
Real-time Monocular 6DoF Tracking of Textureless Objects using
Photometrically-enhanced Edges

Lucas Valença1 a, Luca Silva1 b, Thiago Chaves1, Arlindo Gomes1 c, Lucas Figueiredo1 d,
Lucio Cossio2, Sebastien Tandel2, João Paulo Lima3,1, Francisco Simões4,1 e

and Veronica Teichrieb1 f

1Voxar Labs, Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
2HP Inc., Porto Alegre, Brazil

3Departamento de Computação, Universidade Federal Rural de Pernambuco, Recife, Brazil
4Campus Belo Jardim, Instituto Federal de Pernambuco, Belo Jardim, Brazil

Keywords: 6DoF Tracking, Edge-based, Monocular, Real-time, Model-based, Mobile, Multi-object, Augmented Reality,
Textureless, Segmentation, RGB, HSV, Single-thread.

Abstract: We propose a novel real-time edge-based 6DoF tracking approach for 3D rigid objects requiring just a monoc-
ular RGB camera and a CAD model with material information. The technique is aimed at low-texture or
textureless, pigmented objects. It works even when under strong illumination, motion, and occlusion chal-
lenges. We show how preprocessing the model’s texture can improve tracking and apply region-based ideas
like localized segmentation to improve the edge-based pipeline. This way, our technique is able to find model
edges even under fast motion and in front of high-gradient backgrounds. Our implementation runs on desk-
top and mobile. It only requires one CPU thread per object tracked simultaneously and requires no GPU. It
showcases a drastically reduced memory footprint when compared to the state of the art. To show how our
technique contributes to the state of the art, we perform comparisons using two publicly available benchmarks.

1 INTRODUCTION

Tracking the 6DoF pose of a 3D object through
monocular videos in real-time has been a long-time
computer vision challenge. Multiple tasks in thriving
technological fields (e.g., extended reality, robotics,
autonomous vehicles, medical imaging) require infor-
mation regarding the objects populating the environ-
ment. Real-time tracking requires high precision with
temporal consistency at every snapshot of the scene.
In addition, dynamic conditions of the real world may
impose numerous difficulties, such as unexpected oc-
clusions, foreground or background clutter, varying
illumination, and motion blur. Hardware challenges
are also present (e.g., lack of processing power or suf-
ficiently reliable scene input from available sensors).

a https://orcid.org/0000-0003-2625-9857
b https://orcid.org/0000-0003-2182-9208
c https://orcid.org/0000-0003-3930-2754
d https://orcid.org/0000-0001-9848-5883
e https://orcid.org/0000-0001-9368-2298
f https://orcid.org/0000-0003-4685-3634

It is also important to briefly mention detection
techniques, which are often seen as complementary
to tracking works. The main difference between them
lies in the temporal consistency and computational
cost. Usually, the detection step (which can be au-
tomated or even manually aligned) provides an ini-
tial estimation for trackers to use. Unlike detectors,
trackers achieve higher efficiency by not needing to
search the entire frame every time, as the object is ex-
pected to be in the vicinity of where it was in the last
frame. Additionally, trackers try to make the current
frame’s estimation coherent with respect to the previ-
ous frames, generating smoother results.

Objects being tracked can vary in appearance, be-
ing considered textured if there is a significant amount
of visual information such as internal gradients and
color variation. The lack of such information in tex-
tureless objects configures a relevant category con-
sidering how widely common these objects are (e.g.,
3D prints, industrial parts), and how suitable their
textureless surfaces are for applications such as aug-
mented reality.

Valença, L., Silva, L., Chaves, T., Gomes, A., Figueiredo, L., Cossio, L., Tandel, S., Lima, J., Simões, F. and Teichrieb, V.
Real-time Monocular 6DoF Tracking of Textureless Objects using Photometrically-enhanced Edges.
DOI: 10.5220/0010348707630773
In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 5: VISAPP, pages
763-773
ISBN: 978-989-758-488-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

763

This paper presents a novel 6DoF object tracking
technique (see Fig. 1) based on edges and photomet-
ric properties. Our technique is mainly aimed at rigid,
textureless or low-texture objects with pigmentation
(see Section 3.4). It uses previously known mate-
rial information from the input 3D model to generate
photometrically-robust local color data. This data un-
dergoes statistical simplification in order to generalize
it, enabling matching to real-world objects. During
tracking, the color matching process then generates a
binary segmentation mask in real time. We demon-
strate that our approach is capable of matching ob-
ject edges even under motion blur or in front of high-
gradient backgrounds, helping to overcome what is
arguably the largest pitfall of edge-based tracking. We
also introduce a novel, more computationally efficient
way to match object’s 2D and 3D silhouette points
and a new search range concept (Valença, 2020).

In terms of hardware, the only required input sen-
sor is a monocular RGB camera, such as a usual mid-
range commodity webcam, and a single CPU core per
object. The proposed technique is also, to the best of
our knowledge, the first monocular real-time 6DoF
object tracker among state-of-the-art contenders to
have been shown to work in mobile devices. For this
reason, we argue that the proposed work is more suit-
able for lightweight application scenarios than cur-
rently existing methods. Additionally, most fields that
make use of object tracking commonly utilize it as
part of a larger pipeline (running simultaneously with
other algorithms). Thus, sparing resources by just us-
ing one core of the (usually multi-core) modern CPU
can be considered a desirable feat.

Our work’s main contributions are summarized as:
• A novel multi-platform edge-based approach

aimed at textureless, pigmented objects which
provides comparable precision to the state of the
art with less hardware requirements, lower run-
time, and a memory footprint orders of magnitude
smaller. The technique excels in handling illumi-
nation changes and fast motion. It also contains a
new way for edge-based tracking to isolate object
edges under blur and high-gradient backgrounds.

• Sequences using 3D printed textureless objects.

