
Towards Evolutionary Multi-layer Modeling with DMLA

Sándor Bácsi a, Dániel Palatinszky b and Máté Hidvégi c

Department of Automation and Applied Informatics, Budapest University of Technology and Economics,
Muegyetem Rkp. 3., Budapest, Hungary

Keywords: Multi-layer Modeling, Multi-level Modeling, Graal, Truffle, Virtual Machine, Interpreter, Compiler, DMLA.

Abstract: State-of-the-art meta-model based methodologies are facing increasing pressure under new challenges origi-
nating from practical applications. In such cases, there is a strong need for approaches that support continuous,
fine-graded, incremental refining of concepts. To address these challenges, our research group started working
on a new modeling framework, the Dynamic Multi-Layer Algebra (DMLA) a few years ago. DMLA follows
a completely new modeling paradigm, referred to as multi-layer modeling. Multi-layer modeling is originated
from multi-level modeling and offers a highly flexible abstraction management approach in a level-blind fash-
ion through its advanced deep instantiation and evolutionary snapshot management. One of the key features
of DMLA is its self-validation mechanism based on a built-in, completely modeled operation language. Our
initial solution had its limitations, since interactive editing was not supported, modelers could interact only
with a single snapshot of the model. To overcome the limitations, we have created a virtual machine and an
interpreter. In this paper, we present the novel architecture of our solution and demonstrate the feasibility of
our approach by a walk-through of the concrete model management steps of an illustrative example to show
the benefits of evolutionary model editing in DMLA.

1 INTRODUCTION

In the software industry, the development of applica-
tions routinely begins with setting up the most rele-
vant design aspects based upon the main requirements
of the given project. Stakeholders and customers try
to specify their needs and expectations at the begin-
ning of the project, but in most cases these initial
requirements change during later phases of the de-
velopment. As the project evolves, the requirements
may change, thus new constraints may reduce the
original flexibility of the software. In many problem
domains, it would be beneficial to support this evo-
lutionary nature of software development by apply-
ing model-based solutions since it allows the appli-
cation of changes on a higher abstraction level with-
out changing the lower, dependant structure. One
way to solve the problem of continuously evolving re-
quirements is the so-called model-driven engineering
(MDE). However, the legacy approaches of MDE and
in particular the ones of applied domain-specific mod-
eling have often turned out not being either flexible or

a https://orcid.org/0000-0002-4814-6979
b https://orcid.org/0000-0002-6168-3963
c https://orcid.org/0000-0003-2129-7897

precise enough in practice, therefore, there is a need
for new methods and techniques.

As a contemporary trend in MDE, two and/or four
level modeling frameworks are being frequently ex-
tended to an arbitrary number of levels, which could
lead to higher flexibility of expressiveness (Atkin-
son and Kühne, 2001). For a multi-level modeling
approach to be rigorous enough is indeed a manda-
tory feature for being able to support the continuous
evolution of requirements that Industry 4.0 solutions
are based on. Although the emerging multi-level ap-
proaches may solve the challenge of supporting grad-
ual refinement by providing an unbounded number of
domain classification levels, this is only one aspect of
the industrial demands.

Besides being able to describe the static aspect in
a fine-graded way, the other key aspect is introducing
dynamic features to models such as querying, modi-
fying, simulating or executing the model definitions.
In classic modeling approaches, the workflow usu-
ally consists of creating and saving the snapshot of
the meta-model, and then creating the instance mod-
els based on the meta-model. One can only create
the model in a very strict way, without any possi-
bilities for dynamic modification like adding, delet-
ing, or modifying model elements continuously. The

344
Bácsi, S., Palatinszky, D. and Hidvégi, M.
Towards Evolutionary Multi-layer Modeling with DMLA.
DOI: 10.5220/0010347403440349
In Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2021), pages 344-349
ISBN: 978-989-758-487-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



need can arise for an iterative, dynamic process where
we can modify the model real-time in an evolutionary
way by stepping between the different abstraction lev-
els of the domain.

The idea of the Dynamic Multi-Layer Algebra
(DMLA) (of Automation and Informatics, ) was born
out of the combination of these two modeling aspects,
namely, multi-level modeling, and dynamic model-
ing. DMLA has two versions regarding dynamism:
an old compiler-based version and a new, interpreter-
based version. In this paper, we introduce the basics
of DMLA, discuss why we needed two versions of ex-
ecution engine and then demonstrate the feasibility of
the new version of DMLA by a walk-through of the
concrete model management steps of an illustrative
example.

