Ahn, H., Jung, D., Choi, H.-L., 2020. Deep Generative 
Models-Based Anomaly Detection for Spacecraft 
Control Systems. In Sensors , 20, p. 1991. 
Bishop, C.M., 2006. Pattern Recognition and Machine 
Learning. Springer. 
Breunig, M.M., Kriegel, H., Ng, R., Sander, J., 2000. LOF: 
Identifying Density-Based Local Outliers. In Proc. 
ACM Sigmod Int. Conf. on Management of Data, 
Dallas. 
Conforti, R., La Rosa, M., ter Hofstede, A.H.M., 2017. 
Filtering Out Infrequent Behavior from Business 
Process Event Logs. In Transactions on Knowledge and 
Data Engineering 29 (2), pp. 300 – 314. 
Doersch, C., 2016. Tutorial on variational autoencoders. In 
arXiv preprint, arXiv:1606.05908. 
Gabler Banklexikon, https://www.gabler-
banklexikon.de/definition/business-process-
management-70709/version-377663 (Accessed: 
12.10.2020). 
Gamboa, J.C.B., 2017. Deep learning for time-series 
analysis. In arxiv preprint, arXiv:1701.01887. 
Goix, N., 2016. How to Evaluate the Quality of 
Unsupervised Anomaly Detection Algorithms? In 
arXiv preprint, arXiv:1607.01152v1. 
Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep 
Learning. MIT Press. 
Kingma, D.P., Ba, J., 2014. Adam: A Method for Stochastic 
Optimization. In arXiv preprint, arXiv:abs/1412.6980. 
Kingma, D.P., Welling, M., 2019. An introduction to 
variational autoencoders. In arXiv preprint, 
arXiv:1906.02691. 
Kingma, D.P., Welling, M., 2014. Auto-encoding 
variational Bayes. In 2
nd
 International Conference on 
Learning Representations, CoRR abs/1312.6114. 
Krajsic, P., Franczyk, B. 2020. Lambda Architecture for 
Anomaly Detection in Online Process Mining using 
Autoencoders. In Hernes M., Wojtkiewicz K., 
Szczerbicki E. (eds) Advances in Computational 
Collective Intelligence. ICCCI 2020. Communications 
in Computer and Information Science, vol 1287, pp. 
579-589, Springer. 
Kullback, S., Leibler, R.A., 1951. On information and 
sufficiency. In Ann Math Stat 22, pp.79–86. 
Leemans, S.J.J., Fahland, D., van der Aalst, W., 2013. 
Discovering Block-Structured Process Models from 
Event Logs – A Constructive Approach. In 
International Conference on Application and Theory of 
Petri Nets and Concurrency, pp. 311-329, Springer. 
Liu, F.T., Ting, K.M., Zhou, Z.-H., 2008. Isolation forest. 
In Proc. of the 8th IEEE International Conference on 
Data Mining, Pisa, pp.413-422. 
Lloyd, S., 1982. Least squares quantization in PCM. In 
IEEE transactions on information theory 28 (2), pp. 
129-137. 
Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A., 2017. 
Detecting Sudden and Gradual Drifts in Business 
Processes from Execution Traces. In Transactions on 
Knowledge and Data Engineering 29 (10), pp. 2140 – 
2154. 
Marz, N., Warren, J., 2013. Big Data. Priciples and Best 
Practices of Scalable Realtime Data Systems, Manning. 
Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M., 2018 
Analyzing Business Process Anomalies using 
Autoencoders. In Mach Learn 107, pp. 1875–1893. 
OMeara, C., Schlag, L., Wickler, M., 2018. Applications of 
Deep Learning Neural Networks to Satellite Telemetry 
Monitoring. In: Proceedings of the 2018 SpaceOps 
Conference, p. 2558. 
Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, 
A.H.M., van Dongen, B.F., 2016. Detecting Drift from 
Event Streams of Unpredictable Business Processes. In 
International Conference on Conceptual Modeling, pp. 
330 – 346, Springer.  
Sani, M.F., van Zelst, S.J., van der Aalst, W., 2017. 
Improving Process Discover Results by Filtering 
Outliers using Conditional Behavioral Probabilities. In 
Teniente E., Weidlich M. (eds.) Business Process 
Management Workshops. Lecture Notes in Business 
Information Processing, vol 308, pp. 216-229, Springer. 
Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, 
J., Platt, J., 2000. Support Vector Method for Novelty 
Detection. In Advances in Neural Information 
Processing Systems 12, pp. 582-588.  
Taymouri, F., La Rosa, M., Erfani, S., Bozorgi, Z.D., 
Verenich, I., 2020. Predictive Business Process 
Monitoring via Generative Adversarial Nets: The Case 
of Next Event Prediction. In Fahland D., Ghidini C., 
Becker J., Dumas M. (eds) Business Process 
Management. BPM 2020. Lecture Notes in Computer 
Science, vol 12168. Springer, Cham. 
van der Aalst,  W.M.P., 2011. Process mining: discovery, 
conformance and enhancement of business processes. 
Springer. 
van der Aalst, W.M.P., La Rosa, M., Santoro, F. M., 2016. 
Business Process Management. Don’t Forget to 
Improve the Process! In Business & Information 
Systems Engineering 58 (1), pp. 1-6, Springer. 
van der Aalst, W., 2006. Process Mining. Data Science in 
Action. Springer, Berlin, 2
nd
 edition. 
van der Aalst, W., Weijters, A.J.M.M., Maruster, L., 2004. 
Workflow Mining: Discovering Pro-cess Models From 
Event Logs. In Transactions on Knowledge and Data 
Engineering 16 (9), pp. 1128-1142. 
van Zelst, S.J., Fani Sani, M., Ostovar A., Conforti, R., La 
Rosa, M., 2018. Filtering Spurious Events from Event 
Streams of Business Processes. In Advanced 
Information Systems Engineering. CAiSE 2018. 
Lecture Notes in Computer Science, vol, 10816, pp. 35-
52, Tallin, Springer. 
Wang, J., Song, S., Lin, X., Zhu, X., Pei, J., 2015. Cleaning 
Structured Event Logs: A Graph Re-pair Approach. In 
31st International Conference on Data Engineering, pp. 
30- 41, IEEE Press.  
4TU.ResearchData, Loan application example, 
configuration 1., 
https://doi.org/10.4121/uuid:cdf3ba31-291d-468d-
9712-3a58ac6da3fc (Accessed: 22.10.2020 ).