2 RELATED WORK

Due to the various tracking challenges that objects
and scenes can present, very distinct methods exist in
the literature. Feature and SLAM-based approaches,
which use feature descriptors to extract object and
scene characteristics, have been adapted to 6DoF de-
tection and tracking. These are particularly popular in

industry applications for mobile devices1, generally
coupled with 3D reconstruction (not model-based). In
the academia, ORB-SLAM2 (Mur-Artal and Tardós,
2017) has been adapted to track 3D rigid objects (Wu
et al., 2017) in a benchmark scenario. These methods
tend to struggle with textureless objects and perform
best in unchanging scenes with fixed illumination and
object position (relative to the scene).

Recently, monocular region-based approaches
have been proposed (Tjaden et al., 2018; Zhong and
Zhang, 2019; Stoiber et al., 2020), and most famously
PWP3D (Prisacariu and Reid, 2012). These tech-
niques track a whole portion of the input frame and
statistically differentiate between object and back-
ground colors to isolate a silhouette and estimate the
motion. One such method, RBOT (Tjaden et al.,
2018), can be seen as an evolution of PWP3D and is,
to our knowledge, the approach that has so far been
proven to yield the most reliable results in multiple
versatile conditions. It is suitable to a wide range of
objects and textures, and has been thoroughly evalu-
ated in multiple benchmarks. Very recently, The main
problem with real-time region-based approaches lies
in their computational cost (e.g., PWP3D relies heav-
ily on GPGPU, and RBOT on multi-threading and
GPU rendering). This parallelism bottleneck comes
to light especially for multi-object tracking. Very re-
cently, a work has proposed a sparse region-based ap-
proach that might help overcome this performance is-
sue (Stoiber et al., 2020).

Edge-based approaches have been around the
longest and tend to be more lightweight (Seo et al.,
2013). They attempt to match the model’s edges
to gradients found in the frame. The main edge-
based pipeline was popularized by RAPID (Harris
and Stennett, 1990) and a wide array of trackers (Han
and Zhao, 2019) have been developed on top of
the RAPID pipeline, including the proposed method.
Initially, RAPID-based works relied only on differ-
ences of grayscale intensity. Then, techniques like
GOS (Wang et al., 2015) started applying color anal-
ysis to regions neighboring the edges. Edge-based
techniques tend to struggle with highly textured back-
grounds, as the many gradients can cause erroneous
matching. Additionally, they are prone to fail in
cases of heavy motion where edges become blurred.
Thus, since the appearance of recent region-based ap-
proaches like RBOT, to our knowledge, edge-based
works have fallen out of the state of the art (with one
exception, which is not real-time capable) (Bugaev
et al., 2018).

For completeness sake, we shall also mention a
relevant RGB-D deep learning approach (Garon and

1Apple ARKit

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

764

Figure 1: Our work in different scenes. Left to right: flashing lights, occlusion, clipping, motion blur, multi-object, and AR.

Lalonde, 2017). It has not achieved the same runtime
speed of machine learning RGB-D trackers (Tan et al.,
2017). Still, it was shown to be reliable in scenarios
with strong occlusions or imprecise initialization. As
downsides, we must mention the hardware require-
ments (RGB-D cameras and high-end GPUs).

3 METHOD

Our method uses the object’s 3D model together with
its material information. Models are defined as stan-
dard triangular meshes composed by a set of vertices,
edges, and faces, without repetition of shared edges
between faces. Materials can be assigned to the en-
tire object or to a subset of faces. Diffuse texture
images are assumed to be in RGB format with 8-
bit quantization per intensity channel. The color of
faces with no diffuse texture specified in its mate-
rial (as is the case with textureless objects such as
solid-color 3D prints) is referred to as the RGB vec-
tor C ∈ R3 → {0, · · · ,255}3. Such color is specified
by the diffuse color coefficient of the face’s material.

All frames are remapped to remove radial and tan-
gential lens distortion. We also assume the camera to
be precalibrated, with the focal length and principal
point expressed in pixels as the 3×3 intrinsic param-
eter matrix K, as per the pinhole camera model.

The extrinsic parameter matrix E describes the
6DoF transform from world to camera space and is
represented as a 3× 4 matrix [R t]. The projection
p ∈ R2 of an object point P ∈ R3 can be described as
p= β(K ·(E ·P̃)), with P̃ being its homogeneous coor-
dinate form. Additionally, β represents the conversion
between P3→ R2 so that β(P) = [X/Z,Y/Z]T ∈ R2.

The pose Ei for the ith frame can be estimated
by approximating the object’s infinitesimal rigid body
motion between frames. This is done by using the ith

frame and the last known pose expressed by E(i−1) to
estimate ∆t = ti− t(i−1) and ∆R, finally obtaining Ei.

3.1 Model Preprocessing

Before tracking begins, the 3D model is preprocessed
and has its texture simplified. This is a one-time pro-
cedure. Every model face’s diffuse texture image re-

gion (i.e., the diffuse image associated to the set of
vertices, masked by the UV coordinates associated
with each face vertex) is simplified by being quan-
tized into a 32-bin RGB probability histogram. Each
color’s probability value corresponds to the percent-
age of pixels of said color in the face’s histogram.
Colors are then ranked according to said probabil-
ity, highest first, and stored in HSV format. They are
stored until either reaching a kp1 = 95% accumulated
probability limit (i.e., all stored colors for that face
represent over kp1% of the face’s surface) or reaching
the kp2 = 3 color per face limit. For faces without dif-
fuse texture, C = 100% probability. The kp1 limit was
set to avoid storing unrepresentative colors and kp2
was set due to our textureless scope, as an upper limit
for the amount of colors and gradients per triangle.

Each face color is then assigned to every edge
within the face. Thus, every edge has a list of all col-
ors from all faces that contain it, without repetition.
The list of edges, vertices that form them, and HSV
colors they contain are then stored. The original ob-
ject model and materials are no longer utilized.

