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Abstract: Progress in exploring speech and Parkinson’s Disease (PD) has been hindered due to the use of different 
protocols across research labs/countries, single-site studies with relatively small numbers, and no external 
validation. We had recently reported on the Parkinson’s Voice Initiative (PVI), a large study where we 
collected 19,000+ sustained vowel phonations (control and PD groups) across seven countries, under 
acoustically non-controlled conditions. In this study, we explored how well findings generalize in the three 
English-speaking PVI cohorts (data collected in Boston, Oxford, and Toronto). We acoustically characterized 
each sustained vowel /a/ phonation using 307 dysphonia measures which had previously been successfully 
employed in speech-PD applications. We used the previously identified feature subset from the Boston cohort 
and explored hierarchical clustering with Ward’s linkage combined with 2D-data projections using t-
distributed stochastic neighbor embedding to facilitate visual exploration of PD subgroups. Furthermore, we 
computed feature weights using LOGO to assess feature selection consistency towards differentiating PD 
from controls. Overall, findings are very consistent across the three cohorts, strongly suggesting the presence 
of four main PD clusters, and consistent identification of key contributing features. Collectively, these 
findings support the generalization of sustained vowels and robustness of the presented methodology across 
the English-speaking PVI cohorts. 

1 INTRODUCTION 

Parkinson’s Disease (PD) is a crippling progressive 
neurodegenerative disorder straining national health 
systems due to increasing prevalence rates (Dorsey et 
al., 2013). Indicatively, there were approximately 2.5 
million People diagnosed with PD (PwP) in 1990, and 
6.1 million PwP compared in 2016 (GBD, 2018). 
Characteristic PD symptoms include tremor, rigidity, 
bradykinesia, and postural stability, within the 
broader remit of motor, cognitive, and 
neuropsychiatric symptoms (Olanow, Stern, Sethi 
2009). Similarly to some other disorders where a 
disease name is used as an umbrella term, PD is well 
reported as a largely heterogeneous disease with 
considerable heterogeneity in PwP’s symptom 
severity trajectories (Fereshtehnejad et al., 2015). 

 
a  https://orcid.org/0000-0002-0994-8100 
b  https://orcid.org/0000-0001-6499-6941 

Exploring PwP phenotypes is clinically important 
since homogeneous groups exhibit stronger clinical 
symptom manifestation and potentially stronger 
genetic coherence. In practice, PwP may be assigned 
to specific subgroups based on clinical observations 
and criteria such as age onset and dominating 
symptoms. More recently, data-driven clustering 
approaches have been explored to delineate PwP 
subtypes using different data modalities. Indicatively, 
research work has focused on clinico-pathological 
characteristics (Selikhova et al., 2009), standardized 
clinical instruments to assess motor, non-motor, and 
cognitive domains (Lawton, 2018; Zhang et al., 
2019), or sensor-based gait pattern analysis (Nguyen 
et al. 2019). The use of different types of data to 
assess symptoms may provide new insights towards a 
more holistic understanding of PD, however, makes 
comparisons across studies particularly challenging 
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and may explain discrepancies in the reported PD 
subtypes and the dreaded replicability crisis in 
science.  

Ever since the detailed description of PD 
symptoms by James Parkinson’s seminal work in 
1817, speech has been known to be strongly affected. 
In fact, 29% of PwP consider it one of their most 
debilitating symptoms (Hartelius and Svensson, 
1994). Recent studies have demonstrated the 
enormous potential of capitalizing on speech signals 
in neurodegenerative applications and PD in 
particular. For example, research work has explored: 
(1) differentiating PwP from age- and gender-
matched controls with almost 99% accuracy (Tsanas 
et al., 2012), (2) accurately replicating the Unified 
Parkinson’s Disease Rating Scale (UPDRS) (Tsanas 
et al., 2011; Tsanas et al., in press), which is the 
standard clinical tool to provide an overall PD 
symptom assessment, and (3) automatically assessing 
voice rehabilitation (Tsanas et al., 2014a). More 
recently we have reported on the potential of speech 
signals towards distinguishing people with Leucine-
Rich Repeat Kinase 2 (LRRK2) associated PD, 
idiopathic PD, and control participants (Arora et al., 
2018). Similarly, speech articulation kinematic 
models to characterize PD dysarthria have been 
developed, which provide tentative insights into the 
underlying physiology (Gomez et al., 2019). 

