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Given oracle access to a Neural Network (NN), it is possible to extract its underlying model. We here introduce

a protection by adding parasitic layers which keep the underlying NN’s predictions mostly unchanged while
complexifying the task of reverse-engineering. Our countermeasure relies on approximating a noisy identity
mapping with a Convolutional NN. We explain why the introduction of new parasitic layers complexifies the
attacks. We report experiments regarding the performance and the accuracy of the protected NN.

1 INTRODUCTION

Accurate Neural Networks require a carefully se-
lected architecture and a long training on a large
database. Thus, NN models’ architecture and param-
eters are often considered intellectual property. More-
over, the knowledge of both the architecture and the
parameters make adversarial attacks — among other
kinds of attacks — easier: an attacker can easily gen-
erate small input noise that is undetectable by the hu-
man eye but still changes the model’s predictions (Pa-
pernot et al., 2016; Akhtar and Mian, 2018).

Several papers (Carlini et al., 2020; Milli et al.,
2019; Rolnick and Kording, 2019; Jagielski et al.,
2019) have exploited the fact that the layers of a ReLU
Neural Network (NN) are piecewise linear functions
to extract its underlying model’s weights and archi-
tecture. Indeed, hyperplanes — separating the spaces
where the ReLU NN is linear — split the model’s in-
put space, and recovering the boundaries formed by
the hyperplanes enables the extraction of its weights
and architecture.

These attacks aim to recover the original model or
a functionally equivalent one.

Here, we show how to modify the naturally in-
duced division of the input space by inserting parasitic
layers between the NN layers. Our parasitic layers
are going to approximate a function close to the iden-
tity mapping, following (He et al., 2019). Since this
adds new polytopes — whose boundaries are the vari-
ous hyperplanes —, it leaves the flow of data within the
victim NN mostly unchanged, while disrupting the
geometry accessible for extraction. Contrary to (He
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et al., 2019), we do not inject noise on layers directly,
but add specific CNN layers which aims at producing
similar outputs without degrading the performances.
Our goal is to complexify the hyperplanes geometry
of our NN independently of the NN’s structure. This
can be done dynamically (Remark 1).

To gauge the efficiency of our countermeasure, we
measure how much the parisitic layers perturbate the
overall geometry of the NN’s hyperplanes. A way to
achieve this is to check whether adversarial examples
for the original NN are still effective against the mod-
ified network (Sec. 6.2).

After finishing this introduction, we recall the
aforementioned extraction of RELU NN in Sec. 2.
We show in Sec. 3, following (Zhang et al., 2019),
how to approximate the identity through a Convolu-
tional NN (CNN). We then describe our protection
proposal in Sec. 4. In Sec. 5, we explain how adding
a CNN approximating a noisy identity mapping miti-
gates model extraction attacks on NNs. Sec. 6 reports
our experiments regarding the deterioration of perfor-
mances and accuracy due to the addition of parasitic
layers

1.1 Background

Today, Neural Networks (NNs) are used to perform
all kinds of tasks, ranging from image processing (Si-
monyan and Zisserman, 2015) to malware detection
(Kaspersky, 2020). Neural Networks are algorithms
that, given an input x, compute an output o usually
corresponding to either a classification or a probabil-
ity. NNs are organized in layers. Each layer contains a
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set of neurons. Neurons of a given layer are computed
based on a subset from the previous layer’s parame-
ters and parameters called weights.

There are different types of layers. Among those
are:

o Fully connected layers: Each neuron from a layer
l; is connected to all neurons from layer Ii;.
Thus, a neuron 1, in a layer /; is computed as fol-

. _ i—1, i i—1
lows: m; = Yy} Wl] where {0}, are the n
neurons from the previous layer and {w;} ; are the

layer’s weights.

e Convolutional layers: These layers compute a
convolution between one — or several — filter F and
windows from the input, as follows:

h w
0ij= Z ZXi+k,j+l “Fry
k=1i=1

The elements of the filter are the weights of the
layer. The number of filters is the number of out-
put channels. An input can have several channels.
For instance, in image processing, the input of a
model is usually an image with three channels,
corresponding to the RGB colors.

e Batch Normalization layers: These layers aim
at normalizing the input. To achieve this, they
learn the mean and standard deviation over mini-
batches of input, as well as y and B parameters,
and return:

x;i—Ep
VVp+e

where x = (x1,...,x,) is the layer’s input and Ep
and Vp are the learnt mean and variance respec-
tively. These layers aim at removing the scal-
ing factor introduced through the previous layers.
They make training faster and more efficient.

0i =7 x

+Bi

While the various layers of an NN are linear, each
layer is followed by an activation function, applied to
all of the layer’s neurons. The activation function is
used to activate or, on the contrary, deactivate some
neurons. One of the most popular and simplest ac-
tivation function is ReLLU, defined as the maximum
between 0 and the neuron.

NNs only composed of fully connected layers
are called Fully Connected Networks (FCNs), while
those which are mainly composed of convolutional
layers are called Convolutional Neural Networks
(CNNs).

A ReLU NN is a NN constituted by linear layers
followed by ReLU activation functions.

Let us note that another common layer type is the
pooling layer, whose goal is to reduce the dimension-
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ality. Since the attacks at hand do not take those lay-
ers into account, we also put ourselves in the context
where pooling layers are not considered.