3.2 Efficient Silhouette Encoding

The first step executed in real-time for every frame
consists of encoding the 2D-3D correspondences for
the current pose. All the model’s 3D vertices are pro-
jected using the last known pose. Based on line pro-
jection properties, the 2D edges are drawn using the
projected vertices and Bresenham’s line-drawing al-
gorithm. The canvas used consists of a single-channel
32-bit image. Each pixel of a projected edge has
its intensity value corresponding to its own 3D edge
index from the edge set ξ contained in the prepro-
cessed model. This is similar to the Edge-ID algo-
rithm (Lima et al., 2009), but uses a single 32-bit
channel directly for the ID instead of splitting it in
three 8-bit channels. The resulting image is referred
as the codex. It is important to mention that our imple-
mentation does not utilize depth testing (for details,
see the Appendix).

Next, a topological border following algo-
rithm (Suzuki and Abe, 1985) is used on the codex
to extract the external-most 2D contour ζ. The con-
tour is continuous and returned in counter-clockwise

Real-time Monocular 6DoF Tracking of Textureless Objects using Photometrically-enhanced Edges

765

order. This set of pixels corresponds to the object’s
2D silhouette at the last known 6DoF pose.

Finally, the set of 2D normal vectors ϒ is deter-
mined so that ϒi = Θ̃(ζ(i+1)−ζ(i−1)), as ζ is circular
and continuous. The vector Θ̃ corresponds to the nor-
malized output of the function Θ(v) = [−y,x]T , which
returns a 2D vector orthogonal to v = [x,y]T ∈ R2.
The normal vector is always rotated 90o clockwise.
Given the counter-clockwise property of the contour’s
continuity, this means the 2D normals will automati-
cally always point outwards from the silhouette.

To extract a 3D point P from the codex’s 2D point
p, because we only projected the edge vertices, we
need to linearly interpolate those two endpoint Z val-
ues to obtain Pz. Then, P = [(px− cx)/(Pz · f),(py−
cy)/(Pz · f),Pz]

T (Lima, 2014), where cx, cy, and f
come from the intrinsic camera matrix K defined pre-
viously. To find those two endpoint Z values we see
the edge ID in the codex and verify in the edge array
which pair of 3D vertices compose that edge. This
operation is only performed when a match is found
for that silhouette pixel, which is more efficient than
calculating all Z values using a z-buffer.

3.3 Adaptive Circular Search

In order to segment the frame, we need to estab-
lish a search range. Instead of conducting 1D linear
searches directly (as is traditional in edge-based ap-
proaches), our search is performed locally in dense
circular areas with radius r, centered around contour
points from ζ (drawing inspiration from RBOT). The
goal in our case, though, is to match the colors found
in the frame with the ones expected from that region
of the preprocessed 3D model. Additionally, instead
of sampling 3D points at random, we’re taking con-
secutive points directly from ζ in 2D. This is done to
maintain uniform contour coverage as the projected
silhouette’s length varies with z-axis translation.

Ideally, every point in ζ should be evaluated in its
own circle, covering a dense strip around the object’s
curvature. Because that is too computationally expen-
sive, we are instead sampling every rth consecutive
contour point so that every circle is always equally
re-visited by each of its neighbors, increasing cover-
age. Neighbors checking the circle area can be useful
when there’s larger motion between frames or colors
are blended due to blur.

Instead of using a fixed radius value (as is com-
monly done in tracking approaches), we suggest to
change the radius according to the object’s current sil-
houette area in relation to the frame resolution. This
way, r is updated at every new pose, proportionally
to how many pixels are being occupied by the ob-

ject’s projection. This region consists of all pixels
inside (and including) ζ, referred to as A(ζ). Thus,
the amount of pixels inside this region is represented
by |A(ζ)|. The radius r can be calculated as a linear
function with limiting thresholds:

r(ζ) = min
(⌊(

kθ ·λ−1
A · |A(ζ)|+ r0

)
·λS
⌋
,r1
)
, (1)

where r0 = 7 pixels is the minimum tolerable level of
detail where shapes are still discernible for our PnP-
based approach, determined empirically. The angu-
lar coefficient kθ = 0.002 determines how fast the ra-
dius grows with proportion to the object size. The
value of the maximum allowed radius is defined as
r1 =

√
kA · |A(F)|/π, where |A(F)| is the total area

(in pixels) of the input frame F and kA = 0.01, or 1%,
corresponds to the percentage of the frame that the
maximum radius is allowed to occupy. The suggested
values for kθ and kA were found via experimentation
with multiple handheld objects.

Variable λA = |A(F)|/(Rw · Rh) represents the
scale factor between the current resolution and R,
the base resolution (in our case VGA). It makes it
so our technique behaves uniformly under resolution
changes. Subscripts h and w represent height and
width, respectively.

Finally, λS = min(Fw,Fh)/min(Rw,Rh) represents
the shortest side scale. It minimizes changes when
under different (e.g., wider or narrower) aspect ratios.
An alternative to using λS to handle changes in aspect
ratio is to use directly-proportional elliptical search
circles, but that would divert from the circular search
concept by creating directional search bias.

3.4 Binary Segmentation

We construct a segmentation mask by evaluating ev-
ery pixel within the search circles described previ-
ously. In an ideal world, where the model texture cor-
responds exactly to what we will find in the frame, the
binary segmentation is very straightforward. Yet, due
to the reality gap, we must establish tolerances for a
pixel’s color to be considered a match. These toler-
ances are controlled by what we call the uncertainty
coefficient, or σ. The idea is that in a scenario where
we’re very sure the texture is accurate, such as in 3D
printed objects or synthetically-rendered scenes and
applications, the uncertainty (and therefore tolerance
to variation) is low. But in a real world scenario, that
tends to be larger (see Section 6.1).