The paper is organized as follows: Section 2
presents the background and the related work show-
ing other approaches with or without dynamism. Sec-
tion 3 describes the basics of DMLA while Section
4 presents the short history and current state of the
DMLA workbench. Section 5 presents the illustrative
example and concluding remarks are outlined in Sec-
tion 6.

2 BACKGROUND AND RELATED
WORK

Until recently, the usual way of meta-modeling was
often based on OMG’s Meta Object Facility (MOF)
(OMG, 2005). MOF allows the use four levels instead
of two in order to increase flexibility. Although the
extension is useful, having a fixed number of levels
ties the hands of domain experts since they are forced
to refine the model in a fixed number of steps. The
lack of an arbitrary number of levels between the ini-
tial specification and the final realization may lead to
the phenomenon called accidental complexity (Atkin-
son and Kühne, 2008). Multi-level modeling aims
to minimize accidental complexity by taking advan-
tage of an unlimited number of meta-levels in order
to properly allocate the correct amount of abstraction
details to each of them. In the past decades, there have
been a growing number of proposals for frameworks
aimed at supporting multi-level modeling (Kühne and
Schreiber, 2007; de Lara and Guerra, 2010; Atkinson
and Gerbig, 2016; Clark and Willans, 2012; of Au-
tomation and Informatics, ).

Multi-level modeling approaches usually support
dynamic behavior which requires the definition of
model-modifying operations like adding a new entity
to the model. A common pattern to fulfill this re-
quirement is the introduction of programmable oper-

ations into the model either via an external or internal
language. For example, Melanee (Atkinson and Ger-
big, 2016) and XModeler (Clark and Willans, 2012)
use an external language (variations of OCL), while
DMLA (of Automation and Informatics, ) uses an in-
ternal, modeled approach. Regardless of which ap-
proach we choose, the solution to execute the oper-
ations would be either compilation or an underlying
virtual machine (VM) that is responsible for manag-
ing this behavior.

Following the example, XModeler(Clark and
Willans, 2012) supports a virtual machine (XMF VM)
for this purpose which not only supports modifying
operations on the model, it also supports undoing op-
erations based on transactions. DMLA used to be a
compilation based solution but the newest implemen-
tation - like XModeler - turned towards interpreta-
tion based on a new VM technology by Oracle, called
GraalVM(Oracle, ) which we are discussing later in
Section 4.

3 DYNAMIC MULTI-LAYER
ALGEBRA

The Dynamic Multi-Layer Algebra (DMLA) (of Au-
tomation and Informatics, ) is our multi-layer mod-
eling tool under research. The framework allows the
users to define and gradually refine the aspects of their
domain language in a self-descriptive, validated envi-
ronment. DMLA consists of two parts: (i) the Core,
containing the formal definition of modeling struc-
tures and its management functions; (ii) the Boot-
strap, consisting of a set of essential entities that can
be reused in all domains. The main idea behind sep-
arating the Core and the Bootstrap is to improve flex-
ibility, but also to keep the approach formal. This
way, the Bootstrap becomes swappable, thus even
the semantics of valid instantiation can be re-defined.
Namely, each particular bootstrap seeds the metamod-
eling facilities of the generic DMLA formalism.

The Core has a formal description based on Ab-
stract State Machines (ASM) (Börger and Stärk,
2003). This description defines the structure of model
elements as 4-tuples i.e. tuples with four elements.
Tuples contain all data of the given entity: the iden-
tifier, along with the meta-identifier of the element as
well as its attributes and values. Besides these tuples,
the Core also defines basic functions to manipulate
the model, for example, they can create new model
entities or query existing ones. These functions are
defined as ASM functions. Models are represented
by the underlying ASM: the states of the machine are
snapshots of the models: if an entity changes, a new

Towards Evolutionary Multi-layer Modeling with DMLA

345



snapshot and therefore a new state of the ASM is cre-
ated.

Over the Core, one can define a Bootstrap (Mezei
et al., 2019). The Bootstrap describes the basic build-
ing blocks of every domain model and therefore acts
as a practical base for modeling. A Bootstrap consists
of several entities, (i) it improves the raw entity for-
mat given by the Core to a more practical level (e.g.
by attaching meta-information to references), (ii) in-
troduces constraints to customize validation between
model elements, (iii) defines the basic rules of valida-
tion, and (iv) has a complete operation language.