1.2 Related Works

Different kinds of reverse engineering approaches
have been introduced. Batina et al. recover NNs’
structure through side channels, i.e. by measuring
leakages like power consumption, electromagnetic ra-
diation, and reaction time (Batina et al., 2019). These
measurement attacks are common for embedded de-
vices (e.g. smartcards). Fault attacks, which are also
a typical threat to smartcards, are transposed to find
NN models in (Breier et al., 2020). A weaker ap-
proach where the victim NN shares its cache memory
with the attacker in the cloud is taken in (Hong et al.,
2020; Yan et al., 2018). The protections to thwart
these attacks are related to the victim NN implemen-
tation. As we here consider oracle access attacks, our
countermeasures have to modify the NN’s architec-
ture itself.

A more detailed explanation of the attacks (Carlini
et al., 2020; Milli et al., 2019; Rolnick and Kording,
2019; Jagielski et al., 2019) is given in the next Sec-
tion.

It should be noted that the abstract model of NNs
that we are looking at here has been introduced by
(Shamir et al., 2019) while in the different context
of adversarial examples. Similarly to (Shamir et al.,
2019), the authors of (Moosavi-Dezfooli et al., 2015)
use the hyperplanes introduced by the activation func-
tions and the class boundaries they form in order to
accurately compute adversarial examples, as well as
the robustness of the original model. While this is not
the primary application of our idea, its transposition
to thwart adversarial examples seems intriguing. As a
matter of fact, we are going to gauge the efficiency of
our countermeasure thanks to adversarial attacks.

2 EXTRACTION OF NEURAL
NETWORK MODELS

Several attacks (Carlini et al., 2020; Milli et al., 2019;
Rolnick and Kording, 2019; Jagielski et al., 2019)
have managed to recover a ReLU NN’s weights.
These attacks rely on the fact that ReLU is piecewise
linear.

The attack model in (Milli et al., 2019), (Jagielski
et al., 2019) and (Rolnick and Koérding, 2019) is as
follows:

e The victim model corresponds to a piecewise lin-
ear function
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e The attacker can query the model

e The attacker aims at recovering the weights (and,
in some cases (Rolnick and Kording, 2019), the
architecture) of the victim model

e The victim model is composed of linear layers
(such as FC ones), as well as ReLU activation
functions.

Furthermore, (Rolnick and Kording, 2019) also as-
sumes that the attacker does not know the structure
(i.e. the number of neurons per layer) of the vic-
tim NN. In the case of (Carlini et al., 2020), the au-
thors assumed that the attacker had access to the ar-
chitecture, but not the weights. However, the authors
mention their belief that the piecewise linearity of the
NN is the only assumption fundamental to their work,
even though they do not prove it in their paper.

This attack model corresponds to the case of on-
line services, for instance, where users can query a
model and get the output, but they do not have access
to the architecture and parameters of the model.

(Carlini et al., 2020) is the only paper so far that
proves the practicability of its attack for more than 2
layers of a given neural network, even though the the-
ory of (Milli et al., 2019) applies to arbitrarily deep
neural networks. Moreover, (Carlini et al., 2020)
provides a much higher accuracy with much fewer
queries to the victim we want to protect.

Let 7(n,x) denote the input of neuron 7, be-
fore applying the ReLU activation function, when the
model’s input is x. For a given neuron 1) at layer /, let
us define its critical point as follows:

Definition 1. When, for an input x, V(n,x) = 0, the
neuron 1| is said to be at a critical point. Moreover, x
is called a witness of M| being at a critical point.

Finding at least one witness for a neuron 1 enables
the attacker to compute N’s critical hyperplane.

Definition 2. A bent critical hyperplane for a neu-
ron M is the piecewise linear boundary B such that
VY (n,x) =0 forall x € B.

All three attacks recover the weights of each layer
thanks to the following steps:

1. Identify critical points and deduce the critical hy-
perplanes

2. Filter out critical points from later layers

3. Deduce the weights up to the sign and up to an
isomorphism

4. Find the weight signs

Although the way critical points are found and fil-

tered out differ from an article to the other, all meth-

ods use the piecewise linearity of the ReL.U activa-
tion. The main element in those attacks resides in the
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Figure 1: Hyperplanes for three neurons in the first layer.
The dashed red line / enables the attacker to find the critical
points indicated by the slashes.

o

73

2
Figure 2: Hyperplanes are bent by boundaries from pre-
vious layers. For instance, 13’s hyperplane on the second
layer is bent by the hyperplanes of Mg, M1 and N, on the
first layer.

fact that each neuron is associated to one bent critical
hyperplane (that exists because of the ReLU activa-
tion function), corresponding to the neuron’s change
of sign. That hyperplane’s equation is what enables
the attacker to deduce the weights.

Let us detail the attack in (Carlini et al., 2020), as
it is the most accurate and requires the fewest queries
to the victim model so far.

2.1 Finding Critical Points

The attacker chooses a random line / from the in-
put space. Looking for non linearities through binary
search in a large interval in that line enables the at-
tacker to find several critical points (see Fig. 1).
Howeyver, the attacker knows neither what neurons
these critical points are witnesses for, nor the said
neurons’ layer. Neurons from the first layer yield un-
bent hyperplanes, while those in the following layers
are bent by the several previous ReLUs (see Fig. 2).

2.2 Recovering the Weights Up to a Sign

As seen before, the attacker has a set of witnesses for
neurons in all layers. She can then carry out a differ-
ential attack in order to recover the weights and biases
up to a sign.