The core idea of the proposed segmentation ap-
proach consists of utilizing the photometric proper-
ties of the HSV space to help in overcoming reality
gap challenges and filter pixels. By utilizing hue and
saturation information, we can more easily identify a

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

766

preprocessed color in cases where, if using a space
like RGB, it might not be so clear. Because we rely
on HSV, our approach focuses on pigmented objects.
Grayscale (non-pigmented) objects do not possess re-
liable hue information (see the Appendix).

To take advantage of the HSV properties, we bor-
row a concept from region-based techniques: the
smoothed unit step function (see Fig. 2). In our case,
we want to statistically highlight the difference be-
tween regions of HSV space itself, as to continuously
regulate the uncertainty tolerance levels proportion-
ally to the amount of pigmentation present.

Figure 2: Behavior of H(s) for σ = 0.1 as saturation
changes. Desaturation threshold ks is also highlighted.

This way, a segmented frame pixel p must satisfy
the following conditions with respect to the prepro-
cessed color c in order to be set as 1, or true, in the
binary segmentation:

H(ps)≥ dθ(ph−ch) ∧ ps > ks ∧ η≥ |ps−cs|, (2)

where subscript h and s represent the hue and satu-
ration channels, respectively. Function dθ represents
the shortest distance between hue values (considering
they are cyclic) and constant ks = 0.05 represents the
minimum saturation threshold, indicating the point
where there is so little pigmentation hue is no longer
reliable (see supplementary material). The saturation
tolerance range is mapped by the logarithmic function
η = kl · ln(σ)+ kη, where the vertical shift kη = 0.5
sets the log curve’s plateau at the maximum saturation
tolerance window possible, and the elasticity coeffi-
cient kl = 0.08 both determines how fast that plateau
will be reached and sets the function within the 0 to 1
quantization. Finally, H represents the hue tolerance
proportional to the amount of pigmentation present,
represented by a smoothed unit step function (Wang
and Qian, 2018), adapted as follows:

H(s) = σ ·
[

3
2
− 1

π
· tan−1

(
s−0.5

kH

)]
, (3)

where kH = 0.2 represents the sharpness coeffi-
cient (Wang and Qian, 2018).

3.5 Mask Simplification

After every pixel in the search circles is subjected
to the binary segmentation described in the previ-
ous section, we perform an additional check to avoid
noise and erroneous background bits in the resulting
mask. First, we identify all existing external-most
contours (Suzuki and Abe, 1985) and store the largest
contour in terms of area, assumed to be the main
tracked object body (or body portion). Every contour
with area less than km = 5% of the largest contour’s is
removed (see Fig. 3). This heuristic does not work if
the erroneous portion is connected to the main body.

From this point, we will refer to the binary mask
as Φ, so that {Φ f ,Φb} ⊆ Φ refer to the foreground
(true) and background (false) pixel subsets.

Figure 3: Mask simplification process. From left to right:
input frame, initial segmentation, final simplified result.

3.6 Correspondence Search and Pose
Estimation

The next step consists of searching for a match for ev-
ery point in ζ. We do this using a traditional (Drum-
mond and Cipolla, 2002; Seo et al., 2013) edge-
based linear 1D search for gradients along the nor-
mal vectors from ϒ. This search uses the kernel
ψ =

[
1 −1

]T along the parametric pixel line de-
scribed as ζi +dtϒi, and can be expressed as

S(i, t) = ψ ·
[
Φζi+dtϒi Φζi+d(t+1)ϒi

]
, (4)

where d ∈ {−1,1} corresponds to the search direction
(inwards or outwards) so that d = 1 always points out-
wards from the model contour. The parametric term
t ∈ {0,r− 2} is limited to r− 2 to avoid matching
with the edges of the circular search masks, as this in-
dicates that the accepted pixel region would continue
beyond the search range and does not correspond to
a border. These cases are usually indicative of same-
color background regions. The minimum range of 0
deals with cases where the object did not move at all.

Eq. (4) is calculated for every value of t until
a result different from 0 is obtained. When and if
that happens, the 2D-3D point tuple (µi, ζi + dtϒi)
is stored in the vector χ as a possible match candi-
date. The 3D point µi represents the unprojected 3D
equivalent of ζi from the codex.

Instead of alternating d values while t in-
creases (Seo et al., 2013), we guide the direction of

Real-time Monocular 6DoF Tracking of Textureless Objects using Photometrically-enhanced Edges

767

d as per Table 1. Set W = A(ζ)−R(ζ), where R(ζ)
is a mask indicating the search range, where all pix-
els for every search circle for every chosen point in ζ

are set to 1. Thus, O =W (ζ)∩Φ f represents whether
there seems to be an occlusion in Φ f . This is due to
no pixels in W being reachable by the search circles,
but being within the contour, so that they can only be
set if the contour was not interrupted by occlusion and
could thus be filled, as per Fig. 4.

Figure 4: Segmentation without (A) and with (B) occlusion.

If the previous pose contour point ζi ∈ Φ f , then
the search continues outwards (d = 1) otherwise, if ζi
is outside Φ f , the search goes inwards (d = −1). If
Φ f is not filled and ζi is not in it, then it can be ei-
ther outside or inside the current pose. Thus, we first
assume it is inside the model and, to avoid matching
the search strip, the first match going outwards is ig-
nored, so that only the second one is valid. If no two
matches are found, then the point is likely outside the
model and we must search for the first match inwards.

Table 1: Guidelines for directional search and matching.

ζi ∈Φ f O =∅ d match stored in χ

T 6 1 1st

F F −1 1st

F T 1 then −1 2nd then 1st

We would like to argue that this segmentation step
is an interesting addition to be considered for edge-
based approaches because it circumvents the back-
ground gradients problem by postponing the gradient
matching step to the binary mask. The downside re-
mains erroneous color-based segmentation, which can
be adjusted according to the limitations of the chosen
segmentation module for each technique.