Most studies in speech-PD report on single-site 
findings, and are often limited in terms of the 
statistical power due to the limited number of 
available recordings, or the requirement of relying on 
highly specific equipment and/or highly controlled 
acoustic conditions. Motivated by the promising 
findings we and others have reported in this field, we 
set up a large multi-site trial and recently reported on 
the Parkinson’s Voice Initiative (PVI) (Arora, 
Baghai-Ravary, Tsanas, 2019). The PVI is a unique, 
first of its kind, study where people were self-selected 
and enrolled to participate, donating their voices 
collected under acoustically uncontrolled conditions 
over the phone. Overall, we have collected more than 
19,000 sustained vowel /a/ samples from people 
across seven countries. Although the data collected in 
this study is clearly not of the same high quality as 
data collected under carefully controlled acoustic 
conditions, the large number of samples facilitates 
new explorations in different directions. 

The application of clustering algorithms using 
speech signals has barely been explored. Rueda and 
Krishnan (2018) used sustained vowel /a/ recordings 
from 57 PwP and 57 matched controls to determine 
groupings. However, the very small sample size 
limits exploration and besides, mixing PwP with 

controls is fundamentally not addressing the aim of 
computing PD subtypes. Thus, to the best of our 
knowledge we were the first to recently propose 
clustering using sustained vowels to explore PwP 
groupings (Tsanas and Arora, 2020). We had 
previously used only the largest cohort (out of seven 
cohorts) in the PVI to explore whether it is possible 
to find some meaningful way to cluster PwP. The next 
logical step is to validate how well those findings 
generalize across other cohorts, which would 
implicitly serve to assess the generalization of the 
PVI project. 

Therefore, the aim of this study is to explore how 
well findings generalize across the three English-
speaking cohorts in PVI towards: (1) the computed 
PwP clusters and (2) consistency of feature set 
towards differentiating PwP from controls. The end 
goal is to investigate whether the collected sustained 
vowel /a/ phonations and proposed methodology has 
internal consistency across different PVI datasets.   

2 DATA 

The PVI study invited people to self-enrol and 
contribute their voices to facilitate clinical research in 
PD. Data were collected across seven major 
geographical locations (Argentina, Brazil, Canada, 
Mexico, Spain, USA, and the UK) using servers by 
Aculab for the needs of this project. People called a 
dedicated phone number that was closest to their 
geographical location and were requested to provide 
some basic demographic information (age, gender), 
self-report whether they had been clinically 
diagnosed with PD, and record two sustained vowel 
/a/ phonations. The instruction was to sustain vowel 
/a/ for as long and as steadily as possible, following 
standard widely used protocols which are easy to 
implement (Titze, 2000). The speech recordings were 
sampled at 8 kHz. In total, we collected more than 
19,000 samples. 

In this study we processed data from the three 
English-speaking sites: Boston, Oxford, Toronto, 
since we wanted to assess how well findings 
generalize. Demographic information for the study 
participants is summarized in Table 1; we do not have 
detailed information regarding PD-symptom specific 
aspects, for example whether participants self-
enrolled when they were “on” or “off” medication, or 
clinically validated metrics such as UPDRS. For 
further details on PVI we refer readers to our previous 
work (Arora, Baghai-Ravary, Tsanas, 2019; Tsanas 
and Arora, 2019). 
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Table 1: Summary of demographics per cohort. 