Let us describe the attack on a simple case where
the model only has one hidden layer, and the input
vector space is , = RV. Let x* be a witness for neuron



N* being at a critical point. Define {e;} as the set of
standard basis vectors of %. The attacker computes:
i _9f(®) i _9f(®)
o) = Je. and o = 2, (1)
x=x*+e; x=x*—e;
Then, because the activation function
is ReLU(x) = max(0,x), we have that:

aof, — o = :tAE-L-) -A@. Thus, by computing:

1 1
S @)
oy — 0o
for all i, the attacker gets the weights up to a multi-
plicative scalar.

In the general case where the NN is deeper, and for
a layer j, the attacker computes second partial deriva-

D
tives y; = {%} instead of the simple ones, where the

d; take random values. She then solves a system of
equations: h; -w = y;, where h; is the value of the
previous layer — after the ReLU — for an input model
x*+ ;. Let us note that the attacker does not know
whether neuron n* is in the current layer. She there-
fore solves the system of equations for all layers, and
only keeps the solution that appears most often. The
biases can then easily be deduced from the weights.

To differentiate critical points of the current layer
from other critical points, the differential attack is car-
ried out on all the critical points and the attacker filters
out the wrong critical points by observing the result-
ing traces.

2.2.1 Recovering Weight Signs

In this step, the attacker proceeds recursively. The
attacker has a set § of witnesses for unknown neurons
(as found in the previous step).

Let us suppose the attacker has managed to re-
cover the correct model up to layer j — 1, as well as
the weights up to sign for layer j. Let us define the
polytope at layer j containing x as:

S ={x+3ds.t sign(V(n,x)) = sign(V(n,x+8))}
3)
Thus, this polytope corresponds to the open, convex
subspace shaped by the critical hyperspaces.

The attacker can easily filter out the critical points
x from previous layers since she already recovered the
weights and biases up to layer j.

To filter out witnesses from layers deeper than j+
1, the attacker relies on the fact that the polytopes of
two distinct layers have a different shape with high
probability.

Finally, the attacker recovers the sign of the
weights through brute force using layer j+ 1’s wit-
nesses. Let us note that when the victim NN is con-
tractive, the sign recovery can be less expensive.

A Protection against the Extraction of Neural Network Models

Thus, the attacker can recover the victim model’s
parameters recursively over the depth of the consid-
ered layer as described in the previous paragraphs.
Moreover, even though the number of queries is lin-
ear, the work required is exponential, as explained in
the previous paragraph.

3 APPROXIMATING THE
IDENTITY THANKS TO CNNs

Our proposal is based on adding parasitic layers to the
model we want to protect, and for those layers, we
rely on a CNN approximating the identity. It results
in the addition of dummy hyperplanes, as explained in
Sec. 5. However, it is not enough to thwart the attack
at hand. In order to mitigate the said attack, our para-
sitic CNNs approximate the identity to which we add
a centered Gaussian noise. Sec. 5 details how this ad-
ditional noise ensures that the introduced hyperplanes
lie in the same space as the original ones.

Since CNNs are intrinsically nonlinear, approxi-
mating the identity — the simplest linear mathemat-
ical function — would appear to be a difficult learn-
ing task. However, thanks to the bias and the piece-
wise linearity of ReLU, CNNs manage to avoid the
obstacle of the hyperplanes by shifting the input to a
space where the activation function is linear. There-
fore, CNNs manage to approximate the identity very
accurately.

The simplicity of the task at hand is demonstrated
in (Zhang et al., 2019). Indeed, the authors of (Zhang
et al., 2019) manage to approximate the identity map-
ping using CNNs with few layers, few channels and
only one training example from the MNIST dataset
(LeCun et al., 2010).

First, they observe that while both CNNs and
FCNs could approximate the identity on digits well
when trained on three training examples from the
MNIST dataset (LeCun et al., 2010), only CNNs gen-
eralize to examples outside of the digits scope. More-
over, they state that this bias can still be observed
when the models are trained with the whole MINST
training set.

In order to better characterize the observed bias,
the authors take the worst case scenario: they only
train FCNs and CNNs on a single training example.
Contrary to what they expected, architectures that are
not too deep manage some kind of generalization:
FCNs output noisy images for inputs that are not the
training example, while CNNs still manage to approx-
imate the identity. Moreover, FCNs tend to correlate
more to the constant function than to the identity. The
output of CNNs’ correlation with the identity function
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decreases with a smaller input size and a higher filter
size.

The authors of (Zhang et al., 2019) show — by pro-
viding possible filter values — that in their case, if the
input has n channels, 2n channels suffice to approxi-
mate the identity mapping with only one training ex-
ample. They also note that adding output featuremaps
does help with training. Moreover, they use 5 x 5 fil-
ters for all their CNNs’ layers. Finally, they explain
that even though 20-layer CNNs can learn the identity
mapping given enough training examples, shallower
networks learn the task faster and provide a better ap-
proximation.

This ability of CNNs to learn the identity map-
ping from only one training example from the MNIST
dataset and to generalize it to other datasets shows the
simplicity of the task. We explain in Sec. 4 and 5
how this fact impairs the defense when the parasitic
CNN approximates the identity mapping, and the ne-
cessity to approximate a noisy identity as well as to
apply some constraints on the CNN’s parameters.

