
On using Theorem Proving for Cognitive Agent-oriented Programming

Alexander Birch Jensen1 a, Koen V. Hindriks2 b and Jørgen Villadsen1 c

1DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Richard Petersens Plads, Building 324, DK-2800 Kongens Lyngby, Denmark

2Social AI Group, Boelelaan 1111, Vrije Universiteit (VU) Amsterdam, 1081 HV Amsterdam, The Netherlands

Keywords: Agent-oriented Programming, Cognitive Multi-Agent Systems, Software Reliability, Proof Assistants.

Abstract: Demonstrating reliability of cognitive multi-agent systems is of key importance. There has been an exten-
sive amount of work on logics for verifying cognitive agents but it has remained mostly theoretical. Cognitive
agent-oriented programming languages provide the tools for compact representation of complex decision mak-
ing mechanisms, which offers an opportunity for applying a theorem proving approach. We base our work
on the belief that theorem proving can add to the currently available approaches for providing assurance for
cognitive multi-agent systems. However, a practical approach using theorem proving is missing. We explore
the use of proof assistants to make verifying cognitive multi-agent systems more practical.

1 INTRODUCTION

Reliability is of key importance for software systems
in general and multi-agent systems (MAS) and cog-
nitive MAS (CMAS) in particular (Dix et al., 2019).
Cognitive multi-agent systems are systems that con-
sist of agents that use cognitive notions such as beliefs
and goals to decide on their next action. Dedicated
cognitive agent programming languages have been
developed for engineering these systems. Because
these languages have incorporated these high-level
concepts of beliefs and goals as first-class citizens
they can rather compactly represent quite intricate de-
cision making mechanisms. However, demonstrating
the reliability of such CMAS remains very challeng-
ing because of the complex behaviour these mecha-
nisms are able to generate. We often observe com-
plex behaviour patterns of agents that exceed those of
traditional procedural programs (Winikoff and Crane-
field, 2014).

Testing methods for CMAS have been explored
by (Koeman et al., 2018; Dastani et al., 2010), but
testing alone is unlikely to provide the levels of assur-
ance required by stakeholders. To provide this level
of assurance for complex CMAS, formal verification
techniques are needed for demonstrating their relia-
bility. The fact that several agent languages have been

a https://orcid.org/0000-0002-7298-2133
b https://orcid.org/0000-0002-5707-5236
c https://orcid.org/0000-0003-3624-1159

specified by means of a formal semantics, e.g. 3APL,
GOAL (Hindriks et al., 1999; Hindriks et al., 2001),
and AgentSpeak(L) languages such as Jason and Ja-
CaMo (Rao, 1996; Bordini et al., 2007; Boissier et al.,
2020), provides a suitable starting point for devel-
oping these techniques. The initial developments of
BDI logics such as by (Rao and Georgeff, 1991) and
(Cohen and Levesque, 1987) did not connect well
with the more practically oriented work done in en-
gineering and programming of agents such as (Hin-
driks et al., 1999). These logics were significantly
more complicated which provided a barrier, and only
little progress was made to close the gap it created.
Although work such as (Jongmans et al., 2010; Bor-
dini et al., 2004) has provided more practical tools
to demonstrate reliability using a model checking ap-
proach, we notice that the work on verification logics
has remained mostly theoretical thus far.

The success of state-of-the-art proof assistants has
been demonstrated in the literature for more tradi-
tional software development paradigms different from
CMAS. They have proved quite successful for veri-
fication of various software (and hardware) systems
(Ringer et al., 2019). One major branch is based on
simple type theory (higher-order logic) with prime ex-
amples being HOL Light, HOL4 and Isabelle/HOL
(Harrison, 1996; Slind and Norrish, 2020; Nipkow
et al., 2002). Another major branch contains those
based on dependent type theory such as Agda, Coq
and Lean (The Agda Developers, 2020; Bertot and
Castéran, 2004; Avigad et al., 2020). Built from a