Given a set of 2D-3D correspondences χ, the cur-
rent pose is estimated as the solution of a PnP problem
using a Levenberg-Marquardt optimization scheme
with the last known pose as initial estimation.

4 IMPLEMENTATION DETAILS

This section provides details of our C++ implemen-
tation. All major steps are performed using a single
CPU thread. The implementation relies on OpenCV,
which is optimized for computational efficiency and

multi-platform portability. Our mobile port utilizes
the same C++ code via Android’s NDK.

Every new input frame is converted to HSV and
iterated by each tracker instance 12 times. Every iter-
ation performs steps from Sections 3.2 through 3.6.

4.1 Tracking Multiple Objects

The technique has been extended to track multiple si-
multaneous objects, without compromising the frame
rate, by having each tracker instance (one object per
instance) running on a separate CPU thread. The
amount of objects that can be tracked in parallel de-
pends on the number of physical CPU cores.

Threads are managed in a producer-consumer
scheme with the same number of threads and tracker-
object instances, no instance being tied to any specific
thread. One tracking job is queued per instance at ev-
ery new frame, but are only processed after all jobs
on the previous frame have finished, making it so the
multi-object tracking is as fast as the slowest tracker
instance. The approach is not very suitable to mobile
CPUs, as cores do not usually share the same clock
speed. Thus, our Android port does not currently sup-
port multi-object tracking.

5 3DPO Sequences

We made available our real-world qualitative se-
quences which we have named the 3DPO dataset (3D
Printed Object dataset) together with CAD models
and camera calibrations2. The set has scenes with
multiple high-quality 3D-printed objects for the chal-
lenges of clutter, extreme motion, heavy occlusion,
handling, and independent object-camera motion.

6 EVALUATION

Experiments were executed in a laptop with a dual-
core Intel Core i7 7567U CPU @ 3.50 GHz, 16 GB
of RAM, and integrated Iris 650 graphics. Results are
compared to the current state of the art using the pub-
licly available implementation of RBOT3 (see the Ap-
pendix for details). We have used a reality-gap uncer-
tainty σ= 0.1 on OPT and σ= 0.01 on RBOT dataset,
unless where explicitly specified.

2github.com/voxarlabs/3DPO-Dataset
3github.com/henningtjaden/RBOT

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

768

6.1 Benchmark Comparison

For benchmark comparisons we used the publicly
available datasets OPT4 at 1920×1080 resolution and
RBOT dataset5 in its original resolution (640×512).
Experiments were conducted using the area under
curve (AUC) measure as described by OPT(Wu et al.,
2017). Results can be seen in Table 2 and Fig.5.

Table 2: AUC score table for the OPT dataset.

Method Soda Chest House Ironman Bike Jet Average

Proposed 4.11 11.76 13.45 15.70 0.04 0.94 7.67
RBOT 6.62 9.41 6.84 7.36 6.44 8.74 7.57

AUC results from Table 2 show that Chest, House,
and Ironman were reliably tracked, as they contain the
least non-pigmented parts and are less textured (bet-
ter fitting our scope). One interesting aspect of our
edge-based binary approach is that it is able to more
finely match the object’s silhouette than probabilistic
approaches like region-based (see Fig.5).

Figure 5: AUC curves for Chest, House, and Ironman.

Our method particularly struggled with objects
Soda, Bike, and Jet. That was expected, as these
objects are highly textured. In addition, Bike and
Jet contain many non-pigmented portions and Soda
has a highly symmetrical silhouette. In the case of
Bike (Bugaev et al., 2018) and Jet, models and tex-
tures were also not very accurate. Thus, it is safe
to say that these three objects presented a worse-case
scenario for our work (see Fig.6).

Figure 6: Failure case which shows the proposed work at-
taching itself to the pigmented portions the Bike object.

Table 3 shows more detailed results per OPT chal-
lenge. There it can be seen that the proposed work
particularly excels in handling illumination changes.
This is mostly due to our segmentation utilizing hue
information. In terms of handling motion, our tech-
nique’s ability to swiftly recover from partial loss has
been beneficial (see Section 6.2).

4media.ee.ntu.edu.tw/research/OPT/
5cvmr.info/research/RBOT/

Table 3: AUC scores per challenge.

Object Method
Illum. Free Scale Trans- Rota-

Changes Motion Changes lation tion

Chest
Proposed 8.75 9.77 13.69 10.19 12.23
RBOT 6.64 2.43 7.08 10.86 11.67

House
Proposed 15.19 13.70 7.78 16.12 14.67
RBOT 11.36 2.05 3.40 11.02 7.82

Ironman
Proposed 16.34 10.86 14.75 14.92 16.85
RBOT 6.52 5.45 5.78 5.41 8.81

Average
Proposed 13.43 11.44 12.06 13.74 14.58
RBOT 8.17 3.31 5.42 9.10 9.94

To evaluate how the segmentation manages mo-
tion blur, we have performed a comparison between
segmented pixels and ground truth masks using all
Level 5 motion (fastest) OPT sequences. Results in
Table 4 show that our approach successfully handles
blur, overcoming the blurred-edges problem of edge-
based techniques by using the pigmented information.

Table 4: Average results for motion blur segmentation test.

Measure Chest House Ironman

False Negatives (%) 3.50 1.98 6.82
True Positives (%) 98.75 96.99 96.74

We also performed combined tests to understand
the impact of dynamic radii. The test compared vari-
ations on search range (fixed) to Eq.(1) in the Scale
Changes (zoom) scenes of the OPT dataset and the
Cat scene from the RBOT dataset. Table 5 shows dy-
namic radius is preferable for generality purposes.

Table 5: Results for different search ranges (in px).