The operation language is an essential part of the
Bootstrap, since here, unlike many other modeling
approaches, the rules of valid instantiation are not
encoded in an external programming language (e.g.
Java), but it is modeled by the Bootstrap. All the val-
idation rules and therefore even the definition of the
instantiation relationship itself are using the operation
language. The operation language models the vali-
dation algorithms by their abstract syntax tree (AST)
representation built from AST-related model entities,
e.g. if or statement.

In order to accelerate the definition of the tuples
representing the model entities, we have created a
scripting language referred to as DMLAScript. In
practice, the Bootstrap, the domain metamodels and
models are also defined by DMLAScript. Although it
is used to ease the usage of the framework by helping
users describe their domain language in a more famil-
iar way, it does not introduce any new features. DM-
LAScript is merely a syntactic sugar, its scripts are
always translated back to tuples, the primary form of
model entities. The benefits of this scripting language
are most remarkable in defining operations, where
even a single line of DMLAScript code may translate
to a complex set of connected entities.

4 TOWARDS EVOLUTIONARY
MODEL EDITING

When creating the first workbench for DMLA, our
primary goal was to create an approach that supports
validated step-wise refinement. Validation was a key
feature here as we wanted to achieve a self-validated,
self-describing meta-modeling approach. Although
the workbench fulfilled all of our initial requirements
(Urbán. et al., 2018), we needed a more advanced so-
lution. We have realized that using the operation lan-
guage only to describe the validation logic is a waste
of opportunities. There are more possibilities in hav-
ing a fully modelled operation language. Therefore,
we summarized our new requirements and decided to

create a new version of the workbench.
Initially, our typical use case was to define a pre-

liminary version of the target domain via gradual re-
finement, and then validate it. Then, we repeat the
process several times, refine the domain step-by-step
and validate it every time. In this case, it was not a
problem that the model definition and the validation
phases are separated. However, in a usual industrial
use case, having an interactive, responsive environ-
ment is a must. Users tend to apply minor modifi-
cations, and expect the model to be up-to-date at all
time. So, instead of having milestones as in the first
workbench, we need small steps.

Possibly the most important new demand was to
support other kinds of operations: i) queries, and ii)
operations altering the model. By opening the door
for operations changing the model, we needed a more
dynamic view on our current model, i.e. modifi-
cations were to be reflected immediately. The first
workbench could support a dynamic view but it would
not be able to process the modifications as fast as it
would be needed in an industrial scenario since the
compilation required too much time.

By realizing the new requirements, we started to
work on a new workbench for DMLA. The first, and
most important decision was to create an interpreter-
based workbench. There were several reasons behind
this decision. Interpreters offer a natural way to obtain
the inner data structure during execution and there-
fore it is much easier to create an interactive envi-
ronment, where changes in the model are reflected
automatically and immediately by the environment.
Moreover, interpretation helped eliminating the long
and slow compilation process and allowed us to de-
bug domains with ease. The virtual machine behind
the interpreter is also much closer to a native imple-
mentation of the underlying Abstract State Machine
formalism than the compiled code produced in the old
workbench.

Creating an interpreter and virtual machine for an
approach like DMLA is a challenging task without a
decent framework. After a long search for the perfect
technology, we have decided to have GraalVM (Ora-
cle, ; Würthinger et al., 2013) as the base of our new
solution. GraalVM is a new generation of Java virtual
machine. It aims to build upon the old Java VM by
replacing the compiler. The main goal of GraalVM is
to be a universal runtime environment with as close
to native performance as possible. GraalVM also in-
troduces Truffle (Wimmer and Würthinger, 2012), a
language agnostic API that can be used to describe
custom languages for Graal while also allowing for
interoperability between the implemented languages.
Interoperability is a powerful feature that can be used

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

346



to make function calls from a Graal-based language to
another (e.g., Python to JavaScript) and exchange data
between them. This feature can be considered an ad-
ditional gain, which may be useful in the future, when
we introduce new languages besides DMLAScript to
describe the tuples.

For interpreters, performance is usually a weak
point, however, Truffle supports several optimiza-
tion techniques like cached function call targets, opti-
mized execution for different parameter types, hand-
optimized bytecode. It is also possible to introduce
instrumentation and debugging for the target language
easily.