 Boston Oxford Toronto 

Participants 12171 
(PD: 1138) 

2103 
(PD 285) 

792 
(PD: 107)

Phonations 12171 
(PD:2097) 

3908 
(PD:536) 

1461 
(PD: 198)

Age 63.7±10.8 63.5±10.0 65.0±9.8 

Gender (males) 605 172 62 

Distributions are summarized in the form mean ± standard 
deviation. The basic demographic information is provided for the 
PD participants since that is the main focus of the study. 

3 METHODS 

3.1 Data Pre-processing 

We developed a speech recognition software which 
automatically transcribed the participants’ responses 
over the phone regarding age, gender, and self-
reported PD assessment. We aurally inspected 
recordings where the automated speech recognition 
algorithm had less than 90% confidence. 
Furthermore, we developed an automated tool to 
screen out unusable recordings, for example in the 
presence of excessive background noise. For further 
details please see (Arora, Baghai-Ravary, Tsanas, 
2019).  

3.2 Acoustic Characterization of 
Sustained Vowel /a/ Phonations 

We used the Voice Analysis Toolbox (freely 
available from https://www.darth-group.com/ 
software) to acoustically characterize each sustained 
vowel /a/ phonation. The toolbox computes 307 
dysphonia measures, which have been developed 
specifically to characterize sustained vowel /a/ 
phonations extensively validated across diverse PD 
datasets (Tsanas et al., 2010a; Tsanas et al., 2010b; 
Tsanas et al., 2011; Tsanas et al., 2012; Tsanas, 2012; 
Tsanas et al., 2014a; Arora, Baghai-Ravary, Tsanas, 
2019; Tsanas et al., in press), and other applications, 
e.g. processing voice fillers (Tsanas and Gomez-
Vilda, 2013; San Segundo, Tsanas, Gomez-Vilda, 
2017). We have described in detail previously the 
background, rationale, and detailed algorithmic 
expressions for the computation of the dysphonia 
measures (Tsanas, 2012; Tsanas, 2013). A 
prerequisite for the computation of many dysphonia 
measures is the fundamental frequency (F0) 
estimation. There are many algorithms in the research 
literature for F0 estimation in different applications 
(Tsanas et al., 2014b); here, we used the SWIPE 

algorithm (Camacho and Harris, 2008), which we had 
previously demonstrated is the most accurate F0 
estimation algorithm in sustained vowel /a/ 
phonations (Tsanas et al., 2014b).  

Applying the dysphonia measures to each 
recording gives rise to features which are continuous 
random variables. We linearly scaled each feature to 
be in the range [0, 1] following standard practice for 
distance-based machine learning algorithms  so that 
no feature dominates others (Bishop, 2006). 

3.3 Feature Selection 

A high dimensional dataset may obscure deciphering 
of its core data structure and is typically challenging 
for statistical learning algorithms. This well-known 
problem is often referred to as the curse of 
dimensionality, and may lead to detrimental 
generalization of statistical learning algorithms 
(Guyon et al. 2006; Hastie, Tibshirani, Friedman, 
2009). Following Occam’s razor, we would prefer a 
predictive model which is as simple as possible, i.e. 
with a low dimensionality. This approach is known as 
dimensionality reduction, and can be achieved either 
by feature transformation (transforming the features 
to populate a new, lower dimensional space), or by 
feature selection (choosing a subset of features). 
Feature selection is often more suitable in clinical 
settings to retain the interpretability of the original 
features (Guyon et al., 2006; Tsanas, Little, 
McSharry, 2013).  

There are two approaches in feature selection: 
supervised (where the outcome information is used), 
and unsupervised (where we do not have the 
outcomes, or may not want to use that information). 
Feature selection in unsupervised learning setups is 
less studied and practically more challenging in terms 
of defining a loss function (or criterion) to optimize 
(Dy and Brodley, 2004). In this study we used both 
unsupervised feature selection and supervised feature 
selection to tackle the two different tasks. 