446
Jensen, A., Hindriks, K. and Villadsen, J.
On using Theorem Proving for Cognitive Agent-oriented Programming.
DOI: 10.5220/0010349504460453
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 1, pages 446-453
ISBN: 978-989-758-484-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

small, trusted kernel proof assistants provide tools for
ensuring reliability of systems that are also trustwor-
thy (Paulson et al., 2019). Arguably, these systems re-
main accessible mostly for specialists and have been
applied in practice to relatively limited cases. The
answer to why this is the case seems obvious: be-
cause only then it pays off. Applying it to much
larger programs is too complicated and requires too
much effort. But we believe that here there is ac-
tually a benefit of CMAS that still needs to be ex-
plored: CMAS are typically much more compact pro-
grams, and agent programming languages are typi-
cally very high-level programming languages that in-
troduce high-level concepts such as beliefs and goals.
At least at first sight this appears to make them more
suitable candidates for a theorem proving approach.

Given the success of proof assistants in other ar-
eas, there should be something for us here to explore.
To the best of our knowledge, there is no work thus far
that has looked into the viability of a theorem proving
approach. More specifically, we aim to explore the
use of proof assistants as a practical alternative for
demonstrating the reliability of CMAS.

In this paper, we want to explore a practical ap-
proach as an answer to our main research question:
how can a theorem proving approach contribute to
reliable engineering of cognitive agent systems?

We argue that proof assistants can be useful and
play an important role in verifying cognitive multi-
agent programs. To support our argument, we use
the GOAL agent programming language as our pri-
mary example. We do so partly because the core
of this language captures the core concepts of cog-
nitive agent programming but also is relatively simple
(when we leave out more advanced concepts for struc-
turing agent programs such as modules) and a formal
semantics is available which facilitates the process of
formalization in a proof assistant.

The paper is structured as follows. Section 2 high-
lights some of the relevant existing work in the lit-
erature. Section 3 gives a brief introduction to the
basic concepts of the programming language GOAL.
Section 4 discusses the challenge of ensuring relia-
bility of CMAS and compares the current available
approaches for demonstrating reliability. Section 5
explores how a theorem proving approach can con-
tribute to demonstrating reliability. Section 6 serves
as an appetizer for early work on formalizing GOAL
in Isabelle/HOL. Finally, Section 7 makes some con-
cluding remarks.

2 RELATED WORK

Agent systems, especially in the multi-agent set-
ting, are notoriously hard to test. The findings of
(Winikoff and Cranefield, 2014) show that belief-
desire-intention (BDI) agents indeed have a large
number of paths through the program — something
that has often been presumed. In the case of white box
testing, covering all paths thus becomes increasingly
impossible. Perhaps surprisingly, it is also found
that adding failure handling to agents significantly in-
creases the size of the behavior space.

Traditionally, temporal logic has been the pre-
ferred language for specification of agents and cor-
rectness properties, but it falls short when consider-
ing e.g. error-prone environments and capturing that
agents succeed where possible. In such cases the
straight-forward statement that the agent will eventu-
ally succeed is too strong and not provable. (Winikoff,
2010) suggest an approach that combines testing and
formal verification as neither in practice succeeds to
obtain assurance of the reliability of the system.

The focus of formal verification of CMAS has
mostly been on testing with somewhat limited logi-
cal languages: (Jongmans et al., 2010) suggest an ap-
proach using a model checker on top of the program
interpreter. The model checker is implemented for the
interpreter of the GOAL language, but the proposed
framework is generally applicable to other agent pro-
gramming languages as well. (Koeman et al., 2018)
propose an automated testing framework for auto-
matically detecting failures in cognitive agent pro-
grams. Although the work shows promise, more work
is needed particularly towards localization of failures.

(Koeman et al., 2017) explore an approach apply-
ing the concept of omniscient debugging to cognitive
agent programs. The work is based on the idea of re-
versing the program’s execution rather than trying to
debug the program by reproducing failure in a rerun.
In agent programs this becomes especially useful as
they usually have both non-deterministic aspects and
rely on agent environments both of which make the
reproduction of the circumstances of failure difficult.

Some work on theorem proving was done by
(Alechina et al., 2010) and in particular by (Shapiro
et al., 2002) which explored verification of agents
specified in Cognitive Agents Specification Language
(CASL). However this work was focused mostly on
the specification level and thus did not connect well
with agent-oriented programming (AOP). As such, it
still left a gap in terms of practical applicability for
CMAS.