4 OUR PROPOSAL

Let us consider a victim ReLU NN. The attack sce-
nario described in Sec. 2 is based on the bent criti-
cal hyperplanes induced by the ReLU functions in the
model. In (Carlini et al., 2020), the bent hyperplanes
are especially used in the case of expansive NNs —i.e.
for which a preimage does not always exist for a given
value in the output space —, in order to filter out wit-
nesses that are not useful to the studied layer. In order
to make the attacker’s task more complex, we pro-
pose to add artificial critical hyperplanes. Adding ar-
tificial hyperplanes would make the attack more com-
plex: the attacker would have to filter out the artificial
hyperplanes as well as the other layers’ hyperplanes.

As explained in Sec. 3, CNNs can provide a very
good approximation of the identity mapping. More-
over, they generalize well: with only a single trainable
example from the MNIST dataset, CNNs up to 5 lay-
ers deep can still reach the target.

We propose to add dummy hyperplanes through
the insertion, between two layers of the model to
protect, of parasitic CNNs approximating an identity
where a centered Gaussian noise has been added. The
CNNs we add select nb neurons at random from the
output of the previous layer, and approximate a noisy
identity, where nb is smaller or equal to the output
size of the previous layer.

Since CNNs approximate the identity well, insert-
ing CNNs approximating the identity yields hyper-
planes that do not impact a potential attacker. In-
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deed, as will be further detailed in Sec. 5 the CNN
can make sure that the introduced CNNs are either
far from the original ones or, on the contrary, very
close and almost parallel to the original ones. In these
cases, with high probability, an attacker would not no-
tice the added layers, and would therefore be able to
easily carry out her attack. Therefore, we need to ap-
ply further constraints on the parasitic CNNs. Instead
of CNNs approximating the identity, we propose to
insert CNNs approximating the identity where a cen-
tered Gaussian noise is added. Furthermore, these
CNNs are trained with constraints on some of their
parameters. Sec. 5 explains why the addition of the
noise helps make the injected hyperplanes noticeable
by a potential attacker.

Remark 1. Note that we can think of a dynamic addi-
tion of parasitic CNNs approximating a noisy identity
mapping. For instance, considering a client-server
architecture where the server is making predictions;
from a client query to another, different parasitic
CNNs can be added in random places of the server’s
NN architecture, replacing the previous ones.

Furthermore, the small CNN we add does not act
on all neurons. This yields two advantages:

e The added CNN considered can be small, imply-
ing fewer computations during inference

e We can add different CNNs to different parts of
the input, to further increase the difference in be-
havior between neurons

Fig. 3 shows an example of adding such an identity
CNN between the first and the second layer of an NN
with only one hidden layer.

Hidden
layer

:z‘Q_x
z@
— O

~Or Tdentity|

CNN

O* Output

Figure 3: Neural Network with one hidden layer where a
CNN approximating the identity has been added to approx-
imate the first fours input neurons.

The CNN we add in our experiments consists of
four hidden convolutional layers, with 5 x 5 filters
(see Fig. 4). In some cases, we add a batch normaliza-
tion layer after each covolutional one (see Fig. 5). In-
deed, as recalled in Sec. 3, a CNN with few layers and
5 x 5 filters can already approximate the identity on
28 x 28 inputs with a single training example. Thus,



such a CNN is well adapted to learning the identity
mapping on nb neurons, where nb is smaller or equal
to the size of the previous layer’s output. When the
CNN receives the set of neurons from the considered
layer, it first reshapes it into a square input with one
channel, so that it is adapted to convolutional layers.

Moreover, for the much harder task tackled by
the authors of (Zhang et al., 2019), for an input with
n channels, 2n channels in the intermediary layers
are enough to get a good approximation of the iden-
tity, even though more channels improve the accuracy.
Since we do not constrain ourselves to training our
CNN with a single example, we can limit the number
of channels in the hidden layers to two — because we
consider inputs with one channel. This enables us to
minimize the number of additional computations for
the dummy layers, with only a slight drop in the orig-
inal model’s accuracy.

S COMPLEXITY OF
EXTRACTION IN THE
PRESENCE OF PARASITIC
LAYERS

Adding a convolutional layer with k layers as de-
scribed in the previous section results in adding k lay-
ers to the architecture while keeping almost the same
accuracy. If those k layers add critical hyperplanes,
then the complexity of extraction increases.

In this section, we first consider a CNN approxi-
mating the identity mapping added after the first layer
in the victim NN. We further assume that there are
fewer neurons in the second layer than in the first. We
prove that in that case, the identity CNN does add hy-
perplanes with high probability. Then, we explain the
need to approximate the need to approximate a noisy
identity mapping rather than the identity itself.

Let us suppose we add a CNN Identity layer that
takes n X n inputs, and the original input size is m. Let
{F;,j }1<i<k, 1<j<k be its associated filter. This would
result in the following weight matrix C:

Cixnijy(itl)xn+j+h = Fin
VI<ij<n—k+land1<Lh<k
C,",' =1Vi> (n—k+1) X (l”l—k-‘r ])

C;,j = 0 otherwise

Here, without loss of generality, we consider there
is no padding.

This new layer adds at most n X n bent hyper-
planes. This number decreases if two neurons 1; and
1, share the same hyperplane.
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Let V(1;,x) be the value of 1; before the activa-
tion function, if the model’s input is x.
We need to consider two cases:

1. m; and n; are in different layers. Let us suppose
thatn;’s layer is / and that 1 ;’s layeris / + 1. If the
layers are not consecutive, the 1;’s hyperplane is
bent by ReLUs from the layers in between, mak-
ing the probability of the two hyperplanes match-
ing very low.