For unsupervised feature selection, we used the i-
Detect to select informative features where the 
identified feature subspace has the following 
property: the difference between the total volume of 
the space spanned by the selected feature subset and 
the sum of the volumes of clusters in the embedded 
manifolds is maximized (Yao et al., 2015). The i-
Detect algorithm has two free hyper-parameters: the 
kernel width and the regularization parameter. The 
algorithm is not very sensitive to the choice of the 
kernel width (Yao et al. 2015), and hence we 
experimentally explored the effect of optimizing the 
regularization parameter. The output of i-Detect is a 
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sparse feature weight vector. The final ranking is 
determined by the descending order of the weights. 

For supervised feature selection, we used LOGO 
(Sun et al., 2010), a feature weighting algorithm 
which implicitly also provides an estimate of the 
“importance” of each feature. Then, we determined a 
minimal threshold and selected features in 
descending order on the basis of decreasing feature 
weights. 

3.4 Clustering 

Clustering is an unsupervised learning approach, 
which attempts to group samples using the underlying 
concept of sample distances. It can often provide 
insight into the underlying structure of the data via the 
(probabilistic) cluster membership of each sample 
into the automatically determined clusters. Given 
there are no labels (objective ground truth), clustering 
is inherently more difficult to assess compared to 
statistical learning models in supervised learning 
setups.  

Here, we used hierarchical clustering which is a 
popular cluster analysis method that has been 
successfully used across different applications 
(Hastie, Tibshirani, Friedman, 2009). Hierarchical 
clustering has a major advantage over some of the key 
competing clustering approaches that it does not 
require pre-specifying the number of clusters in the 
data. Instead, it inherently constructs a dendrogram to 
represent the data in a tree-based form, where the tree 
is recursively split to form new clusters, aiming to 
maximize the between group dissimilarity. For 
further background details on hierarchical clustering 
please see Duda, Hart, and Stork (2004) or Hastie, 
Tibshirani and Friedman (2009) which are standard 
reference works. 

We used hierarchical clustering with Ward’s 
linkage to cluster the lower-dimensional 
representation obtained following unsupervised 
feature selection with iDetect. For further details and 
experiments with the full dataset and the lower 
dimensional dataset we refer to Tsanas and Arora 
(2020). The number of clusters was determined 
following visual inspection of the dendrogam as 
described in the methodology by Sheaves et al. 
(2016). 

We used the iDetect algorithm and the 
methodology we previously described (Tsanas and 
Arora, 2020) to reproduce our findings and use the 
same feature subset (21 features, primarily from the 
wavelet dysphonia measures) across the three 
cohorts. We applied hierarchical clustering 
independently for each cohort, using the same feature 

subset that has been obtained using iDetect on the 
Boston dataset (Tsanas and Arora, 2020). In all cases, 
we visualized the dendrograms to visualize the 
underlying data structure. 

3.5 Data Visualization 

We applied the t-distributed Stochastic Neighbor 
Embedding (t-SNE) algorithm (van der Maaten and 
Hinton, 2008) to obtain a 2D data representation and 
visualize the data structure embedded in the high-
dimensional space. We used the 21 features we had 
previously identified (Tsanas and Arora, 2020) to 
project the 21-dimensional space into 2D. The 
resulting representation may provide new insights in 
terms of participant assignment in those plots and has 
been used to visually annotate the points using the 
cluster analysis results. 

4 RESULTS 

This section is split into two subsections to report on 
the generalization of the cluster findings across the 
three cohorts, and then to also report on the 
generalization of feature selection towards binary 
differentiation of PwP and controls. 

