets to achieve improved or existing fitness at a lower 
computational overhead over the existing GE setups. This research work discusses and reports initial results 
with one of the key algorithms in AutoGE, Production Rule Pruning, which employs a simple frequency-
based approach for identifying less worthy productions. It captures the relationship between production rules 
and function sets involved in the problem domain to identify optimal grammar structures. Preliminary studies 
on a set of fourteen standard Genetic Programming benchmark problems in the symbolic regression domain 
show that the algorithm removes less useful terminals and production rules resulting in individuals with 
shorter genome lengths. The results depict that the proposed algorithm identifies the optimal grammar 
structure for the symbolic regression problem domain to be arity-based grammar. It also establishes that the 
proposed algorithm results in enhanced fitness for some of the benchmark problems.

1 INTRODUCTION 

Grammatical Evolution (GE), since its inception 
twenty years back, has found wide acceptance in the 
research communities (Ryan et al 2018). It is a 
bioinspired population-based methodology from the 
domain of evolutionary. Its ability to produce 
arbitrary valid data structures and the way executable 
programs can be evolved has created wide-scale 
appeal. Moreover, due to its simple approach of 
evolving programs constrained through the definition 
of BNF grammar and the ability to adapt to domain 
knowledge through it makes it a valuable tool.  

GE uses an innovative mapping scheme in which 
variable-length input genomes (also known as 
chromosomes or genotype) are represented in binary 
form and get mapped to the output program or 
phenotype. The values in the genotype control the 
choice of production rules and the resulting 
phenotype then gets evaluated based on the definition 
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of fitness functions that gives a fitness score to the 
individuals in the population.  

Although the selection and definition of fitness 
criteria is dependent on the problem and/or the 
problem domain, there exists a good body of 
knowledge which serves as guidelines (Koza 1993). 
This, however, is not the case when a user is faced 
with the problem of choosing a function set and 
defining a grammar. There is little guidance in the 
literature and no systematic approach exists (Wang 
2005, Uy 2013).  

Automatic Grammatical Evolution (AutoGE) is 
an initiative to create a tool that can aid users to define 
and identify proper grammar structures to smoothly 
adapt to the application under consideration. Its suite 
of algorithms will enable GE users to design 
appropriate BNF rules using the right grammar 
structures. This will mainly help the users in 
identifying appropriate terminals involved in forming 
production rules. The algorithm will also facilitate the 
selection of correct fitness function definition. Fitness 
functions can be composed of single, multiple or 
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many objectives. They can be hierarchical in nature. 
As such AutoGE will serve to automate the selection 
of grammar structure, function sets and fitness 
functions depending on the nature of the underlying 
problem and its complexity. AutoGE’s suite of 
algorithms are designed in a manner to automatically 
assist in evolving individuals of shorter lengths 
thereby optimizing memory usage (Kshirsagar 2020). 
AutoGE’s rich suite of powerful algorithms also 
automatically address bloats (Bleuler 2008) through 
restricting tree size and tree nodes thereby reducing 
computational overhead and complexity (Murphy 
2020). 

2 BACKGROUND  

2.1 Grammatical Evolution (GE) 

Grammatical Evolution is a variant of Genetic 
Programming (GP) in which the space of possible 
solutions is specified through a grammar (Ryan 
1998). Although different types of grammars have 
been used, the most commonly used is Context Free 
Grammar (CFG), generally written in Backus-Naur 
Form (BNF). GE facilitates a modular design, which 
means that any search engine can be used, although 
typically a variable-length Genetic Algorithm (GA) is 
employed to evolve a population of binary strings. 

In GE, each population individual has a dual 
representation, a genotype and a phenotype. When the 
underlying search engine is a genetic algorithm, the 
genotype is a sequence of codons (a group of 8-bit 
substrings), while the phenotype expresses an 
individual's representation in the solution space. 
Mapping, a key process in GE, maps a given genotype 
to the phenotype. While subsequently consuming 
each codon, it selects a production from the available 
set of alternative productions in a rule and builds the 
derivation tree. Although there are other mapping 
schemes (Fagan 2018), the conventional scheme 
follows left-most derivation. 

An important measure in the mapping process is 
the effective genome length, which is equal to the 
number of codons consumed to generate a fully 
mapped individual (the one which does not contain 
any non-terminals in this phenotype). The actual 
genome length is the total number of codons in the 
genome, some of which may remain unused.  