The present paper closely relates to our work in
(Jensen, 2021b) where the formalization of GOAL in

On using Theorem Proving for Cognitive Agent-oriented Programming

447

Isabelle/HOL (to be presented in Section 6) is dis-
cussed in details; (Jensen, 2021a) explores a method
for transforming GOAL agents’ program code to an
agent logic of a verification framework — unlike this
paper, a theorem proving approach is not considered.

3 THE PROGRAMMING
LANGUAGE GOAL

We use GOAL as our primary example of a cogni-
tive AOP (c-AOP) language. This section briefly in-
troduces the basic concepts of GOAL. For a more
detailed overview of the GOAL agent programming
language we refer to (Hindriks et al., 2001; Hindriks,
2009; Hindriks and Dix, 2014).

The language GOAL is an agent-oriented pro-
gramming language based on the BDI logic that draws
inspiration from concurrent programming in general
and from the programming language UNITY in par-
ticular (Misra, 1994). However, unlike UNITY, the
basic concepts of the GOAL language are cognitive
concepts such as beliefs and goals instead of simple
assignments. GOAL uses a declarative notion of goals
that agents use to decide their next action.

An agent’s beliefs and goals are drawn from a
classical, propositional language and are stored in a
belief base and goal base, respectively. A belief base
Σ and goal base Γ constitute an agent’s mental state
〈Σ,Γ〉. The constraints imposed on mental states are
a consequence of the blind commitment strategy that
agents use by default (Rao and Georgeff, 1993):

• Σ is consistent, i.e. does contain a contradiction,

• for all γ ∈ Γ:

– γ is not entailed by the agent’s beliefs, and
– γ is satisfiable.

Formulas over mental states are used to express con-
ditions on beliefs and goals. The language of mental
state formulas is formed by Boolean combinations of
the belief and goal modalities B and G, respectively. It
may be helpful to think of these modalities as queries
for inspection of the mental state:

• BΦ: is Φ entailed by the belief base Σ?

• GΦ: is Φ a goal (or subgoal) of the goal base Γ?

Besides these more complex notions for defining and
reasoning about an agent’s state, the GOAL language
provides rules and capabilities (or basic actions) for
deriving an agent’s choice of action from its mental
state. In contrast to other agent programming lan-
guages, as the goals of an agent in GOAL are declar-
ative, they specify (conditions on) states the agent

wants to achieve and not how to achieve them. The
specification of rules provides means to program the
agent such that it rationally selects actions for achiev-
ing its goals. As such, the language is built on the
core principle that agents always derive their choice
of action from their current beliefs and goals.

4 ENSURING RELIABILITY

The paradigm of c-AOP draws many parallels with
concepts of concurrent programs which are noto-
riously difficult to both test and formally verify.
The primary reason is their complex behaviour pat-
terns and by extension the number of possible paths
through the program. Consequently, covering every
path of the program through testing is practically im-
possible and any proof attempt will explode in size.

For languages that have a formal semantics, such
as GOAL, formal techniques can be used, but the fo-
cus has been mostly on limited logical languages and
model checking. Although these works have shown
that they can be applied in practice, the work on ver-
ification logics has remained mostly theoretical thus
far, and there has not been much work to show that
proof assistants can contribute to demonstrating reli-
ability of CMAS.

We want to pursue the idea that a proof assis-
tant can contribute to reliability of CMAS. (Calegari
et al., 2020) recently reviewed logic-based technolo-
gies for MAS and provide a nice overview of the
available, and actively developed, agent technologies
including means of agent verification. Notably, while
model checking is highly represented, the literature
review reveals no mention of theorem proving nor
proof assistants. In conclusion, it seems that these
tools and methodologies have not been adopted in the
MAS community. The question remains why this is
the case. At the time MAS became trending, model
checking had manifested itself as an effective formal
technique for verification of software (Clarke et al.,
2001). As such, adapting model checking to MAS
seemed an obvious choice of direction for verifica-
tion. Going back to the initial work on BDI agent
logics, a lot of the work was promising. However,
the practical applications were not explored further,
possibly due to the need for automatic tools to reduce
the effort of proof, and working with such tools may
have seemed a daunting task. However, the AOP ap-
proach does not require as complex a logic as the orig-
inal work in BDI and intention logics (Hindriks and
van der Hoek, 2008).