2. m; and n; are in the same layer

5.1 First Case: 1; Is on Layer / and n;
Is on Layer [+ 1

Let us suppose that 1; is on the first layer, and 7; is
on the second one. The output z(x) of the first layer,
for x € y is:

2(x) =AW x 4+ gl (5)

In this proof, the rows of AW are supposed to be lin-
early independent. This is an assumption made in
(Milli et al., 2019) and in (Jagielski et al., 2019). As
stated in (Jagielski et al., 2019), this is likely to be the
case when the input’s dimension is much larger than
the first layer’s. The authors of (Carlini et al., 2020)
state that it is the case in most ReLU NNs, but not
necessarily the most interesting ones. However, the
general attack in (Carlini et al., 2020) for the cases
where the model to protect is not contractive is more
complex, and requires a layer by layer brute force at-
tack for the sign recovery.
The output of the second layer is:

Out = C-ReLU (z(x)) +p? (6)

Since the rows of A()) are supposed to be linearly in-
dependent, for a given vector V, there exists a solu-
tion x* such that z(x*) =V, by the Rouché-Capelli
theorem. If we select V so that V; > 0 Vi < m, then
V is not affected by the ReLU. We can therefore se-
lect a vector V such that, letting k be the convolutional
layer’s filter size:

V(L%Hh)anrj%nH =0Vl<Lh<k

(where j%n means j modulo n) (7

except for one value i’ # 1;, where V; = 1

Since this second layer is a convolutional one, Bgz)
is the same for all i on a given channel, denoted f.
The window considered to compute 1; is zeroed out,
except for one value. The filter weight associated to
that value needs to be —f to nullify 1;. Since we can
repeat the process for all values of the window that are
not m;, all the filter weights except for that associated
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Figure 4: Parasitic CNN with 4 convolutional layers, with a ReLU activation function after each convolution. Image generated

thanks to (LeNail, 2019).
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Figure 5: Parasitic CNN with 4 convolutional layers, with a batch normalization layer (BN) and a ReLU activation function
after each convolution. Image generated thanks to (LeNail, 2019).

tom; need to be — except for the one associated with
M;. This is not the case with high probability. Thus,
with high probability, n); = 0 does not imply thatn; =
0.

For deeper layers, even though we cannot select
any vector V, it is highly unlikely for the following
equation to happen:

2i(x) =0 < CjReLU(z(x) +B?) =0 (8)

When 7); is not in the window used to compute 1;, it
is even less likely to be the case.

Therefore, two neurons on different layers are
very likely to have different critical hyperplanes.

5.2 Second Case: m; and 1; Are in the
Same Layer

Let us suppose that 1; and 1; are in layer /. Let [ be
the first convolutional layer. Moreover, let us suppose
that the CNN is set after the first layer of the model
we want to protect. Then I’s input is:

2(x) = ReLU(AWx + (V) 9)

where x is the model’s input.

Let us also suppose, without loss of generality,
that j > i. This means that the windows used to com-
pute the two neurons are not identical. With high
probability, one of the filter values associated with the
disjoint window values is nonzero. For simplicity, and
without loss of generality, let us suppose, in what fol-
lows, that Fj; is such a filter value. Thus, in what
follows, we suppose that Fj ; # 0.

Case Where 3 = 0. As explained before, we can
find x* such that z(x*)L | =1and z(x*), =0

% Xn+i%n
otherwise. Since j > i, z(x") i is not in the

% xn+i%n
window used to compute 1, but it is in 1;’s window.
In this case, 1; # 0 and ; = 0. Thus, 1; and 1; do

not share the same critical hyperplane.
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Case Where B £0. If B#0, we cannot directly
apply the previous reasoning. Let x* be a witness for
mn; being at a critical point. Let us show that we can
find an input x** such that ; = 0 but 1; # 0.

If x* already satisfies this property, our work is
done. Otherwise, x* is such that m; =m; = 0. As
explained before, there exists an input to the NN
«' such that (A1) “X) |1 | psign = @ With a > 0 and

(A1) . &), = 0 otherwise. Then, by piecewise lin-
earity of z, we have, for a large enough, that z(x* +
x,)ﬁjxn-ﬂ-i%” > Z(X*)mxnﬁ%n' Moreover, for all

other indices h, z(x* +x');, = z(x*);. Let us consider
X = x* +x’. We have that 21 | xntiten isnotin m;’s
window, which means that 11; remains unchanged and
1; = 0 when the NN’s input is x**. On the other hand,
M:’s value changes since one of its window values
changes and Fj | # 0. Thus, n; # 0. Therefore, we

can indeed find x** such that n; = 0 but 1; # 0.

Let us now consider the case where 1; and 11; are on
deeper layers, in which case the previous proof does
not hold. Leti =i; xn+i and j = j; X n+ jo, where
i1 # j1, or ip # ja, or both. Let also F be the filter of
the considered convolutional layer, of size k X k.

If m; and m; share the same hyperplane, then
whenever z is such that C;z+ [ = 0, we have that:

™=
™=

Fn(Z(iy 1) xntin +h
- (i1 +1) xn+ir+ (10)

= Z(jy+)xntjp+h) =0

~
Il

1

=
Il

Since Eq. 10 needs to hold for all the z that are on the

hyperplane, this equation is very unlikely to hold.
Therefore, with a very high probability, no two

neurons in the same layer share the same hyperplane.