2.2 Grammar Design in GE 

Since GE exploits the expressive power of grammars, 
it can be applied to a multitude of problem domains, 

for instance in Symbolic Regression (SR) where the 
purpose is to search the space of mathematical 
expressions to find a model that best fits a given 
dataset (Koza 1993). To construct valid and useful 
mathematical expressions in GE, the grammar needs 
to be well designed. 

A grammar is formally defined as the tuple (T, N, 
P, S) where T is a set of terminal symbols, N is a set 
of non-terminal symbols, P is a set of production 
rules, and S is the start symbol. While the set of 
terminals outline the building blocks of a solution, the 
choice of non-terminals and deciding how exactly to 
organize those into a set of rules and productions is a 
design task. By designing an appropriate grammar, 
one specifies the syntactic space of possible solutions. 

2.2.1 Grammar Structures 

Instead of designing grammar from scratch, a 
common approach is to utilize and adapt existing 
grammar designs for that domain. For example, in 
grammatical evolution based symbolic regression 
(GESR), typical grammar structures are shown in 
Table 1. In a mixed-arity grammar, operations of 
multiple arities are combined in a single rule. A 
contrasting design is that of arity-based grammars 
where productions relevant to arity-1 and arity-2 
operations are grouped in separate rules. A balanced 
grammar version balances the probabilities of 
selecting recursive (non-terminating) productions and 
terminating production (Nicolau 2018).  

It is important to note how operators and functions 
are represented as productions in the grammar. 
Besides embodying arithmetic operators, a number of 
common mathematical functions are represented as 
alternative recursive productions. 

Table 1: Grammar structures for symbolic regression. 

 Mixed-arity  
 Grammar 

 <expr> ::= <expr><op><expr> 
        |sin(<expr>)|cos(<expr>) 
        |exp(<expr>)|pow(<expr>,2) 
        |sqrt(<expr>)|<var> 
   <op> ::= + | - | * | / 
  <var> ::= X | Y 

 Arity-based 
 Grammar 

  <expr>::= <expr1>|<expr2>|<var> 
 <expr1>::=sin(<expr>)|cos(<expr>) 
        |exp(<expr>)|pow(<expr>,2) 
        |sqrt(<expr>) 
<expr2> ::= <expr><op><expr> 
   <op> ::= + | - | * | / 
  <var> ::= X | Y 

 Balanced  
 Arity-based  
 Grammar 

 <expr> ::= <expr1>|<var> 
        |<expr2>|<var> 
    ... # The rest is the same as arity-based
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3 METHODOLOGY 

We discuss our approach to rank grammar 
productions and subsequently pruning of unworthy 
productions in this section. Figure 1 depicts the 
overall schematic of our approach.  

3.1 Production Ranking 

With the correct configuration and fitness criteria, an 
evolutionary process is geared towards convergence. 
Increasingly, the evolved solutions contain more and 
more of the right ingredients or building blocks (in 
our case, grammar productions). We hypothesize that 
the structural composition of evolved solutions 
carries information that can be useful in identifying 
the right ingredients.  

In GE, every individual in the population is 
composed of terminals which appear in an order 
defined by the derivation tree constructed during 
genotype to phenotype mapping. By traversing the 
derivation tree, it is possible to obtain a list of 
grammar productions used in the mapping process to 
generate an individual. Such a list is termed as the 
production-list. Once identified, the frequency of 
usage of each production in the production-list can be 
easily determined. 

Productions can be weighed or ranked based on 
how frequently they are used in the construction of 
individuals in the population. As evolution proceeds, 
fitter individuals survive, and the productions which 
more frequently shape the structures are the ones that 
are considered to be worthy being part of the 
grammar. Such productions are assigned a high rank. 
On the contrary, productions which harm individual's 
fitness such that they become extinct, generally do not 
enjoy high usage frequency (although rarely zero, due 
to hitch-hiking effects) in the population.  

To test our hypothesis, we devised a simple 
frequency-based approach to rank productions. Since 
frequency counting is a trivial and efficient operation, 
it carries minimal overhead. The two basic production 
ranking schemes are: 

Normalized Frequency-based Ranking (NFR): 
This is the simplest ranking scheme where 
frequencies of the productions in production-list are 
normalized to unity. We compute ranking scores 
offline, at the end of each evolutionary cycle (see 
Figure 1), which bears minimal overhead. Note that 
this does not take the fitness of individuals into 
consideration, rather simply the survival of 
production rules. 