Some of the typical challenges for engineering
CMAS reliably are: knowledge representation (KR),

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

448

Table 1: Programming concepts of multi-agent systems and possible approaches for demonstrating their reliability.

Programming concept Debugging Automated testing Model checking Theorem proving

Knowledge representation X X X ?

Cognitive concepts X X X ?

Decision rules X X X ?

Multiple agents X X X ?

Environments X × × ?

cognitive concepts such as beliefs and goals, deci-
sion rules, multiple agents, environments (the exter-
nal world). Each of these contributes to the complex-
ity of demonstrating the reliability, either by adding to
the complexity or making it easier. We have listed the
key programming concepts of MAS in Table 1 and an
indication of which approaches we believe currently
are state-of-the-art (X) or not well established (×).
Theorem proving for MAS is something we are cur-
rently exploring (?).

Debugging approaches remain the most versatile
as they cover all CMAS concepts, but their weakness
is that debugging only truly makes sense once an er-
ror has been observed — they do not inherently aid
us in finding (obscure) error states. To overcome this,
it often makes sense to devise a number of automated
tests, e.g. by checking that certain properties hold be-
fore and after execution of modules. Outside of the
immediate difficulties of devising testing schemes, a
great difficulty lies in deterministic reproduction of
error states when connected to external environments.
The highest degree of reliability is currently achieved
by applying model checking techniques. However, a
potential pitfall is the often necessary introduction of
assumptions to reduce the size of the state space.

5 A THEOREM PROVING
APPROACH

In this section, we want to advocate an approach us-
ing theorem proving to ensure reliability of MAS. We
already mentioned how the use of proof assistants has
shown success in other applications of software.

We are particularly interested in what could be
gained from a theorem proving approach for c-AOP
for which we see some particular benefits: the cog-
nitive concepts define primarily single agents and
only in second instance the multi-agent level because
agents communicate about their beliefs and goals. Es-
pecially the proof assistants based on higher-order
logic are appealing. Here, we focus on Isabelle/HOL.

Primarily because this is the proof assistant we have
most experience working with. The strengths of
Isabelle/HOL include first and foremost a power-
ful automatic proof search, including an automatic
search for counterexamples (Isabelle will inform us
that a particular proof goal cannot be solved due to
the found counterexample) (Paulson, 2017). Further-
more, Isabelle facilities a readable language for struc-
tured proofs: Isar. The practicality of Isabelle rests on
its LCF-style foundation: every proof goes through
the kernel using abstract types to ensure its soundness
(Paulson, 2019).

Much of the work with formal techniques for ver-
ification of CMAS has been with limited logical lan-
guages. A reason for the lack of experimentation
with higher-order logic (HOL) languages could be
that finding the proper level of abstraction is difficult:
the verification of agents is clearly bound to the con-
text in which they are deployed. If we make our mod-
els too general, verification by proof will likely fail.
At the other end of the spectrum, if we fail to suffi-
ciently generalize the proof goal, the proof result may
be too weak. It is clear that using a proof assistant
will not inherently provide the answer to how a HOL-
based model of CMAS could look like. Yet still, the
practicalities should make the approach more feasible
from an engineering perspective. We are interested
to see if a new and fresh perspective could emerge
through the use of HOL, and what a general sketch of
a HOL-based approach using theorem proving could
look like.

We need to consider how to demonstrate the effec-
tiveness of a theorem proving approach using proof
assistants. The nature of verification can be very rig-
orous: the proof attempt either fails or succeeds. One
way to alleviate this absoluteness is to compare the
approach to similar approaches such as model check-
ing: where do we achieve the highest degree of pre-
cision in the model, which approach produces the
strongest theoretical results, how efficiently do we
reach these results and how much effort is required
to obtain them?

On using Theorem Proving for Cognitive Agent-oriented Programming

449

6 FORMALIZING GOAL IN
ISABELLE/HOL

To demonstrate the feasibility of the suggested ap-
proach, we have started work on a formalization of
the GOAL agent programming language and a verifi-
cation framework. We take as our starting point and
frame of reference the work by (de Boer et al., 2007).

