Guo, Y., Wang, S., Zhou, A., Xu, J., Yuan, J., and Hsu, C. 
H. (2019). User allocation-aware edge cloud placement 
in  mobile  edge  computing.  Software - Practice and 
Experience, January 2019, 1–14.  
Gupta, H.,  Dastjerdi, A.  V., Ghosh, S. K., and  Buyya, R. 
(2017). iFogSim: A toolkit for modeling and simulation 
of resource  management techniques in  the Internet  of 
Things,  Edge  and  Fog  computing  environments. 
Software - Practice and Experience, 47(9), 1275–1296.  
Islam, S., Keung, J., Lee, K., and Liu, A. (2012). Empirical 
prediction models for adaptive resource provisioning in 
the cloud. Future Generation Computer Systems, 28(1), 
155–162.  
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2017). 
Introduction to Statistical Learning with Applications 
in R. Springer.  
Kaur, K., Dhand, T., Kumar, N., and Zeadally, S. (2017). 
Container-as-a-Service at the Edge: Trade-off between 
Energy Efficiency and Service Availability at Fog Nano 
Data  Centers. IEEE Wireless Communications,  24(3), 
48–56.  
Kavanagh, R., Djemame, K., Ejarque, J., Badia, R. M., and 
Garcia-perez, D. (2019). Energy-aware Self-Adaptation 
for  Application  Execution  on  Heterogeneous  Parallel 
Architectures.  IEEE Transactions on Sustainable 
Computing, 1–15. 
Kramer, J., and Magee, J. (2007). Self-Managed Systems: 
an  Architectural  Challenge.  2007 Future of Software 
Engineering, 259–268.  
Krupitzer, C., Roth, F. M., VanSyckel, S., Schiele, G., and 
Becker, C. (2015). A survey on engineering approaches 
for  self-adaptive  systems.  Pervasive and Mobile 
Computing, 17, 184–206.  
Kumar, J., and Singh, A. K. (2018). Workload prediction in 
cloud  using  artificial  neural  network  and  adaptive 
differential  evolution.  Future Generation Computer 
Systems, 81, 41–52.  
Li, G.,  Song, J., Wu,  J., and Wang, J.  (2018). Method  of 
Resource  Estimation  Based  on  QoS  in  Edge 
Computing.  Wireless Communications and Mobile 
Computing, 2018.  
Liu,  B.,  Guo,  J.,  Li,  C.,  and  Luo,  Y.  (2020).  Workload 
forecasting based elastic resource management in edge 
cloud.  Computers and Industrial Engineering, 
139(0360–8352), 1–12.  
Liu, C., Liu, C., Shang, Y., Chen, S., Cheng, B., and Chen, 
J.  (2017).  An  adaptive  prediction  approach  based  on 
workload pattern  discrimination in  the cloud.  Journal 
of Network and Computer Applications, 80, 35–44.  
Lorido-Botran,  T.,  Miguel-Alonso,  J.,  and  Lozano,  J.  A. 
(2014).  A  Review  of  Auto-scaling  Techniques  for 
Elastic Applications in Cloud Environments. Journal of 
Grid Computing, 12(4), 559–592.  
Moreno-vozmediano,  R.,  Montero,  R.  S.,  Huedo,  E.,  and 
Llorente, I. M. (2019). Efficient resource provisioning 
for  elastic  Cloud  services  based  on  machine  learning 
techniques.  Journal of Cloud ComputingAdvances, 
Systems and Applications, 8(1). 
Nikravesh, A. Y., Ajila, S. A., and Lung, C. H. (2017). An 
autonomic  prediction  suite  for  cloud  resource 
provisioning. Journal of Cloud Computing, 6(1).  
Nikravesh,  A.  Y.,  Ajila,  S.  A.,  and  Lung,  C.  H.  (2015a). 
Evaluating Sensitivity of Auto-scaling Decisions in an 
Environment with  Different Workload Patterns. IEEE 
39th Annual International Computers, Software & 
Applications Conference, 415–420.  
Nikravesh,  A.  Y.,  Ajila,  S.  A.,  and  Lung,  C.  H.  (2014). 
Measuring prediction sensitivity of a cloud auto-scaling 
system. Proceedings - IEEE 38th Annual International 
Computers, Software and Applications Conference 
Workshops, COMPSACW 2014, 690–695.  
Nikravesh,  A.  Y., Ajila,  S.  A.,  and  Lung,  C. H.  (2015b). 
Towards  an  Autonomic  Auto-scaling  Prediction 
System for Cloud Resource Provisioning. Proceedings 
- 10th International Symposium on Software 
Engineering for Adaptive and Self-Managing Systems, 
SEAMS 2015, 35–45.  
Sapankevych, N. I., and Sankar, R. (2009). Using Support 
Vector  Machines:  A  Survey.  IEEE Computational 
Intelligence Magazine, 2, 24–38. 
Sguangwang.com.  (2018).  The Telecom Dataset (Shanghai 
Telecom). http://sguangwang.com/TelecomDataset.html 
Shi,  W.,  and  Dustdar,  S.  (2016).  The  Promise  of  Edge 
Computing. Computer, 49(5), 78–81.  
Singh,  S.,  and  Chana,  I.  (2015).  QoS-Aware  Autonomic 
Resource  Management  in  Cloud  Computing:  A 
Systematic  Review.  ACM Computing Surveys,  48(3), 
1–46.  
Toczé, K., and Nadjm-Tehrani, S. (2018). A Taxonomy for 
Management and Optimization of Multiple Resources 
in  Edge  Computing.  Wireless Commu. and Mobile 
Computing, 2018, 1–20.  
Wang,  S.,  Guo,  Y.,  Zhang,  N.,  Yang,  P.,  Zhou,  A.,  and 
Shen,  X.  S.  (2019).  Delay-aware  Microservice 
Coordination  in  Mobile  Edge  Computing:  A 
Reinforcement Learning Approach. IEEE Transactions 
on Mobile Computing, 1–1.  
Wang, S., Zhao, Y., Huang, L., Xu, J., and Hsu, C. H. 
(2019). QoS prediction for service recommendations in 
mobile  edge  computing.  Journal of Parallel and 
Distributed Computing, 127, 134–144.  
Wang, S., Zhao, Y., Xu, J., Yuan, J., and Hsu, C. H. (2019). 
Edge  server  placement  in  mobile  edge  computing. 
Journal of Parallel and Distributed Computing,  127, 
160–168.  
Xu,  M.,  and  Buyya,  R.  (2019).  Brownout  Approach  for 
Adaptive Management of Resources and Applications 
in  Cloud  Computing  Systems.  ACM Computing 
Surveys, 52(1), 1–27.  
Zhang,  G.,  Eddy  Patuwo,  B.,  and  Y.  Hu,  M.  (1998). 
Forecasting with artificial neural networks: The state of 
the art. International Journal of Forecasting, 14(1), 35–
62.