 

Figure 1: Schematic of production ranking and pruning 
cycle. Information about the use of each production rule is 
harvested after each iteration and subsequently used to tune 
to the grammar. 

Fitness Proportionate Ranking (FPR): In this 
scheme, the normalized ranks are multiplied with the 
individual’s fitness. 

An important consideration is to decide how much 
of the population to select for ranking. We 
experimented with three possible choices: 1) the 
whole population, 2) all unique individuals, 3) top 
X% of the population (we use X=20, a completely 
arbitrary number that seemed reasonable). Potential 
issues include, with the 1st option, rankings can be 
biased due to repeated individuals, and with the 3rd 
option there was a chance of pruning important 
productions. The second option turned out to be the 
best choice based on our empirical evaluations. 

Once individual ranking scores have been 
computed, we accumulate the scores to compute run 
worth of a production. Figure 2 shows a sample box 
and whisker plot of FPR ranking for Pagie-1 problem. 
It exposes a nice picture of the utility of each 
production in the evolutionary cycle. 

3.2 Grammar Pruning 

We follow the principle of Occam’s razor which 
states “no more things should be presumed to exist 
than are absolutely necessary.” Grammar is a key 
model of the solution space, so the idea is to remove 
unnecessary or less worthy productions (or functions) 
from the grammar to tune the grammar design. 

The key driver in grammar tuning is the pruning 
strategy and the algorithm. There can be a number of 
strategies for pruning and we look at two here. The 
key concept they have in common is a staged 
approach; that is, a small number of runs is 
conducted,  then  one  or  more  rules  are  pruned, and 
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Figure 2: Fitness Proportionate Production ranks across 
runs for Pagie-1 problem (runs: 30, ngen: 5, popsize 250). 

then more runs are conducted. This second stage (also 
true for third and subsequent stages, if they exist) is a 
complete restart with the newly modified grammar. 

The exact algorithm depends on the strategy being 
employed. We experimented with the following two 
strategies: 

● Strategy 1: Prune for the maximum available 
budget. The remaining runs will verify if it was 
fruitful. 

● Strategy 2: Only proceed with pruning if it results 
in improving mean training score at each stage. If 
it degrades performance, stop. 

Strategy 1 has slightly less overhead but suffers from 
blind pruning which in many cases failed to reap any 
benefits. For instance, in case of Keijzer-6 problem, 
this strategy pruned the production carrying 
logarithm function, which is a vital approximating 
function for this problem. 

Strategy 2 incorporates a feedback loop which 
informs on its usefulness. In our preliminary 
experiments, we have observed it to be yielding a 
much better overall outcome. Coupled with the 
pruning policies defined in section 4.3, our 
Production Rule Pruning algorithm achieved 
excellent results. 

3.2.1 Production Rule Pruning Algorithm 

The outlines the Production Rule Pruning (PRP) 
algorithm is shown in Listing 1: 
 

Listing 1: PRP Algorithm. 

procedure PRP():
     Prunings = Empty 
     Stage = 0; AvailableBudget = 20%; PruningGen = 5 
     Do full runs for PruningGen generations 
     Set the training performance score Etrg(0) and PRUNE 
     While there is AvailableBudget: 
          Proceed to pruning stage i  
          Do full runs for PruningGen generations and get Etrg(i) 
          If Etrg(i) < Etrg(i‐1): PRUNE 
          If Etrg(i) > Etrg(i‐1): REVERT 
          Decrement AvailableBudget 

 

PRUNE is the key procedure in the algorithm. It 
performs two important functions: 

1) It analyses production ranking scores and 
identifies the least worthy productions. Based on 
the pruning policy, it identifies how many 
productions to prune at a given stage and returns 
that many productions as candidates to be pruned.  

2) It removes productions from the grammar and 
adds them to Prunings, which is implemented as 
a stack. At each stage, pruned productions are 
pushed to the stack. 

The REVERT function undoes the last pruning action 
by popping the last productions from Prunings and 
adding them back to the grammar. When a pruning 
stage reverts, the PruningGen is incremented from 5 
to 10. 