In the following we will illustrate our suggested
theorem proving approach using Isabelle/HOL. For
further details see (Jensen, 2021b).

The Isabelle files are publicly available online:

https://people.compute.dtu.dk/aleje/public/

The theory file Gvf PL.thy formalizes the proposi-
tional logic that serves as foundation. The the-
ory Gvf GOAL.thy imports Gvf PL.thy and formalizes
GOAL (up to the point of proving soundness of the
presented proof system).

The Isabelle/HOL formalization is around 400
lines of code in total and loads in less than a second
on a MacBook Pro with a 2.4 GHz 8-core i9 processor
and 32 GB memory.

The website also links to demonstrations related
to other work we have done on verification of GOAL
agents (Jensen, 2021a).

In Isabelle/HOL expressions to be parsed within
the context of the (embedded) higher-order language
are encapsulated in the so-called “cartouches” 〈 · · · 〉.
Note that they generally can be omitted for atomic
expressions.

Cognitive concepts of agents are modelled
through mental states. Mental states consists of a be-
lief base and goal base that can be set up as a datatype
over formulas of propositional logic (the type ΦL):

type-synonym mst = 〈(ΦL set × ΦL set)〉

The command type-synonym introduces a new type
name as an abbreviation.

Certain constraints apply: not every tuple of sets
of formulas qualify as mental states. We think of the
declarative goals as achievement goals which is (par-
tially) captured by the following definition:

definition is-mst :: 〈mst⇒ bool〉 (〈∇〉) where
〈∇ x ≡ let (Σ, Γ) = x in
Σ ¬|=C ⊥L ∧ (∀γ∈Γ. Σ ¬|=C γ ∧ {} ¬|=C ¬L γ)〉

The command definition introduces a new definition.
Unlike abbreviations, definitions are not automati-
cally expanded by Isabelle which is helpful when a
higher level of abstraction is desired. In our defini-
tion above, the type is 〈mst ⇒ bool〉: given a mental
state, an evaluation of the expression will result in a
Boolean value. We introduce ∇ as a shorthand for the

definition. The variable x is a pair of sets, as we de-
fined earlier, and let (Σ, Γ) = x in . . . introduces local
variables Σ and Γ in . . . by unfolding the x definition.

We have detached the type for the mental states
(mst) from the constraints (is-mst). This gives some
extra footwork: we need to introduce the definition
into statements concerning mental states. On one
hand we may need the definition as an assumption
for a proof to go through; on the other hand we may
need to prove that alterations preserve the mental state
properties.

For reasoning about mental states, a language is
embedded into Isabelle that allows for inspection of
mental states through the belief and goal modalities,
B and G, respectively:
datatype ΦM =
B ΦL |
G ΦL |
Neg ΦM (〈¬M 〉) |
Imp ΦM ΦM (infixr 〈−→M 〉 60) |
Dis ΦM ΦM (infixl 〈∨M 〉 70) |
Con ΦM ΦM (infixl 〈∧M 〉 80)

The command datatype introduces a new datatype.
Each option has a constructor followed by one or
more input types. Multiple options are divided by
the special | character. The constructors may be re-
cursive as is the case for the Boolean operators. The
keywords infixl and infixr signify that the follow-
ing shorthand is left- or right-associative, respectively.
The numbers define the order of precedence.

Next we define the semantics of mental state for-
mulas. The belief modality requires that the formula
is entailed by current beliefs. The goal modality is
more complicated: we either require that the formula
is a goal or a subgoal (not entailed by current beliefs):
primrec semantics :: 〈mst ⇒ ΦM ⇒ bool〉 (infix 〈|=M 〉 50)
where
〈M |=M (B Φ) = (let (Σ, -) = M in Σ |=C Φ)〉 |
〈M |=M (G Φ) = (let (Σ, Γ) = M in
Σ ¬|=C Φ ∧ (∃γ∈Γ. {} |=C γ −→L Φ))〉 |
〈M |=M (¬M Φ) = (¬M |=M Φ)〉 |
〈M |=M (Φ1 −→M Φ2) = (M |=M Φ1 −→ M |=M Φ2)〉 |
〈M |=M (Φ1 ∨M Φ2) = (M |=M Φ1 ∨M |=M Φ2)〉 |
〈M |=M (Φ1 ∧M Φ2) = (M |=M Φ1 ∧M |=M Φ2)〉

The command primrec defines a primitive recursive
function. We introduce infix syntax (|=M) similar to
textbook definitions. The semantics for Boolean op-
erators can be defined by using Isabelle’s built-in op-
erators.