5.3 Approximating a Gaussian Noise

As explained before, adding CNNs approximating the
identity to a victim neural network adds hyperplanes.
However, this does not necessarily lead to an in-
creased complexity for the extraction attacks at hand.



Indeed, the identity CNN might avoid the complexity
of the task by isolating the newly introduced hyper-
planes — meaning the critical points are far from the
input space —, or very close and parallel to the origi-
nal hyperplanes — i.e. the critical points correspond to
a small translation from the original points. The first
case can be achieved by increasing the bias in the con-
volutional layers, so that all values are made signifi-
cantly positive. This ensures that no value is zeroed
out during the computations. The last layer’s bias then
translates the values back to their original position. In
both cases, the attacker would not notice the intro-
duced hyperplanes, thus defeating the purpose of the
parasitic CNN.

The authors of (He et al., 2019) inject normal
noise during a model’s training as a way of mitigat-
ing adversarial attacks. They introduce a parameter,
o, trained along the original model so that o0 x A —
where A( is a fixed Gaussian noise — is added to some
layers. Furthermore, they add adversarial examples to
the training set to prevent o from converging to 0.

Similarly to (He et al., 2019), we inject noise into
our layers in order to avoid cases where the CNN we
add is not detectable by an attacker. However, our
method separates the training of the added CNN from
that of the model to protect. Having to train the origi-
nal model for each parasitic CNN would result in too
much overhead. We inject a fixed Gaussian noise to
the labels during the training of our CNN approximat-
ing the identity.

The standard deviation of this added noise is se-
lected so as to avoid a significant drop in the original
model’s accuracy. Let us note that even though the
selected standard deviation might depend on the vic-
tim network, several CNNs approximating the iden-
tity are trained independently from the victim net-
work, and the victim can then select one or several
CNNss adapted to the network at hand.

Since the noise added is fixed, it only constitutes a
translation of the victim hyperplanes, and can be ap-
proximated by the CNN through an increase in the
bias B. We avoid this case by bounding the bias
to a small value (||B||2 < €) or eliminating the bias
(B = 0). This makes the learning task more com-
plex, and forces the filter values themselves to change,
thus preventing the introduced hyperplanes from be-
ing simple translations of the original ones.

Let us consider, for instance, the case where one
convolutional layer is introduced. As before, let C
be the matrix associated to the layer and A’ be the
fixed Gaussian noise. Then the optimization problem
becomes:

Y Comi=xi+A(VI<i<n a1

1<k<m
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where n is the number of output neurons and m is the
number of input neurons. The only element that is
independent of the input is the noise A’. This makes
this system of equations impossible to solve for all
inputs x. Thus, the solution C* provided by the CNN
is such that:
Y Cn=xi+A(x)VI<i<n (12)
1<k<m
where A* is a noise close to Al but depends on the
input. C* leads to hyperplanes for the various inputs
which cannot be translations of the input hyperplanes.
This implies that the newly introduced hyperplanes
intersect the original ones, increasing the chances of
modifying the polytopes formed by all the model’s
boundaries. This explanation generalizes to the case
of several layers. Indeed, in the general case, the op-
timization problem for k convolutional layers without
a bias becomes:

f) =xi+N(x) VI <i<n 13)
with f(x) = ReLU (Cy(ReLU(...ReLU (Cix)))), where
C; is the matrix associated to the j —th layer.

In order to further prevent the introduced hyper-
planes from being too far from the working space, we
add Batch Normalization layers after each convolu-
tional layer.

To ensure the hyperplanes have indeed changed,
we measure the influence on adversarial examples.
Adversarial attackers find the shortest path from one
prediction class to another. This path depends on the
subdivsion of the space by the original model’s hyper-
planes. Thus, changes in the said subdivision leads
to different adversarial samples. Conversely, if two
models lead to the same subdivision of the space, then
adversarial examples remain the same for both mod-
els. Therefore, in Sec. 6, we measure the impact of
the added CNN on both the original model’s accuracy
and the adversarial samples. Let us note that adding
the CNN to the model we want to protect does not
prevent adversarial examples in itself: it only changes
some of them.

6 EXPERIMENTS

In this section, we detail the model we want to pro-
tect as well as the added CNN. Then, we measure the
impact of the added layers on the model to protect by
counting the number of adversarial samples which do
not generalize to the protected model.

6.1 Description of the NN Models Used

For our CNN approximating a noisy identity — called
parisitic CNN from now on, we consider a CNN with
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4 convolutional layers, 5 x 5 filter sizes and sepa-
rated by ReLU activation functions (see Fig. 4). In
a second model, we separate the convolutional layers
from their activation by Batch Normalization layers
(see Fig. 5). The batch normalizations in this sec-
ond model normalize their input, ensuring a mean of
0 and a standard deviation of 1. This increases the
chances of the ReLU functions being activated. The
first three convolutional layers have two channels,
while the last one only has one. We train this model
over 10,000 random inputs {x; € [0,1]"}1<i<10,000 Of
size n = 16 x 16. In our experiments, we select the n
input neurons as the first or the last ones from the pre-
vious layer, but they can be selected at random among
the previous layer’s neurons. For a given training, we
fix A a Gaussian noise, and we set the labels to be
{xi + Ah1<i<10,000-

The model to protect is a LeNet architecture (Le-
cun et al., 1998) trained on the MNIST dataset (Le-
Cun et al., 2010) (see Fig. 6). We also consider a sec-
ond model where we introduce batch normalization
layers after the convolutional layers of the LeNet arci-
tecture (see Fig. 7). We denote VM the victim LeNet
architecture and V Mj,;, the architecture where batch
normalization layers have been added.