3.2.2 Consistency of Pruning Suggestions 

The output of the PRP algorithm is pruning 
suggestions. In order to verify how consistent the 
pruning suggestions are, we ran 100 experiments on 
certain problems for each grammar structure and 
ranking scheme. Each experiment consisted of 50 
independent runs evolving for 5 generations with a 
population size of 250. Due to space limitations, 
Table 2 only shows the count of experiments for 
which the given productions were the first, second, 
and third pruning suggestions for mixed-arity 
grammar and FPR ranking scheme. 

4 EXPERIMENTAL SETUP 

4.1 Problems and Function Set 

A collection of symbolic regression benchmark 
problems was listed in (McDermott 2012). We 
utilized a subset of those problems ranging from 
simple to more challenging ones. Among the chosen 
problems, there is a high variance in terms of problem 
difficulty, number of variables, and the sample size 
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for training and test data. Table 3 lists the problems 
considered in this work and the original function sets. 
For details on the mathematical expression, training 
and test ranges, please refer to (McDermott 2012). 

Table 2: Experimental results to assess the consistency of 
pruning suggestions in case of FPR ranking. 

 Pruning Suggestions 
Problem Production 1st 2nd 3rd

Vlad-2 
tan(<expr>) 99 1 -
log(abs(<expr>) 1 83 16
pow(<expr>,2) - 16 84

Pagie-1 

sinh(<expr>) 99 1 -
log(abs(<expr>) 1 99 -
(-1*(<expr>)) 
tan(<expr>) 

- 
- 

- 
- 

93 
7

Keijzer-6 

(-1*(<expr>)) 98 2 -
tan(<expr>) 2 98 -
log(abs(<expr>) 
pow(<expr>,2) 

- 
- 

- 
- 

78 
22

Nguyen-7 

log(abs(<expr>) 100 - -
tan(<expr>) - 100 -
pow(<expr>,2) 
(-1*(<expr>)) 

- 
- 

- 
- 

66 
34

4.1.1  Original Function Set 

The function set proposed for each benchmark 
problem, as shown in Table 3, is referred to as 
Original Function Set. Note that the grammar which 
embodies the original function set is termed Original 
Grammar in this work, referenced with the letter ‘O’ 
in Table 4 and 5. 

Choosing an appropriate function set is a key 
decision in applying GP as it can have a vital impact 
on the performance of GP (Wang 2005). However, 
there is not enough guidance in selecting a function 
set. To date, it is largely considered a decision made 
by domain experts. A new user trying to apply 
evolutionary search faces a challenge with no clear 
guidelines. 

4.1.2 Extended Function Set 

A few recent studies (e.g. Nicolau 2020) suggested 
that using an extended function set (even with 
functions that appear to be useless for a particular 
problem) can improve performance. Our own 
exploratory experiments confirm this, so we create an 
Extended Function Set (shown below): 
+  -  *  /  sin  cos  tan  sinh  cosh  tanh  
ex  e-x  x2  x3  -x  ln(|x|)  √x  1/x 

It is the superset of all the original function sets. It 
includes arithmetic operators and all common 
trigonometric functions, exponentials, and power 

functions. Note that we do not use protected division 
(Keijzer 2003). The grammar which embodies the 
extended function set is termed Extended Grammar 
in this work and is referenced with the letter ‘E’ in 
Table 4 and 5. 

Table 3: Original function sets defined with benchmarks. 

Problem Original Function Set 

Koza-1, Koza-2, Koza-3, 
Pagie-1, Nguyen-7

 +   -   *   /   sin   cos    ex   ln(|x|) 

Keijzer-6 +   *  1/x   -x   √x 
Vlad-1, Vlad-6 +   -   *   /   x2   ex   e-x 

Vlad-2, Vlad-3, Vlad-7 +   -   *   /   x2   ex   e-x    sin   cos
Vlad-4, Vlad-5, Vlad-8 +   -   *   /   x2 

4.2 Parameters & Fitness Function 

Following evolutionary parameters were used in all 
experiments in this work:  

Population Size:   250 
Number of Generations: 100 
Crossover Type:   One-point Crossover 
Crossover Probability:  0.9 
Mutation Probability:  0.01 
Selection Type:   Tournament 
Initialization Method:  Sensible Initialization 
Maximum Depth:   10 
Number of Runs:   30 