As a slight deviation from (de Boer et al., 2007),
we have baked the subgoal property into the seman-
tics of the language. In the original work, the goal
base is defined such that it includes all subgoals. This
means that the goal base is an infinite set of formulas.
We have opted for a constructive approach.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

450

Now that we have defined the language and its se-
mantics, we turn to prove some interesting properties
of the goal modality. The following lemma justifies
to call G a logical operator:
lemma G-properties:
shows
〈¬ (∀Σ Γ Φ ψ. ∇ (Σ, Γ) −→ (Σ, Γ) |=M

G (Φ −→L ψ) −→M G Φ −→M G ψ)〉
and
〈¬ (∀Σ Γ Φ ψ. ∇ (Σ, Γ) −→ (Σ, Γ) |=M

G (Φ ∧L (Φ −→L ψ)) −→M G ψ)〉
and
〈¬ (∀Σ Γ Φ ψ. ∇ (Σ, Γ) −→ (Σ, Γ) |=M
G Φ ∧M G ψ −→M G (Φ ∧L ψ))〉

and
〈{} |=C Φ←→L ψ −→ ∇ (Σ, Γ) −→ (Σ, Γ) |=M
G Φ←→M G ψ〉

The command lemma instantiates a proof with the
given proof goal(s) that are to be solved. In our case,
we have stated four individual goals, each stating a
different property of the G modality. The proof de-
tails are omitted. We may later use the result of the
lemma by referencing its name G-properties.

The properties of the modalities form the basis for
an inductively defined proof system for mental state
formulas:
inductive derive :: 〈ΦM ⇒ bool〉 (〈`M 〉) where
R1: 〈conv (map-of T) ϕ ′= ϕ =⇒ {#} `C ϕ ′=⇒ `M ϕ〉 |
R2: 〈{#} `C Φ =⇒ `M (B Φ)〉 |
A1: 〈`M (B (Φ −→L ψ) −→M (B Φ −→M B ψ))〉 |
A2: 〈`M (¬M (B ⊥L))〉 |
A3: 〈`M (¬M (G ⊥L))〉 |
A4: 〈`M ((B Φ) −→M (¬M (G Φ)))〉 |
A5: 〈{#} `C (Φ −→L ψ) =⇒ `M (¬M (B ψ) −→M (G Φ)
−→M (G ψ))〉

The command inductive introduces an inductive def-
inition. The use of =⇒ signifies that side conditions
apply (the result is to the far right).

In the inductive definition above, `C denotes
derivability in classical logic. The first condition of
R1 enforces that ϕ ′ and ϕ are structurally equivalent.
As such, R1 transfers any proof rules for classical
logic via `C. R2 captures that agents believe tautolo-
gies to be true. A1-A5 are the axioms and have no side
conditions.

We can prove the proof system sound with respect
to the semantics of mental state formulas (again the
proof is omitted, but we note that it in its current form
requires around 80 lines):
theorem derive-soundness:
assumes 〈∇ M〉

shows 〈`M Φ =⇒ M |=M Φ〉

The command theorem is internally similar to
lemma. The distinction is reminiscent of writing for-
mal proofs on paper, i.e. theorem signals an impor-
tant result.

In summary, we acknowledge that our work is still
in its early stages. Nevertheless, we think that the in-
termediate results show good promise that a full for-
malization of the GOAL programming language and
the verification framework is possible.

7 CONCLUSION

We have considered reliability of cognitive multi-
agent systems (CMAS) which consist of agents that
use cognitive notions such as beliefs and goals.

The work on finding and improving approaches to
demonstrating reliability of CMAS has in the multi-
agent system community been dominated by model
checking, debugging and testing. While all of these
approaches have shown to be effective and practical,
efforts towards new and better strategies are ongoing.