With the help of GraalVM and interpretation, sev-
eral improvements and new features became possible.
One of the most important features is on-the-fly com-
mand processing by using an interactive command-
line interpreter, which we are demonstrating later in
Section 5. On top of that, operations are no more
limited to validation and queries, modification of the
model is also possible.

5 ILLUSTRATIVE EXAMPLE

In this section, we demonstrate interactive model edit-
ing in action by presenting the management steps of
a simplified model fragment borrowed from the Bi-
cycle Challenge (MULTI, 2018), for which the full
solution (described in DMLAScript) is also available
(Mezei et al., 2018). Originally, the typical work-
flow of solving the Bicycle Challenge was to define a
preliminary version of the domain via gradual refine-
ment, and then validate it. We did not have an interac-
tive, responsive environment, thus we could not map
the requirements step-by-step, in a natural way. In this
example, we use a simplified syntax of our command-
line interpreter for the sake of clarity. We refine the
presented model fragment step-by-step based on the
continuously evolving requirements:

REQ1: A configuration (Config) is composed of
components (Comps).
>addEntity(Config, CEntity)
Config>addSlot(Comps,CEntity.Children)
Config.Comps>addTypeCstr(Comp)
Config.Comps>addCardinalityCstr(0,*)

In DMLA, multi-level behavior is supported by
fluid meta-modeling. Hence, instantiation steps are
independent by design. Each entity in the model can
refer to any other entity along the meta-hierarchy. En-
tities may have attributes referred to as slots (abstract
placeholder for the value), describing a part of the en-
tity, similarly to classes having properties in object-
oriented programming. In this example, we add a

new entity Config to the model, setting its meta-entity
to CEntity (ComplexEntity), which is the usual entry
point of domain definition in DMLA. CEntity has a
slot called Children. Children enables the instantia-
tion of custom slots, like Comps in this example. We
add a new slot Comps to Config, setting its meta-slot
to Children. In DMLA, one may use constraints on
slots, like type and cardinality constraints. Type con-
straint restricts the type of the values to be put in the
slot: addTypeCstr(Comp) adds a type constraint to
slot Comps, thus one can only use instances of Comp
entity there. Cardinality constraint prescribes the al-
lowed number of instances within a given slot. The
cardinality constraint has a minimum and a maximum
parameter. addCardinalityCstr(0,*) adds a cardinality
constraint to slot Comps, which prescribes that Con-
figuration may have zero-to-many number of Compo-
nents.

Note that when a command is executed, the model
changes dynamically, therefore the latest state is al-
ways available in the background. One could even
call a user-defined operation on the model which
would give immediate and up-to-date results.

REQ2: Ncycle is a configuration. Ncycle is
built of components like Wheels(1..3), and Seats(1..2).
Ncycle serves as an abstract entity, which can be con-
cretized later to more specific bike models (e.g. Bicy-
cle, Tricycle, Unicycle or Tandem bike).

>addEntity(NCycle, Config)
NCycle>addSlot(Wheels, Config.Comps)
NCycle.Wheels>addTypeCstr(Wheel)
NCycle.Wheels>addCardinalityCstr(1,3)
NCycle>addSlot(Seats, Config.Comps)
NCycle.Seats>addTypeCstr(Seat)
NCycle.Seats>addCardinalityCstr(1,2)

In this step, we refine entity Config, by adding a
new entity NCycle with the more concretized slots and
the narrowed constraints. In DMLA, one may also
divide a slot into several instances similarly to enti-
ties, where we can create several instances of a meta-
entity. The general purpose Comps slot is divided into
a Wheels and a Seats slot. Note that we also narrow
the type and cardinality constraints on both Wheels
and Seats slots considering the new requirement.

REQ3: A Unicycle is a bike model equipped with
exactly one wheel and one seat.

>addEntity(Unicycle, NCycle)
Unicycle.Wheels>addCardCstr(1,1)
Unicycle.Seats>addCardCstr(1,1)
>Validate()

We further concretize entity NCycle by adding
Unicycle to the model. We narrow the cardinality
constraint on both slots to restrict the allowed number

Towards Evolutionary Multi-layer Modeling with DMLA

347



of instances (one wheel and one seat), while the type
constraints remain intact. We also call the validation
of the model to check that what we have done so far
is valid. Validation in DMLA is intuitive: whenever a
model entity claims another entity to be its meta, the
framework automatically validates if there is indeed a
valid instantiation between the two entities. The val-
idation checks the latest state of the model, since the
model always changes dynamically, when a command
is executed. In this case, no model element found to
be contradictory during model validation.