4.1 Exploring Cluster Generalization 
across the Three Cohorts 

We applied hierarhical clustering to deterministically 
assign cluster membership for each sample. 
Subsequently, we applied t-SNE to obtain the 2D data 
projection of the feature space spanned by the 
selected feature subset, independently for each of the 
three cohorts (see Figure 1). We found that across all 
three cohorts hierarchical clustering leads to groups 
which almost completely agree with the data 
projections in 2D space in terms of almost distinct 
cluster separation as can be visually affirmed by 
Figure 1. This is particularly revealing given that the 
data projection and clustering algorithms operate 
independently, and these plots serve to intuitively 
validate the cluster groupings. We defer further 
elaboration for the Discussion.    
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Figure 1: Two-dimensional representation of the datasets 
with selected features using t-SNE and marking of the four 
clusters (denoted C1…C4) computed using hierarchical 
clustering with the selected feature subset from Tsanas and 
Arora (2020). 

 

4.2 Assessing Generalization of Selected 
Features for Binary Differentiation 

So far we have used data only from the PD 
participants in each of the three cohorts, aiming to 
derive clusters and assess cluster consistency. As a 
final exploratory step, we wanted to apply a 
supervised feature weighting algorithm to determine 
whether there is also consistency in the key 
contributing features to differentiate PwP from 
controls across the three cohorts. 

We present the results of the LOGO weights in 
Fig. 2 for all three cohorts to faciliate visual 
comparison. We remark that the actual weights in 
LOGO are affected by the number of samples in the 
dataset. The primary observation, however, is that 
there is again good consistency on the top selected 
features across the three datasets. We summarize the 
selected features in descending order for each of the 
three datasets in Table 2. There is overall agreement 
across the datasets on the key contributing features, 
and the algorithmic families those features represent. 

 
Figure 2: Feature weights computed using LOGO for each 
of the three cohorts in the study. 

Table 2: Summary of LOGO-selected features in 
descending order for each of the three cohorts. 

Boston Oxford Toronto 

F
ea

tu
re

 n
am

e 

VFERNSR,SEO JitterF0-TKEO, prc95 JitterF0-TKEO, prc95

12th MFCC OQstd, closed F0 - F0exp 
VFERLF,TKEO VFERLF,TKEO OQstd, closed 
JitterF0-TKEO,prc25 VFERstd Jitterpitch-TKEO,prc25

4th MFCC JitterF0-TKEO,prc95 GNESNR,TKEO

OQstd, closed 10th MFCC 11th MFCC 
1st MFCC 9th MFCC ShimmerTKEO,prc95

11th MFCC Jitterpitch-TKEO,prc25 8th det LT entropy
10th MFCC 12th MFCC 1st det LT entropy
5th MFCC 6th det LT entropy ShimmerTKEO,prc25

For brevity we only present the top-10 selected features using 
LOGO. 
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5 DISCUSSION 

We extended our previous work to assess the 
generalization of findings across the three English-
speaking cohorts in PVI. We demonstrated that the 
methodology we had previously developed in the 
Boston cohort for cluster membership assignment 
using the exact parameters we had previously 
reported (Tsanas and Arora, 2020), generalizes very 
well for the Oxford and Toronto cohorts in PVI. 
There is strong internal consistency in identifying 
four PwP clusters, which are almost clearly separable 
as indicated in Fig. 1 when projecting data into a 2D 
transformed feature space. Moreover, we identified 
similar features that jointly contribute the 
differentiation of PwP and controls (Fig. 2 and Table 
2) which further supports the generalizability of those 
findings, at least for the English-speaking cohorts.  

Similarly to other clinical conditions, there are 
important implications and translational potential for 
cluster findings.  For this particular setting, we 
envisage a newly diagnosed PwP could be 
phenotyped using sustained vowels to be assigned in 
a PD cluster, which could provide information about 
symptom trajectory or optimal treatment to follow on 
the basis of similarity to other PwP within the same 
cluster. It is often possible to provide a tentative 
interpretation of clusters using additional 
information, e.g. regarding PD symptom trajectory or 
targeted symptoms/therapies.  