We have observed that while much of the
early work on agent and verification logics showed
promise, it has remained mostly theoretical and with
limited practicality. We question if the reason could
be due to the trends at the time work with CMAS
gained traction, and not because the approach is in-
ferior to others.

The early work on theorem proving as an ap-
proach to demonstrate reliability of CMAS has left
a gap between theory and practice. We find that proof
assistants provide the practical tools to close this gap,
and that they can contribute to demonstrating relia-
bility, primarily by means of powerful automation for
proof search.

To illustrate the feasibility of the suggested
approach, we have started work on formalizing
the GOAL agent programming language in the
Isabelle/HOL proof assistant. Our early findings
show good promise for the approach.

ACKNOWLEDGEMENTS

We would like to thank Asta Halkjær From for
Isabelle related discussions and for comments on
drafts of this paper.

REFERENCES

Alechina, N., Dastani, M., Khan, A. F., Logan, B., and
Meyer, J.-J. (2010). Using Theorem Proving to Ver-
ify Properties of Agent Programs. In Specification
and Verification of Multi-agent Systems, pages 1–33.
Springer.

On using Theorem Proving for Cognitive Agent-oriented Programming

451

Avigad, J., Moura, L. d., and Kong, S. (2020). Theorem
Proving in Lean. https://leanprover.github.io/theorem
proving in lean/.

Bertot, Y. and Castéran, P. (2004). Coq’Art: The Calculus
of Inductive Constructions. Springer.

Boissier, O., Bordini, R. H., Hubner, J., and Ricci, A.
(2020). Programming Multi-Agent Systems Using Ja-
CaMo. MIT Press.

Bordini, R., Fisher, M., Wooldridge, M., and Visser, W.
(2004). Model Checking Rational Agents. Intelligent
Systems, IEEE, 19:46–52.

Bordini, R., Hübner, J., and Wooldridge, M. (2007). Pro-
gramming Multi-Agent Systems in AgentSpeak Using
Jason. Wiley.

Calegari, R., Ciatto, G., Mascardi, V., and Omicini, A.
(2020). Logic-based technologies for multi-agent sys-
tems: a systematic literature review. Autonomous
Agents and Multi-Agent Systems, 35.

Clarke, E., Biere, A., Raimi, R., and Zhu, Y. (2001).
Bounded Model Checking Using Satisfiability Solv-
ing. Formal Methods in System Design, 19:7–34.

Cohen, P. and Levesque, H. (1987). Intention = Choice +
Commitment. In Proceedings of AAAI-87, volume 42,
pages 410–415.

Dastani, M., Brandsema, J., Dubel, A., and Meyer, J.-
J. (2010). Debugging BDI-Based Multi-Agent Pro-
grams. In Programming Multi-Agent Systems, pages
151–169.

de Boer, F. S., Hindriks, K. V., van der Hoek, W., and
Meyer, J.-J. (2007). A verification framework for
agent programming with declarative goals. Journal
of Applied Logic, 5:277–302.

Dix, J., Logan, B., and Winikoff, M. (2019). Engineer-
ing Reliable Multiagent Systems (Dagstuhl Seminar
19112). Dagstuhl Reports, 9(3):52–63.

Harrison, J. (1996). HOL Light: A tutorial introduction. In
Srivas, M. and Camilleri, A., editors, Formal Methods
in Computer-Aided Design, pages 265–269, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Hindriks, K. and van der Hoek, W. (2008). GOAL Agents
Instantiate Intention Logic. In Programming Multi-
Agent Systems, pages 196–219.

Hindriks, K. V. (2009). Programming rational agents in
goal. In El Fallah Seghrouchni, A., Dix, J., Dastani,
M., and Bordini, R. H., editors, Multi-Agent Program-
ming: Languages, Tools and Applications, pages 119–
157. Springer US, Boston, MA.

Hindriks, K. V., Boer, F., van der Hoek, W., and Meyer, J.-
J. (1999). Agent programming in 3APL. Autonomous
Agents and Multi-Agent Systems, 2:357–401.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and
Meyer, J.-J. (2001). Agent Programming with Declar-
ative Goals. In Intelligent Agents VII Agent The-
ories Architectures and Languages, pages 228–243.
Springer.