Object
AUC or RBOT Score

r = r0 r = r1/4 r = r1/2 r = r1 Eq.(1)

Chest 13.65 13.71 13.90 13.90 13.69
House 2.48 7.72 7.81 8.15 7.78
Ironman 14.03 15.63 11.59 5.92 14.75
Average 10.05 12.35 11.10 9.32 12.07

Cat 57.90 67.30 94.10 88.70 97.20

Next, we use the textureless pigmented objects
from RBOT’s proposed dataset together with its pro-
posed metric (Tjaden et al., 2018) on the scene reg-
ular to evaluate robustness to similar-color back-
grounds by varying σ tolerance (see Table 6).

Numbers for the object Cat show that the pro-
posed work excels in handling similar-color back-
ground when there’s little uncertainty, even surpass-
ing RBOT’s high score, but suffers from background
matching otherwise. Such low uncertainty values are
only possible because the materials are very accurate
to the objects, which means our technique requires
high-quality 3D model materials to perform well un-

Real-time Monocular 6DoF Tracking of Textureless Objects using Photometrically-enhanced Edges

769

Table 6: Evaluation on varying σ values. Percentages S, TP,
and FN stand respectively for score (Tjaden et al., 2018),
and averages of true positives and false negatives (in %)
for the segmented pixels with respect to the ground truth
segmentation masks.

Object
Proposed (varying σ values)

RBOT
0.10 0.05 0.01

S TP FN S TP FN S TP FN S

Ape 36.7 82.6 9.5 48.4 92.5 7.6 47.4 98.1 33.5 85.2
Duck 43.8 96.2 5.5 52.2 99.7 6.1 44.9 100.0 21.6 87.1
Cat 13.5 43.7 18.8 50.4 81.2 2.7 97.2 99.5 7.1 95.5
Squirrel 25.4 67.8 18.5 37.5 77.2 15.5 70.5 97.8 34.2 99.2

der similar-color backgrounds. Ape and Duck were
precisely segmented as well, but their quick-rotating,
simple silhouettes created inconsistencies in the es-
timated poses. Squirrel was not properly segmented
even at low uncertainty due to large portions of same-
color background, which is a limitation of our seg-
mentation approach (different from similar-color).

We also evaluated the different challenges of the
RBOT dataset for the Cat object, still using RBOT’s
metric. Results from Table 7 show our technique han-
dles the challenges comparably to RBOT.

Table 7: Comparison of RBOT scores per challenge for the
Cat object (higher is better).

Method Regular Dynamic Light Occlusion Average

Proposed 97.2 97.0 87.0 93.7
RBOT 95.5 95.2 90.1 93.6

One thing to note is that RBOT’s metric is very
strict, resetting the tracker when it is not necessar-
ily lost. Thus, to show how the proposed technique
is able to recover from partial tracking losses on its
own, we have used a no-reset methodology (Garon
and Lalonde, 2017) on the RBOT dataset, and plotted
the translation and rotation errors separately for the
regular and occlusion scenes, without ever resetting
the trackers since the first frame. Results from Fig. 7
show that our work is always able to recover the ob-
ject’s position (translation), whereas RBOT is unable
to recover since the first loss.

Figure 7: Recovery from partial loss results.

Because detection module calls are usually com-
putationally expensive, this reduced need is highly
desirable. In addition, this adds flexibility to mi-
nor losses right from the start or the tracking pro-
cess, meaning there’s less requirement for a robust
detection module. This fits well with our proposed
low hardware requirement application scenario, espe-
cially considering that popular mobile trackers can be
manually-aligned by a user6 and that state-of-the-art
detectors use deep learning and powerful GPUs.

6.2 Imprecise Initialization

To further understand how robust our technique is
to an imprecise previous pose, we have conducted
the very extensive Imprecise Initialization test (Garon
and Lalonde, 2017). For this test, 10 frames were
selected at random from the sequence Slow of the
3DPO dataset, which has 1155 frames at 30 Hz. This
sequence (unlike OPT ones) has a lot of clutter and
background gradients. Unlike the RBOT dataset’s,
the sequence is also not synthetic, containing motion
blur (an important aspect for temporally-consistent
real-time tracking). It consists of smooth camera
movements around a still Green Bunny, with compre-
hensive camera rotations and translations while mov-
ing closer and farther away from the object. Ground
truth was obtained with the help of ArUco markers.

Initial pose rotation and translation perturbations
are measured separately. Rotation perturbations range
from 5 to 60o and are incremented 5o at a time. Trans-
lation perturbations range from 10 to 130 mm in 10
mm increments. For each increment, 40 random sam-
ples are taken. Before computing the error, the tracker
is called 15 times for each frame to take the temporal
factor into consideration. Mean and standard devia-
tion for the L2 norms of the errors (with respect to the
ground truth) of each of the 10 sample for each of the
perturbations are plotted in Fig. 8.

The proposed technique has achieved consistent
translation robustness for up to 60 mm, which corre-
sponds to roughly 30% of the model’s size. For ro-
tation, the technique achieved constantly reliable re-
sults for up to 15o perturbation. The deep learning
work that first proposed this methodology has also
performed well in this test (Garon and Lalonde, 2017)
(albeit using a different RGB-D sequence and object).
It achieved robustness levels of 100 mm and 30o. In
their case, though, all perturbation averages (even the
smallest ones) had at least 8 mm and 8o of error. This
is a good illustration of the trade-offs between geo-
metric and machine learning methods. The similar-
ity between these very different approaches is that

6Vuforia Model Targets

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

770

Figure 8: Initial perturbation test. Lines represent the aver-
age error. Margins represent the standard deviation.

both are supplied with some sort of previous knowl-
edge regarding the model’s color and texture. Model-
based techniques do not tend to directly assess this is-
sue, simply falling back to a costly detection module.
Since real-world applications usually can not count
with a ground truth value, robustness to detection er-
ror is a relevant factor and should not be overlooked.
This serves as argument for using texture information
alongside geometry on model-based approaches.