We remark that our findings are strongly 
supporting previous studies on PwP subtyping, which 
had similarly reported the identification of four 
clusters. Indicatively, Lewis et al. (2005), collected 
demographic, motor, mood, and cognitive measures 
from 120 early-stage PwP and applied standard k-
means resulting into four clusters: (1) younger PD 
onset; (2) tremor-dominant; (3) non-tremor dominant 
with considerable cognitive impairment and mild 
depression; and (4) rapid disease progression but no 
cognitive impairment. Similarly, Lawton et al. (2018) 
used standardized questionnaires to assess motor, 
non-motor, and cognitive domains on two PD cohorts 
(1601 and 944 participants). They reported four main 
subgroups: (1) fast motor progression with 
symmetrical motor disease, poor olfaction, cognition 
and postural hypotension; (2) mild motor and non-
motor disease with intermediate motor progression; 
(3) severe motor disease, poor psychological well-
being and poor sleep with an intermediate motor 
progression; (4) slow motor progression with tremor-
dominant, unilateral disease. van Rooden et al. (2011) 

similarly reported four subgroups: (1) mildly affected 
in all domains, (2) predominantly severe motor 
complications, (3) affected mainly on 
nondopaminergic domains with no major motor 
complications, (4) severely affected across all 
domains. Mu et al. (2017) assessed motor and non-
motor symtoms in two cohorts (411 and 540 
participants), and also reported four clusters: (1) mild, 
(2) non-motor dominant, (3) motor-dominant, and (4) 
severe. We stress that these studies had used different 
data modalities, which further serves to underline the 
important validity of speech towards providing 
holistic information about motor and other PD 
symptoms (Tsanas, 2012).  

The findings in Fig. 1 make a very compelling 
case regarding cluster validation: using 
independently cluster analysis and 2D data projection 
we find that the computed clusters can be visually 
verified. However, it is not directly obvious how well 
the four clusters reported herein computed using 
acoustic features extracted from sustained vowels 
match with the underlying PD symptoms and clusters 
of the preceding studies (Lewis et al. 2005; van 
Rooden et al., 2011; Lawton et al., 2018). 
Unfortunately, in the PVI study we had not collected 
additional symptom based entries in the form of 
patient reported outcome measures or clinical 
assesssments. On the other hand, studies which have 
longitudinal clinical evaluations and patient reported 
outcome measures do not have speech signal 
recordings which would enable to explore bridging 
this gap. Applying a range of signal processing and 
data analytics tools across different modalities, with 
the ultimate aim of fusing information can provide a 
more holistic translational path for clinical research 
(Gorriz et al., 2020; Woodward et al., 2020). 

We emphasize that many clustering studies 
focusing on clinical data in general and in PD 
research in particular,  rely on tools which make rigid 
assumptions such as k-means (e.g. Lewis et al., 2005; 
Lawton et al., 2018). This technique, although simple 
to apply has some fundamental drawbacks (Hastie, 
Tibshirani, Friedman, 2009; Duda, Hart, Stork, 
2001). Further challenges in cluster analysis include 
selecting a robust feature subset which could better 
reveal the underlying groups without having any 
labels available (Dy and Brodley, 2004), 
standardizing variables or introducting weights for 
different variables, and validating findings. In 
practice, many of these crucial implementation details 
in the application of cluster analysis methodology in 
often omitted. For an overview of this field, 
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challenges, and suggestions for best practice when 
reporting clustering results we refer to Horne et al. 
(2020).  

We envisage these robust cluster findings which 
appear to generalize very well may contribute 
towards improving understanding of the nature of PD 
subtypes and hence potentially be translated to inform 
therapeutic interventions in clinical practice 
(Triantafyllidis and Tsanas, 2019). We are further 
exploring the PVI data to investigate differences 
across the English-speaking and other cohorts, both 
towards understanding differences versus controls 
and also internal variability which may inform future 
clinical trials. 
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