16@28x28 16@28x28

1x120
1x84

N

Dense
+ Softmax

6@28x28 6@28x28,

Dense + ReLU

Convolution RelLU Convolution RelLU Dense + ReLU

Figure 6: LeNet architecture, as in (Lecun et al., 1998).
Image generated thanks to (LeNail, 2019).

16@28x28  16@28x28 16@28x28

6@28x28 6@26x28 6@28x28 1x120 164
1@28x28 o
Dense
+ Softmax
Dense + ReLU

Convolution ReLU
Convolution ReLU Dense + ReLU

Figure 7: LeNet archltecture, as in (Lecun et al., 1998),
where a batch normalization (BN) layer is added after each
convolution. Image generated thanks to (LeNail, 2019).

VM has an accuracy of 98.78% on the MNIST
dataset, while V Mp,c;’s accuracy is of 99.11%.

6.2 Adversarial Examples

Several methods enable an attacker to compute adver-
sarial samples (Goodfellow et al., 2015; Madry et al.,
2018; Moosavi-Dezfooli et al., 2015; Miyato et al.,
2019). In this paper, we use the Fast Gradient Sign
Method introduced by Goodfellow et al. (Goodfellow
et al., 2015) to determine adversarial samples for our
LeNet architecture. Given an input x in the MNIST
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dataset, the algorithm computes the adversarial exam-
ple x44, as follows:

Xadv = X+ € X sign(V,L(0,x,y)) (14)

where L is the victim model’s loss function, 0 is
its vector of parameters and y is x’s true prediction.

Since adversarial examples are based on the sub-
division of the space by the neurons’ hyperplanes
(Shamir et al., 2019; Moosavi-Dezfooli et al., 2015),
a modification of those examples is a good indicator
that the said subdivision has indeed been changed by
the added CNN. As our protection aims at perturbat-
ing this subdivision, we compute adversarial samples
for the first 200 images of the MNIST set using the
FGSM method and measure the percentage of exam-
ples which do not generalize to the modified model.
For the FGSM method, we start with € = 0.05 and in-
crease it by 0.05 until the computed x,4, is indeed an
adversarial example for the original model.

Furthermore, let us denote M, the percentage of
adversarial examples for the original model which are
no longer adversarial for the protected model.

6.3 Results

We test the two original models considered with the
added parasitic CNNs, without a bias 3 or with the
constraint that ||B||> < 0.05. In Table 1, the parasitic
CNN is added to the first 16 x 16 neurons of the sec-
ond convolutional layer. The parasitic CNNs approx-
imate the identity to which a centered Gaussian noise
with standard deviation ¢ = 0.2 has been added. In
every case, we observe a change in the adversarial ex-
amples. Let us note that we only count the number of
adversarial samples for the original model that are no
longer adversarial for the protected CNN. There are
also examples which are adversarial for both models,
but with different predictions.

In all cases, M,;, — as defined in Sec. 6.2 —, is
higher or equal to 12%, and the accuracy of the pro-
tected model is very close to the original one. This
shows that the boundaries between classes — which
are the result of the various layers’ hyperplanes — have
changed. The summary of our results can be found in
Table 1.

As Table 1 shows it, inserting a CNN trained to
learn a Gaussian noise added to the identity can lead
to a modification of the polytopes formed by the orig-
inal model’s hyperplanes, with only a slight drop in
the accuracy.

Adding the same parasitic CNNs but to all the
neurons of the first layer leads to higher M,;,, with
mostly similar accuracy drops. Let us note that the
CNNs we use in this case have the same number of
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Table 1: Measurement of the accuracy, and percentage of the adversarial samples that are no longer adversarial for the
protected CNN (M,4,). All tests are made on the MNIST dataset (LeCun et al., 2010), and the parasitic CNNs approximate
the identity to which a centered Gaussian noise with a standard deviation of 0.2 was added. BN denotes Batch normalization.
All parasitic CNNs were added after the second convolutional layer of the original model.

Original Original

Identity

New ac-

CNN Location Model Accuracy CNN Bias constraints curacy My
. . IBIT2 < 0.05 98.60%  24.5%

Z)M (Fig.  gg7gg,  Without BN g s 987%  19%

After BN With BN B2 < 0.05 9850 %  28%

and ! No bias 98.67%  22%
w07 gt T

(Fig. 7) S With BN MBIT> < 0.05 9.18%  17%

! No bias 99.15% 12%
P v
activation (Fig. 7) e With BN B2 < 0.05 99.05%  27.5%

(if BN) No bias 99.16 % 14 %

Table 2: Measurement of the accuracy, and percentage of the adversarial samples that are no longer adversarial for the
protected CNN (M,;,,). All tests are made on the MNIST dataset (LeCun et al., 2010). BN denotes Batch normalization. All
parasitic CNNs were added after the first convolutional layer of the original model, and their input is the entire output of the
first layer (after the BN layer). The target model is VMp.,. The original model’s accuracy is 99.11%.

Standard De-

Identity CNN Bias constraints viation Accuracy M ,qy
0.1 99.11% 9%
No Bias 0.2 99.09 % 34 %
0.3 99.02 % 34%
. 0.1 93.58% 48%
WAL [IB]]2 < 0.05 0.2 99.05% 32%
0.3 97.55% 46.5%
0.1 99.18% 16.5%
No Bias 0.2 98.28 % 42 %
0.3 93.33 % 52%
. 0.1 98.79% 46.5%
Without BN 11Bll> < 0.05 0.2 987% 48%
0.3 98.27% 45%

layers and parameters. The only difference is the
model’s input and output sizes. Let us also note that
this is only possible if the first hidden layer has a
number of neurons which is a square. The results are
shown in Table 2. Given the increased M,,, with an
acceptable accuracy drop, this strategy seems more
interesting. This can be explained by the fact that all
neurons are impacted by the change. Because this
affects all neurons in the following layers as well,
adding a smaller noise to all neurons in a layer seems
to yield better results than adding a larger noise to a
small portion of the layer’s neurons.

It is interesting to note that the parasitic CNNs
trained with no bias, although they incur a lower M,;,,,
entail either a lower drop in the accuracy than the
CNNs learnt with a small bias, or an increased ac-
curacy. This might be explained by the fact that the
CNN with no bias cannot learn a noise independent
of the input, and will therefore tend to get closer to
the non-noisy identity. Furthermore, the ability for

the parasitic CNN to operate a translation thanks to
the small bias can explain the small drop in the ac-
curacy that we observe. However, despite this added
possibility, the CNN with a small bias still changes
the slope of the hyperplanes, as the drop in the accu-
racy is not steep enough to justify the high M.

It is also possible to add several parasitic CNNs
to a given victim NN. This might result in a higher
protection, with no — or a small — drop in the accu-
racy. Since the parasitic CNNs are already trained, the
cost of adding these CNNs remains small, and is equal
to the additional computations required for inference.
On VMpucn, we try adding two parasitic CNNs after
the same layer, one parasitic CNN after the first and
the second layers, as well as two parasitic layers after
one layer and a third CNN after a second layer. Ta-
ble 3 gives an example of accuracy and M, obtained
in various cases where the parasitic CNNs are added
after the second convolutional layer from V Mp;p, €i-
ther before or after the batch normalization layer and
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Table 3: Measurement of the accuracy, and percentage of the adversarial samples that are no longer adversarial for the
protected NN (M,,4,). Several parasitic CNNs were added to the victim NN. All tests are made on the MNIST dataset (LeCun
et al., 2010), and the parasitic CNNs approximate the identity to which a centered Gaussian noise with a standard deviation
of 0.2 was added. BN denotes Batch normalization. The parasitic CNNs are added after the second convolutional layer of
VMpacn- We add them before, after, or both before and after the BN layer and activation function. The original accuracy for
VMpasen is 99.11%. Small means that the constraint on the bias B is ||B||>» < 0.05.

Parasitic CNNs’ Locations

Accuracy and M,

New

24 Jayer, 2 Jayer, M a4,
Before BN After BN accuracy
and activation and activation
With BN? With Bias? With BN? With Bias?

First n neurons BN Small No BN Small 99% 31%
First n neurons BN Small BN Small 98.98% 37%
First n neurons BN Small No BN No bias 98.93% 31.5%
First n neurons BN Small BN No bias 98.99% 31%
First n neurons BN No bias BN No bias 98.96% 28.5%
First n neurons BN Small
Last n neurons BN No bias . . 99.05% 31%
First n neurons BN Small
Last n neurons ) ) BN No bias 99.17% 21.5%
First n neurons BN No bias
Last n neurons B ) BN No bias 2915% 27%
First n neurons No BN No bias
First n neurons . . No BN Small 99.19% 25.5%
First n neurons BN Small BN Small
Last n neurons BN No bias 98.94% 40%
First n neurons BN Small BN Small
Last n neurons - - BN Small 99.05% 38.5%
First n neurons BN Small BN Small
Last n neurons BN No bias - - SLEET Rl

the activation function. Let us note that once again,
the standard deviation of the added noise is 0.2 in all
cases. Moreover, when there are two parasitic CNNs
at the same location, the first is applied to the first
neurons and the second is applied to the last neurons
of the victim layer.

We observe that adding a parasitic CNN to the first
victim layer did not improve much the results, as there
was almost no impact be it on the accuracy or Mg, .

7 CONCLUSION

In this paper, we introduce a simple but effective
countermeasure to thwart the recent wave of attacks
(Carlini et al., 2020; Milli et al., 2019; Rolnick and
Kording, 2019; Jagielski et al., 2019) aiming at the
extraction of NN models through an oracle access.
As a line of further research, we want to investi-
gate the gain we get by mounting these attacks over
quantized NNs (Hubara et al., 2017; Han et al., 2016;
Gong et al., 2014; Zhou et al., 2016; Jacob et al.,
2018). Indeed, in the non-quantized case, a great care
should be taken dealing with floating point impreci-
sion with real numbers machine representation, as re-
ported, for instance, by (Carlini et al., 2020). Today,
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Quantized NNs share almost the same accuracy as the
floating-point ones. By doing that, we are coming a
step closer to differential cryptanalysis (Biham and
Shamir, 1993) performed against symmetric ciphers
and which serves as an inspiration of (Carlini et al.,
2020). While our protection will still be relevant, we
want to explore more cryptographic techniques as al-
ternatives.

In this paper, we measure the efficiency of our
countermeasure based on a method relying on adver-
sarial attacks. On the one hand, for the practical as-
pect of our work, we would like to directly implement
attacks such as (Carlini et al., 2020). On the other
hand, we have to expand our proofs to measure the
level of information disclosure in our protection.
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