6.3 Performance and Scalability

The first frame from the RBOT dataset sequence regu-
lar and the object Cat (with 2500 vertices) were used
for this test. More object instances were added on
top of the same object to simulate a multi-object sce-
nario. The proposed work’s memory requirement was
orders of magnitude smaller than the state of the art’s,
at ∼ 10 MB per object tracked simultaneously, on
top of a baseline value ∼ 10 MB. RBOT’s memory
consumption was ∼ 4.3 GB per object, which makes
multi-object impractical for most low-end devices. In
terms of runtime, RBOT scaled linearly with∼ 70 ms
per new object. The proposed work had an initial run-
time of ∼ 30 ms, with approximately ∼ 3 ms per new
object until a limit of 3 objects (amount of threads
able to run in parallel efficiently on our dual-core
CPU). Afterwards, our work’s runtime scaled linearly
with ∼ 30 ms per new object.

The second test had a similar setup but used only
one object at a time. Cat objects with different sim-
plification levels (amount of vertices) were used, as
follows: 2500, 5000, 7500, 10000, 12500. RBOT
scaled at ∼ 4.3 GB of RAM per new 2500 vertices,
whereas the proposed work showed no significant dif-
ference, staying at about 20 MB. In terms of runtime,
RBOT scaled ∼ 10 ms per 2500 vertices from a base-
line of ∼ 70 ms. The proposed work scaled about 2
ms per 2500 vertices, from a baseline of ∼ 30 ms.

Our single-object mobile port ran at ∼ 50 ms on a
Samsung Galaxy S10 phone.

Our work averaged roughly 2.5 ms per pipeline
iteration, consisting of: encoding, segmentation,
matching, and pose estimation. Preprocessing aver-
aged 112 ms per 100 triangles with diffuse texture and
3 ms for those without.

7 CONCLUSION

We have presented a novel edge-based 6DoF track-
ing technique focused on textureless, pigmented ob-
jects. Our work, for the intended scope of objects,
achieves comparable results to the present state of
the art while surpassing it in relevant aspects. Our
technique particularly excels in challenges like illu-
mination changes, motion, and recovering from im-
precise poses. It is also single-core, RGB-only, and
much more lightweight, thus more well suited for
less-powerful hardware. We have also proposed a
new way to avoid fixed search ranges, an efficient sil-
houette encoding technique, a study on using mate-
rial information for model-based 6DoF object track-
ing, and a new segmentation step which handles prob-
lems such as background gradients and gradients lost
to motion blur. Finally, we have made available se-
quences focused on 3D printed textureless objects that
we hope can enrich further research.

As future work, our technique’s main limita-
tions have proven to be symmetry, which can be
aided by photometric constraints (Zhong and Zhang,
2019); and imprecise textures along with similar or
same-color backgrounds, which can be tackled by
using temporal foreground-background segmentation
strategies as performed by region-based approaches.

ACKNOWLEDGEMENTS

This research was partially funded by Conselho Na-
cional de Desenvolvimento Cientı́fico e Tecnológico
(CNPq) (process 425401/2018-9) and HP Brasil
Indústria e Comércio de Equipamentos Eletrônicos
Ltda. with resources from the fiscal benefit of the
Brazilian Law no 8.248, from 1991 (Brazilian Infor-
matics Law). The authors thank Voxar Labs mem-
bers Lucas Maggi, Rafael Roberto, Gutenberg Bar-
ros, Kelvin Cunha, Heitor Felix, and Thiago Souza
for helpful discussions. Tsang Ing Ren and Ricardo
Barioni are also thanked for helpful discussions as
well as for proofreading this manuscript. Finally,
Henning Tjaden, Bogdan Bugaev, and Po-Chen Wu

Real-time Monocular 6DoF Tracking of Textureless Objects using Photometrically-enhanced Edges

771

are thanked for helping the authors better understand
RBOT and OPT.

REFERENCES

Bugaev, B., Kryshchenko, A., and Belov, R. (2018). Com-
bining 3d model contour energy and keypoints for ob-
ject tracking. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 53–69. 2,
7

Drummond, T. and Cipolla, R. (2002). Real-time visual
tracking of complex structures. IEEE Transactions on
pattern analysis and machine intelligence, 24(7):932–
946. 5

Garon, M. and Lalonde, J.-F. (2017). Deep 6-dof track-
ing. IEEE transactions on visualization and computer
graphics, 23(11):2410–2418. 2, 8

Han, P. and Zhao, G. (2019). A review of edge-based 3d
tracking of rigid objects. Virtual Reality & Intelligent
Hardware, 1(6):580–596. 2

Harris, C. and Stennett, C. (1990). Rapid-a video rate object
tracker. In BMVC, pages 1–6. 2

Lima, J. P., Teichrieb, V., Kelner, J., and Lindeman, R. W.
(2009). Standalone edge-based markerless tracking of
fully 3-dimensional objects for handheld augmented
reality. In Proceedings of the 16th ACM Symposium
on Virtual Reality Software and Technology, pages
139–142. 3

Lima, J. P. S. d. M. (2014). Object detection and pose es-
timation from rectification of natural features using
consumer rgb-d sensors. 4

Mur-Artal, R. and Tardós, J. D. (2017). Orb-slam2:
An open-source slam system for monocular, stereo,
and rgb-d cameras. IEEE Transactions on Robotics,
33(5):1255–1262. 2

Prisacariu, V. A. and Reid, I. D. (2012). Pwp3d: Real-time
segmentation and tracking of 3d objects. International
journal of computer vision, 98(3):335–354. 2