Hindriks, K. V. and Dix, J. (2014). GOAL: A Multi-agent
Programming Language Applied to an Exploration
Game. In Agent-oriented software engineering, pages
235–258. Springer.

Jensen, A. B. (2021a). Towards Verifying a Blocks World
for Teams GOAL Agent. In ICAART 2021 - Proceed-
ings of the 13th International Conference on Agents
and Artificial Intelligence. SciTePress. To appear.

Jensen, A. B. (2021b). Towards Verifying GOAL Agents
in Isabelle/HOL. In ICAART 2021 - Proceedings of
the 13th International Conference on Agents and Ar-
tificial Intelligence. SciTePress. To appear.

Jongmans, S.-S., Hindriks, K., and Riemsdijk, M. (2010).
Model Checking Agent Programs by Using the Pro-
gram Interpreter. In CLIMA, pages 219–237.

Koeman, V., Hindriks, K., and Jonker, C. (2017). Omni-
scient debugging for cognitive agent programs. In
Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, pages
265–272.

Koeman, V., Hindriks, K., and Jonker, C. (2018). Automat-
ing failure detection in cognitive agent programs. In-
ternational Journal of Agent-Oriented Software Engi-
neering, 6:275–308.

Misra, J. (1994). A Logic for Concurrent Programming.
Technical report, Department of Computer Sciences.
The University of Texas at Austin. Austin, Texas,
USA.

Nipkow, T., Paulson, L., and Wenzel, M. (2002).
Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. Springer.

Paulson, L. (2017). Computational logic: Its origins and ap-
plications. Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Science, 474.

Paulson, L., Nipkow, T., and Wenzel, M. (2019). From
LCF to Isabelle/HOL. Formal Aspects Comput.,
31(6):675–698.

Paulson, L. C. (2019). Formalising mathematics in simple
type theory. In Centrone, S., Kant, D., and Sarikaya,
D., editors, Reflections on the Foundations of Mathe-
matics: Univalent Foundations, Set Theory and Gen-
eral Thoughts, pages 437–453. Springer International
Publishing, Cham.

Rao, A. S. (1996). AgentSpeak(L): BDI Agents Speak
out in a Logical Computable Language. In Proceed-
ings of the 7th European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World: Agents
Breaking Away: Agents Breaking Away, MAAMAW
’96, pages 42––55, Berlin, Heidelberg. Springer-
Verlag.

Rao, A. S. and Georgeff, M. P. (1991). Modeling Ratio-
nal Agents within a BDI-Architecture. In Proceedings
of the Second International Conference on Principles
of Knowledge Representation and Reasoning, KR’91,
pages 473–484. Morgan Kaufmann Publishers Inc.

Rao, A. S. and Georgeff, M. P. (1993). Intentions and Ratio-
nal Commitment. In Proceedings of the First Pacific
Rim Conference on Artificial Intelligence (PRICAI-
90). Citeseer.

Ringer, T., Palmskog, K., Sergey, I., Gligoric, M., and Tat-
lock, Z. (2019). QED at Large: A Survey of En-
gineering of Formally Verified Software. Founda-
tions and Trends R© in Programming Languages, 5(2-
3):102–281.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

452

Shapiro, S., Lespérance, Y., and Levesque, H. J. (2002). The
Cognitive Agents Specification Language and Verifi-
cation Environment for Multiagent Systems. In Pro-
ceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems: Part
1, AAMAS ’02, pages 19—-26, New York, NY, USA.
Association for Computing Machinery.

Slind, K. and Norrish, M. (1998-2020). HOL-4 manuals.
https://hol-theorem-prover.org/.

The Agda Developers (2020). The Agda Wiki. https://wiki.
portal.chalmers.se/agda/pmwiki.php.

Winikoff, M. (2010). Assurance of Agent Systems: What
Role Should Formal Verification Play? In Dastani,
M., Hindriks, K. V., and Meyer, J.-J. C., editors, Speci-
fication and Verification of Multi-agent Systems, pages
353–383. Springer US, Boston, MA.

Winikoff, M. and Cranefield, S. (2014). On the Testability
of BDI Agent Systems. Journal of Artificial Intelli-
gence Research, 51:71–131.

On using Theorem Proving for Cognitive Agent-oriented Programming

453