The objective of the fitness function is to measure 
the performance of the algorithm against a predefined 
objective goal. The fitness of every individual is 
measured using Root Mean Squared Error (RMSE) 
against an acceptable threshold. As it is a negatively 
aligned metric, it is defined to minimise the fitness 
function. The lower the RMSE, the better the value of 
objective function 

4.3 Pruning Policies 

For the problems we examined, the usage frequency 
of arithmetic operators, variables, and constant 
terminals was low, irrespective of the grammar 
structure. We therefore do not consider their 
corresponding productions, and the productions 
where the right-hand side is only composed of non-
terminals (for example productions in the start rule of 
arity-based grammar in Table 1). This resulted in 14 
prunable productions which primarily consist of 
extended function set excluding arithmetic operators. 
It is important to highlight a few other policies 
adopted while pruning which server as parameters to 
the PRP algorithm: 
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Figure 3: Approximation performance comparisons for (a) Keijzer-6, (b) Vladislavleva-6. 

 We do not consume more than 20% of the 
computational budget on pruning. In our case, it 
meant consuming at most 20 generations. 

 Pruning takes place in stages. At a stage, prune 
only 10% of the productions. 

 In pruning runs, we evolve for 5 generations to 
maximize pruning. If 5 generation runs terminate 
with a REVERT decision and the pruning budget 
is remaining, we proceed with 10 generations.  

Note that the grammar which results after pruning is 
termed Pruned Grammar in this work and is 
referenced with the letter ‘P’ in Table 4 and 5. 

5 RESULTS 

A summarized view of results from all 42 (14 x 3) 
experiments is presented in Table 4 and 5. They show 
the impact of using various grammar structures 
alongside extended functions set and pruning 
approach on performance (both in approximation and 
generalization) and mean effective genome length for 
the best solution as well as the whole population. 

5.1 Statistical Test 

We applied statistical test to validate our results and 
claims. Student's t-test for statistical significance with 
the p-value of 0.05 was used. The outcome of the 
significance test is also encoded in Table 4 and 5. The 
symbol ‘+’ indicates significant improvement, while 
‘-’ is for improvement which is not statistically 
significant. Results from the original grammar are 
treated as baseline. ‘O -’ indicates that though original 
grammar had the best output, it was not significantly 
better than the extended grammar. With ‘E -’ or ‘P -’, 

the results are only slightly better than original 
grammar. 

5.2 Impact of Extended Grammar 

In general, for most of the problems and for all three 
grammar structures, using the extended grammar 
(representing the extended function set) significantly 
improved performance as well as genome size when 
compared with the original grammar. This 
observation is consistent with the outcome noted by 
(Nicolau 2020). Although the problem set we 
experimented with is limited, considering the 
diversity in the problem complexity and non-linearity 
(Vladislavleva 2009) which makes it a representative 
sample, we can suggest utilizing our extended 
function set for synthetic symbolic regression 
problems. 

Koza highlighted that if a function set is not 
adequate, GP cannot find (good) solutions, but on the 
other hand, if a function set includes many extraneous 
functions, the performance is degraded (Koza 1993). 
Our results are contrary to this later recommendation. 
Besides, extending or adding more productions to the 
grammar adds additional dimensions to the search 
space, which may result in bigger individuals and 
lower performance. However, this is usually not the 
case. Finding exactly why warrants an in-depth 
analysis. Here we believe that production ranking can 
expose some clues. 

5.3 Effect of Grammar Structures 

It is evident that some grammar structures are more 
appropriate for certain types of improvement or for 
certain problems. Overall, arity-base grammar 
structure results in significant reduction in genome 
length, except for vlad-6 where size reductions are not 
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Table 4: Summarized results for training and test performance (RMSE). The value in each cell is the best mean fitness/test 
score averaged across 30 runs with standard deviation in parenthesis. 