REQ4: There is a demand for special tandem
bikes with two wheels and three seats.

>addEntity(Tandem, NCycle)
Tandem.Wheels>addCardCstr(2,2)
Tandem.Seats>addCardCstr(3,3)
>Validate()

We concretize entity NCycle by adding Tandem
to the model. In order to meet the new requirement
we apply cardinality constraint on both slots to re-
strict the allowed number of instances (two wheels
and three seats). The Tandem entity found to be con-
radictory during model validation, since the valida-
tion mechanism of DMLA ensures that if an existing
cardinality is overwritten (refined), then it should not
relax the original condition. In this example, the orig-
inal maximum parameter of slot Seats is already set to
two in entity NCycle, it cannot be overwritten to three.
This scenario showscases one of the most important
features of the interpreter-based version of DMLA:
by running the validation, we can get an immediate
feedback on the validation errors of latest state of the
model.

Altough we could continue the refinement and the
concretization of this simple model fragment (e.g.
filling out the slots with concrete values), the aim of
this section is only to present the most basic features
of interactive model editing in the newest workbench
of DMLA.

6 CONCLUSIONS

In this paper, we presented the newest workbench
of DMLA, our multi-layer modeling approach, high-
lighting its features regarding dynamism and evolu-
tionary model editing. Although the paper focused on
DMLA, we believe that our experiences and conclu-
sions are not DMLA-specific and are worthy of gen-
eral discussion. In the future, we aim to work on the
interactivity of the tool and modernize DMLAScript
to improve the ease of usage. Our other goals con-
cerning DMLA include the optimization of the val-

idation, the visualization of the models, and the in-
troduction of transactions to provide reliable units of
work that allow correct recovery from validation er-
rors and keep the model consistent.

ACKNOWLEDGEMENTS

This work was performed in the frame of FIEK 16-
1-2016-0007 project, implemented with the support
provided from the National Research, Development
and Innovation Fund of Hungary, financed under the
FIEK 16 funding scheme.

REFERENCES

Atkinson, C. and Gerbig, R. (2016). Flexible deep mod-
eling with melanee. In Modellierung 2016 - Work-
shopband : Tagung vom 02. März - 04. März 2016
Karlsruhe, MOD 2016, volume 255, pages 117–121,
Bonn. Köllen.

Atkinson, C. and Kühne, T. (2001). The essence of multi-
level metamodeling. In Proceedings of the 4th Inter-
national Conference on The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools,
&#171;UML&#187; ’01, pages 19–33, Berlin, Hei-
delberg. Springer-Verlag.

Atkinson, C. and Kühne, T. (2008). Reducing accidental
complexity in domain models. Software & Systems
Modeling, 7(3):345–359.

Börger, E. and Stärk, R. (2003). Abstract State Machines:
A Method for High-Level System Design and Analysis.
Springer-Verlag New York, Inc., 1st edition.

Clark, T. and Willans, J. (2012). Software language engi-
neering with xmf and xmodeler. In Formal and Prac-
tical Aspects of Domain-Specific Languages: Recent
Developments, volume 2, pages 311–340.

de Lara, J. and Guerra, E. (2010). Deep meta-modelling
with metadepth. In Vitek, J., editor, Objects, Mod-
els, Components, Patterns, pages 1–20, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Kühne, T. and Schreiber, D. (2007). Can program-
ming be liberated from the two-level style: Multi-
level programming with deepjava. SIGPLAN Not.,
42(10):229–244.

Mezei, G., Theisz, Z., Urbán, D., and Bácsi, S. (2018). The
bicycle challenge in dmla, where validation means
correct modeling. In Proceedings of MODELS 2018
Workshops, pages 643–652.

Mezei, G., Theisz, Z., Urbán, D., Bácsi, S., Somogyi, F. A.,
and Palatinszky, D. (2019). A bootstrap for self-
describing, self-validating multi-layer metamodeling.
In Dunaev, D. and Vajk, I., editors, Proceedings of the
Automation and Applied Computer Science Workshop
2019 : AACS’19, pages 28–38.

MULTI (2018). https://www.wi-inf.uni-duisburg-
essen.de/MULTI2018/.

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

348



of Automation, D. and Informatics, A. DMLA Homepage.
https://www.aut.bme.hu/Pages/Research/VMTS/
DMLA.

OMG (2005). OMG MetaObject Facility.
http://www.omg.org/mof/. