
A Random Walker Can Optimize the Exploration without the Large 
Capacity Memory 

Tomoko Sakiyama a 
Department of Information Systems Science, Faculty of Science and Engineering, Soka University, Tokyo 192-8577, Japan 

Keywords: Random Walk, Super-diffusion, Memory, Resource Distribution. 

Abstract: A random walker explores an unknown field and sometimes changes its movement property using new spatial 
information obtained by it during its exploration. An important matter is the relation between the movement 
property of a random walker and the use for acquired information. I recently developed a random walk model 
in which a walker coordinated its directional rule based on its experiences and found that this model presented 
an optimal random walk, which demonstrated a so-called Lévy walk with μ = 2.00. Here, I investigate the 
foraging efficiency for that model and verify whether a large memory capacity is required or not in order to 
maintain the foraging efficiency. My findings reveal that the proposed model can apply to biological processes 
where a random walker does not have a high memory capacity. 

1 INTRODUCTION 

Animals demonstrate random search in the absence of 
prior knowledge in order to get some information, 
such like spatial information (Kareiva and Shigesada, 
1983; Viswanathan et al. 2001; Bartumeus et al. 2005, 
2008; Bartumeus and Levin, 2008). Many random 
search models such like the Lévy walk or the 
Brownian walk model are effective for random 
exploration and have been very well studied 
(Bartumeus et al. 2005, 2008; Bartumeus and Levin, 
2008). A Lévy walk, which exhibits a scale-free 
distribution, is defined as a process where an agent 
takes steps of length l at each time and the probability 
density function of those steps decays asymptotically 
as a power law: 

P(l) ~ l−μ,      where 1 < μ ≦3 
Several studies of animal foraging strategies 

have reported that Lévy walks are efficient where 
resource is sparse and randomly distributed 
(Bartumeus et al. 2005; Humphries and Sims,2014). 
On the contrary, the advantage of Lévy walks will 
disappear in high-density environments where 
resource is abundant (Bartumeus et al. 2005; 
Humphries and Sims,2014). The Lévy and 
Brownian walks show similar exploration 
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efficiencies if extremely abundant resources are 
available for random walkers.  

The search ability for food resources is a matter of 
life and death for random walkers. To this end, the 
search ability of random walk models has been 
extensively investigated (Sakiyama and Gunji, 2013). 
Recently, I developed a random walk model named 
as the self-reference model (Sakiyama, 2020). A 
walker in that model avoids a certain direction using 
the past information. At the same time however, the 
walker modulates its directional rule if it experiences 
some directional inconsistencies in the recent series 
of its movements. The self-reference model exhibited 
a so-called power-law tailed movement with optimal 
μ value (μ ≈ 2.0) (Bartumeus et al. 2005). In this 
paper, I check the paramenter effects by examining 
the performance of resource search ability of this 
model. Here, a random walker obeying that model 
explores a two-dimensional field where food 
resources are distributed. I investigate the parameter 
effects in respect with the exploration ability of the 
walker and discuss the unnecessity of a large memory 
capacity. 
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2 MATERIALS & METHODS 

2.1 The Self-reference Walks 

Each trial is run for a maximum of 1,000 time steps. 
Field size is set to 1,000 × 1,000. Periodic boundary 
is assumed. I set the simulation stage for each trial and 
set the agent at the origin; (x (0), y (0)) = (0, 0). In this 
algorithm, the agent moves in two-dimensional 
square lattices. On each time step, the agent selects 
one direction among four discrete directions and 
updates its position like follows; 
 

(x (t+1), y (t+1)) = (x (t)+1, y (t)) with Prob (+x), 
(x (t+1), y (t+1)) = (x (t)-1, y (t)) with Prob (-x), 
(x (t+1), y (t+1)) = (x (t), y (t)+1) with Prob (+y), 
(x (t+1), y (t+1)) = (x (t), y (t)-1) with Prob (-y), 

 

Prob (+x) + Prob (-x) + Prob (+y) + Prob (-y) = 1.00. 
 

At the beginning of each trial, the agent equally 
selects each direction. 

A directional move that consists of a series of the 
different move, such as +y, -x or +x, +y and so on, is 
counted as 

if (x (t+1) - x (t)) = (x (t) - x (t-1)) = ±1  
or (y (t+1) - y (t)) = (y (t) - y (t-1)) = ±1, 

 

           Exp (t+1) = Exp (t), 
 

 otherwise, 
           Exp (t+1) = Exp (t) + 1 
 

For example, “Exp (t+1)” can be “Exp (t) + 1” when 
the agent moves in +x direction at time t-1 and is 
going to move in -x direction at time t. 

If Exp (t) exceeds a threshold number, th, the four 
directional probabilities are changed as follows and 
the agent obeys these new rules from the next time 
step; 

if   x (t+1) - x (t) = +1,  
Prob (+x) = φ,  
Prob (-x) = Prob (+y) = Prob (-y) = (1-φ)/3 

if   x (t+1) - x (t) = -1,  
Prob (-x) = φ,  
Prob (+x) = Prob (+y) = Prob (-y) = (1-φ)/3 

if   y (t+1) - y (t) = +1,  
Prob (+y) = φ,  
Prob (+x) = Prob (-x) = Prob (-y) = (1-φ)/3 

if   y (t+1) - y (t) = -1,  
Prob (-y) = φ,  
Prob (+x) = Prob (-x) = Prob (+y) = (1-φ)/3 

 

Here, φ indicates a random number that satisfies 
ratio is the element of a set [0.25, 1.00]. Here, the 
maximum random number was set to 1.00 in order to 

produce a straight movement toward a certain 
direction. Note that Exp (t) is reset to 0 at that time. 

The agent obeys a biased directional rule in order 
to avoid moving in a certain direction. By doing so, 
the agent can avoid visited positions to some extent 
and effectively explore. At the same time however, 
the agent modifies its rule when the agent experiences 
several series of the different directional move such 
like +x, -x or -y, -x and so on.  
Only at first, i.e., at time t=0, where the agent 
calculates (x (1), y (1)) by obeying a Brownian-like 
walk, the four directional probabilities are modified 
as follows independently of Exp (t): 

if   x (1) - x (0) = +1,  
Prob (+x) = φ,  
Prob (-x) = Prob (+y) = Prob (-y) = (1-φ)/3 

if   x (1) - x (0) = -1,  
Prob (-x) = φ,  
Prob (+x) = Prob (+y) = Prob (-y) = (1-φ)/3 

if   y (1) - y (0) = +1,  
Prob (+y) = φ,  
Prob (+x) = Prob (-x) = Prob (-y) = (1-φ)/3 

if   y (1) - y (0) = -1,  
Prob (-y) = φ,  
Prob (+x) = Prob (-x) = Prob (+y) = (1-φ)/3 

In our simulations, th is set to 5 as a default value. 

3 RESULTS 

Here, food resources are randomly distributed on the 
field and the resource density is set to 0.001. The 
agent can consume food items if those items are 
located within 5.0 radii. Food depletion, which means 
that food items disappear once the agent consumes 
those items, does not occur. Therefore, the agent can 
consume each food item whenever it detects that item 
within 5.00 radii. Later however, I will check the 
effect of the resource density and the food depletion. 
Food depletion is an important factor for the search 
ability and the movement strategy of random walkers. 
This is because the random walker with sub-diffusive 
movements does not have a trouble with consuming 
food resources if food depletion does not occur since 
it can find and consume resources again and again. 
On the contrary, the random walker may need to 
change its strategy if food depletion occurs due to the 
fact that no items can be found by the walker once it 
consumes those items. Therefore, the effects of food 
depletion will reveal the performance of my model.  
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Figure 1: An example of the agent’s trajectories where the 
resource depletion does not occur. The parameter th = 5. 

First, I focus on movement properties of the 
model. Figure 1 shows an example of an agent 
trajectory obtained from 1 trial. According to this 
figure, the agent seems to sometimes produce straight 
movements. In fact, the mean squared displacement 
(msd) between the start point and end points reveals 
that the agent demonstrates a super diffusive 
movement (Figure 2A). Here, each end point was 
obtained every 100 time steps and each msd obtained 
from 100 trials was plotted. In the random walk 
analysis, the relation between the mean squared 
displacement <R2> and the step is often calculated 
since this property presents the diffusive property of 
the walker. It is well known that his property follows 
the following relation (Viswanathan et al. 1999): 

<R2> ~ t2H 
Parameter H is determined depending on the 

model (H>1/2 for a Lévy walk (super-diffusion), 
H=1/2 for a Brownian walk (normal diffusion) and 
H<1/2 for sub-diffusive movements). The fit for 
parameter H according to Figure 2 was H ~ 0.91, 
indicating that super-diffusion was achieved (R-
squared=0.99).  

For the evaluation of the parameter effects, I 
replaced the parameter th from 5 with 50. Figure 2B 
represents the diffusive property in case of th = 50. 
Results suggest that super-diffusive movements can 
be maintained even after the parameter replacement 
(Figure 2B: threshold = 50, H ~ 0.91, R-squared = 
0.99).  

 
Figure 2: Log-scale plot of mean squared displacement 
(msd) and t2 obtained from 100 trials for each threshold. A. 
th = 5. B. th = 50. 

 
Figure 3: % of resource consumption in respect with 
resource density; 0.001 and 0.01 for each threshold value 
and for the Brownian walker under the condition where the 
resource depletion does not occur. *** indicates p < 1.0E-
03, ns indicates non-significant.  

In fact, the resource search ability of this model 
seems to be not dependent on the parameter threshold. 
According to Figure 3, which showed the fraction of 
the resource consumption, I found that there was no 
significant difference between th =5 and 50 (Figure 3: 
resource density = 0.001, th =5 (2.06) vs. th = 50 
(1.95), Mann-Whitney U test, P = 0.58, NS). 
Furthermore, this tendency is not changed even after 
the resource density is replaced with 0.01(Figure 3: 
resource density = 0.01, th =5 (1.94) vs. th = 50 
(1.97), Welch Two Sample t-test, t = -0.69, df = 
195.88, P = 0.49, NS) Here, I counted the number of 
resources consumed by the agent on each trial and 
converted it to the percentage against the total number 
distributed on the field. Importantly, I found that the 
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proposed model outperformed the Brownian walk 
model when resource density was low (Figure 3: 
resource density = 0.001, th =5 (2.06) vs. Brownian 
(1.78), Mann-Whitney U test, P < 1.0E-04, th =50 
(1.95) vs. Brownian (1.78), Mann-Whitney U test, P 
< 1.0E-04, resource density = 0.01, th =5 (1.94) vs. 
Brownian (1.90), Welch Two Sample t-test, t = 0.57, 
df = 134.35, P = 0.57, NS, th =50 (1.97) vs. Brownian 
(1.90), Welch Two Sample t-test, t = 0.96, df = 
141.83, P = 0.34, NS). These results suggest that the 
proposed model can search effectively in the low-
density environment and the performance is not 
affected by the parameter threshold. In other words, 
the agent is not necessarily to remember a large 
number of “Exp”. 

To investigate the influence of the food depletion 
to the search ability, I also conducted the same 
analysis under the condition where resource items 
were depleted once the agent consumed items. Figure 
4 indicates that the proposed model again 
outperforms the Brownian walker model. 
Interestingly, this tendency is found not only in the 
low density environment but also in the (relative) 
high density environment (Figure 4: resource density 
= 0.001, th =5 (0.17) vs. th = 50 (0.16), Mann-
Whitney U test, P = 0.31, NS, resource density = 0.01, 
th=5 (0.17) vs. th = 50 (0.17), Mann-Whitney U test, 
P = 0.39, NS, resource density = 0.001, th =5 (0.17) 
vs. Brownian (0.03), Mann-Whitney U test, P < 1.0E-
15, th =50 (0.16) vs. Brownian (0.03), Mann-Whitney 
U test, P < 1.0E-15, resource density = 0.01, th =5 
(0.17) vs. Brownian (0.03), Mann-Whitney U test, P 
< 1.0E-15, th =50 (0.17) vs. Brownian (0.03), Mann-
Whitney U test, P < 1.0E-15). This is perhaps because 
a Brownian walker presents normal-diffusive 
movements, which may result in the inefficient search 
of the food resources under the condition where 
resource items are depleted. 

 
Figure 4: % of resource consumption in respect with 
resource density; 0.001 and 0.01 for each threshold value 
and for the Brownian walker under the condition where the 
resource depletion occurs. *** indicates p < 1.0E-03, ns 
indicates non-significant.  

4 CONCLUSIONS 

In the developed random walker algorithm, the agent 
modulates its directional rule and avoids a certain 
direction. However, it modifies its directional rule 
when the inconsistency of the recent series of the 
directional move beyond a threshold value. As a 
results, I found that the agent presented and 
maintained super-diffusive movements in some 
threshold values. Thanks to this, that model 
outperforms the Brownian walk model when the 
resource density is low or when resources are 
depleted once the agent consumes those items. 
Moreover, the performance of resource search ability 
was not influenced by the threshold replacement. 
These results suggest that the proposed model does 
not require the large number of “Exp” to achieve an 
effective search. 
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