 Mixed-arity Grammar Arity-based Grammar Balanced Arity-based Grammar
Problem Training Test Training Test Training Test
Koza-1 0.0651 (0.0253) O + 0.254 (0.1187) O + 0.0484 (0.0376) E - 0.2396 (0.1774) O - 0.0161 (0.019) P + 0.1698 (0.112) O -
Koza-2 0.0206 (0.0172) P - 0.0573 (0.0289) P - 0.0081 (0.0048) E + 0.0609 (0.0377) O - 0.0047 (0.0029) P + 0.0458 (0.0339) E -
Koza-3 0.0127 (0.0046) E - 0.0568 (0.0456) E - 0.0010 (0.0029) E + 0.0253 (0.0654) P + 0.0003 (0.0016) E + 0.0017 (0.0064) E +

Keijzer-6 0.0281 (0.0215) P + 0.0351 (0.0297) P + 0.0430 (0.0136) E + 0.0562 (0.0194) P + 0.0286 (0.0126) E + 0.0424 (0.02113) E +
Pagie-1 0.178 (0.0441) E + 0.1914 (0.0477) E + 0.1771 (0.0805) O - 0.2136 (0.0304) E - 0.1447 (0.0666) O + 0.1914 (0.0247) E -

Nguyen-7 0.0202 (0.0077) O + 0.0213 (0.0081) O + 0.0186 (0.0068) O - 0.0199 (0.00737) O - 0.0118 (0.0130) E + 0.01277 (0.0148) E -
Vlad-1 0.1092 (0.0082) E + 0.1376 (0.0177) E - 0.1064 (0.0101) P + 0.1239 (0.0134) P + 0.1026 (0.0104) P + 0.1326 (0.0185) P +
Vlad-2 0.2336 (0.0189) O - 0.2279 (0.0234) O - 0.2287 (0.0396) P - 0.243 (0.05394) P - 0.0851 (0.0378) P + 0.0905 (0.0446) P +
Vlad-3 1.0235 (0.0216) E + 0.7116 (0.0627) E + 0.9648 (0.0342) P + 0.9299 (0.0478) P - 0.9874 (0.0336) O + 0.7758 (0.2588) E +
Vlad-4 0.1693 (0.0120) E + 0.1681 (0.0144) E + 0.1795 (0.0055) P + 0.1779 (0.0077) P + 0.1774 (0.0066) E + 0.1771 (0.009) P -
Vlad-5 22.774 (3.4164) E - 2.2087 (2.0808) E - 19.990 (1.4914) E + 1.9437 (1.5527) E - 17.446 (1.5113) E + 2.014 (1.4189) E -
Vlad-6 1.7666 (0.3035) E + 2.6943 (0.9461) P - 1.4347 (0.234) P + 1.887 (0.4259) P + 0.8276 (0.3464) P + 1.0013 (0.4969) P +
Vlad-7 2.2200 (0.1708) E + 2.844 (0.2705) E + 2.376 (0.1574) E + 3.0098 (0.2118) E + 2.2813 (0.2553) E + 2.9105 (0.3917) E +
Vlad-8 0.7159 (0.0544) E + 2.0075 (0.0957) E + 0.7409 (0.0299) P + 2.4189 (0.6991) P + 0.7564 (0.0493) P + 2.444 (0.8646) P +

Table 5: Summarized results for mean effective size. The value in each cell is the best mean effective size with standard 
deviation in parenthesis.  

 Mixed-arity Grammar Arity-based Grammar Balanced Arity-based Grammar
Problem Pop Mean Best Ind. Pop Mean Best Ind. Pop Mean Best Ind.
Koza-1 8.75 (1.715) P + 10.867 (3.73) P + 11.962 (2.16) P + 17.767 (5.245) E + 18.8 (5.188) E + 21.1 (8.125) E +
Koza-2 15.755 (9.105) P - 16.833 (8.482) P - 12.964 (2.758) P + 18.033 (6.385) P + 16.076 (4.96) P + 20.033 (8.376) P +
Koza-3 12.276 (4.991) P + 13.9 (6.199) P + 10.539 (3.047) E + 11.033 (5.456) E + 9.6 (3.094) E + 9.433 (3.03) E +

Keijzer-6 20.88 (3.592) O - 23.3 (9.737) E + 20.342 (4.615) P + 26.967 (9.485) P + 38.442 (13.769) P - 40.467 (18.261) P +
Pagie-1 14.136 (5.006) P + 17.667 (4.323) P + 13.348 (3.54) P + 21.733 (9.532) P + 22.833 (11.1) P + 30.333 (15.613) P +

Nguyen-7 5.052 (2.111) P + 5.767 (3.87) P + 19.061 (5.183) P + 23.867 (10.566) P + 20.26 (10.616) P + 28.9 (12.496) P +
Vlad-1 14.157 (4.505) P + 20.433 (6.657) P - 13.105 (4.733) P + 19.362 (5.984) P + 21.098 (5.995) O - 28.3 (14.055) O -
Vlad-2 16.333 (4.767) O + 18.467 (6.796) O - 16.517 (3.425) P + 21.633 (10.206) P + 31.893 (7.419) P + 35.3 (8.017) P + 
Vlad-3 17.728 (4.76) P - 20.967 (9.711) P + 19.821 (3.947) P + 28.6 (12.417) P - 30.906 (14.023) P - 38.967 (20.336) O -
Vlad-4 11.325 (3.13) O + 14.1 (4.812) O + 10.566 (0.939) O + 11.867 (2.473) O + 11.343 (2.227) O + 12.6 (3.648) O +
Vlad-5 14.212 (6.447) P - 18.667 (7.44) P + 18.885 (5.04) E - 21.733 (6.547) E + 20.042 (3.586) O + 30.133 (9.629) O + 
Vlad-6 13.504 (2.828) P + 16.567 (5.679) P + 19.654 (3.15) E - 26.333 (10.094) E - 25.643 (5.298) E - 31.667 (8.825) E +
Vlad-7 13.765 (4.611) P - 18.633 (7.868) P - 14.416 (3.363) P + 20.467 (9.419) P + 23.815 (6.107) O - 33.0 (11.072) P - 
Vlad-8 11.056 (4.062) P - 13.8 (3.525) O + 15.065 (3.328) E + 24.2 (7.648) E - 16.534 (5.639) P - 23.967 (7.998) O -

 
significant both for best-of-run individuals and the 
mean effective size in the population.  

To our knowledge, many symbolic regression 
studies using GE or Grammar Guided Genetic 
Programming (GGGP) use mixed-arity grammar 
structure, for instance (Nicolau 2015). Even though, 
for many problems, the genome lengths are shortest in 
case of mixed-arity grammar and the reductions are 
also significant in several cases, the corresponding 
performance gains are lower as compared to simple or 
balanced arity-based grammars. In general, balanced 
arity-based grammar produced best performing 
individuals as compared to other structures. 

5.4 Effect of Pruning 

Pruning was applied in all 42 experiments. The 
number of productions pruned varied from 1 to 6, out 
of 14 prunable productions. Pruning achieved 
significantly shorter effective lengths when looking at 
the whole population for 6 different problems with 
mixed arity grammar. However, with arity-based 
grammar, 9 out of 14 get improvements. 

Regarding performance, pruning achieves better 
results in only 1 problem (Keijzer-6) with mixed-
arity, and 4 problems with (balanced) arity-based 
grammar. However, it is worth noting that in order to 
keep the same computational budget, trials with the 
pruned grammar lasted for 80 (in some cases 85) 
generations. Had the pruned grammar also exercised 
for 100 generations, it is likely that it would have 
achieved better performance. 

Figure 3 shows two sample convergence plots (for 
Keijzer-6 and Vladislavleva-6 problems) where 
grammar pruning effectively improved 
approximation performance when compared with 
original and extended grammars. The four spikes in 
the plot in case of pruned grammar depict that pruning 
runs were carried out in four stages (as explained in 
section 3.2) in the first 20 generations. 

6 CONCLUSIONS 

We propose a new algorithm as part of the AutoGE 
tool suite being developed. The proposed Production 
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Rule Pruning algorithm is an approach combining an 
extended function set and a frequency counting 
mechanism for ranking production rules. Together, 
with the choice of extended function set and pruning 
algorithm, AutoGE achieved significantly better 
genome length in 13 out of 14 problems, with the 
(balanced) arity-based grammar structure. Significant 
improvement in approximation performance for 13 
problems and generalization performance for 8 out of 
14 problems is observed with balanced arity-based 
grammar. We therefore conclude that arity-based 
grammar structure (simple or balanced), as opposed 
to commonly used mixed arity grammar, would yield 
better results not only in terms of shorter genome 
lengths but minimized errors for symbolic regression 
problems resulting in enhanced accuracy. 

6.1 Future Work 

An immediate extension to the current work is to trial 
symbolic problems with real-world data, and by 
exploring other problem domains for instance 
program synthesis, and Boolean logic. The PRP 
algorithm performance can be further enhanced by 
investigating other search mechanisms, for example 
particle swarm optimization or ant colony 
optimization. We aim to extend AutoGE’s suite of 
algorithms and to make it more robust by exploring 
approaches like grammar-based EDAs. 
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