Seo, B.-K., Park, J., Park, H., and Park, J.-I. (2013). Real-
time visual tracking of less textured three-dimensional
objects on mobile platforms. Optical Engineering,
51(12):127202. 2, 5

Stoiber, M., Pfanne, M., Strobl, K. H., Triebel, R., and
Albu-Schaeffer, A. (2020). A sparse gaussian ap-
proach to region-based 6dof object tracking. In Pro-
ceedings of the Asian Conference on Computer Vision.
2

Suzuki and Abe (1985). Topological structural analy-
sis of digitized binary images by border following.
Computer vision, graphics, and image processing,
30(1):32–46. 3, 5

Tan, D. J., Navab, N., and Tombari, F. (2017). Look-
ing beyond the simple scenarios: Combining learn-
ers and optimizers in 3d temporal tracking. IEEE
transactions on visualization and computer graphics,
23(11):2399–2409. 3

Tjaden, H., Schwanecke, U., Schömer, E., and Cremers,
D. (2018). A region-based gauss-newton approach to

real-time monocular multiple object tracking. IEEE
transactions on pattern analysis and machine intelli-
gence, 41(8):1797–1812. 2, 7, 8, 11

Valença, L. (2020). Real-time 6dof tracking of rigid 3d ob-
jects using a monocular rgb camera. Bachelor’s thesis,
Universidade Federal de Pernambuco. 2

Wang, C. and Qian, X. (2018). Heaviside projection–based
aggregation in stress-constrained topology optimiza-
tion. International Journal for Numerical Methods in
Engineering, 115(7):849–871. 5

Wang, G., Wang, B., Zhong, F., Qin, X., and Chen, B.
(2015). Global optimal searching for textureless 3d
object tracking. The Visual Computer, 31(6-8):979–
988. 2

Wu, P.-C., Lee, Y.-Y., Tseng, H.-Y., Ho, H.-I., Yang, M.-H.,
and Chien, S.-Y. (2017). [poster] a benchmark dataset
for 6dof object pose tracking. In 2017 IEEE Interna-
tional Symposium on Mixed and Augmented Reality
(ISMAR-Adjunct), pages 186–191. IEEE. 2, 7

Zhong, L. and Zhang, L. (2019). A robust monocular 3d ob-
ject tracking method combining statistical and photo-
metric constraints. International Journal of Computer
Vision, 127(8):973–992. 2, 9

APPENDIX

Depth Testing

Because we’re only interested in the outermost 2D sil-
houette edges, overlap is infrequent. Objects with
rounded edges do not contain 2D silhouette edges
overlapping. Objects with straight-angled edges (such
as boxes) avoid significant silhouette overlap due to
perspective projection. To validate this, we imple-
mented a simple CPU-based z-buffer. As expected,
for rounded-edge objects it made little to no differ-
ence, and for the straight-angled ones in scenes where
the edges were overlapping results were slightly bet-
ter. Yet, to our surprise, depth-testing made results
much worse when dealing with rotations. A possible
explanation is that by allowing some edge overlap, we
can better segment colors that are not directly visible,
but that can appear with a small rotation. Thus, as not
including depth testing made our work both faster and
more precise, we have opted to not utilize it.

Saturation Threshold

By definition, HSV space only has overlap in hue val-
ues when there is zero pigmentation present, in which
case all hue values can lead to the same color. That is
not true in the real world, though, where illumination,
materials, camera sensors, and color-conversion algo-
rithms play a role in the final color. This concept can

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

772

be better illustrated via a print-scan attack. Except,
instead of a scanner, we have used a webcam and a
smartphone (see Fig. 9).

Figure 9: Illustration of hue unreliability as saturation de-
creases. Top row shows the full RGB images, bottom row
the isolated hue channel.

Publicly Available Implementations

As far as we are aware (as of the time of the writing of
this paper), the best publicly available real-time RGB
6DoF trackers, which are commonly used for com-
parisons, are PWP3D, GOS, and RBOT.

PWP3D is nearly 10 years old and has since in-
spired and been surpassed by newer works, especially
RBOT, which has compared itself to it extensively.
Thus, adding PWP3D to the comparison would not
accurately represent the current state of the art.

As for GOS, it is also fairly outdated, having in-
spired newer techniques. Still, as far as we know,
no newer techniques built on top of it have a pub-
licly available implementation. In our tests, GOS’s
results averaged below 35% on the RBOT dataset
for all objects in every scene (with the reset metric).
GOS stayed below 1% without a reset. It was com-
pletely unable to recover and extremely sensitive to
motion, which caused it to fail almost immediately in
all 3DPO sequences when the objects or the camera
were moved. Thus, we felt it was out of place in the
comparison.

Next, we are going to explain why our results us-
ing the publicly available implementation of RBOT
on the OPT dataset are lower than what is reported in
RBOT’s paper (Tjaden et al., 2018). First, it is impor-
tant to note that we did manage to reproduce RBOT’s
paper’s results for the RBOT dataset. We also con-
firmed our AUC metric to be correct by reproducing
the OPT results of other works which used the pub-
licly available implementation of GOS. Upon contact-
ing the authors of RBOT, we were informed our AUC
metric seemed correct, but that OPT objects needed
some resampling to work with the publicly available
implementation of RBOT. Unfortunately, the authors
did not have access to the modified objects anymore.
In our attempts, we were unable to make the publicly

available implementation of RBOT reach the OPT
scores reported in the paper, so we decided to use
the best results we were able to get. There was no
way around this issue, as we needed to run the tech-
nique to build the AUC curves and conduct challenge-
specific tests. Still, we want to make it clear that
RBOT’s publicly available implementation does work
very robustly (even in our highly challenging 3DPO
sequences). It is also important to note that these OPT
results are still comparable to the best publicly avail-
able real-time monocular 6DoF trackers.

Real-time Monocular 6DoF Tracking of Textureless Objects using Photometrically-enhanced Edges

773

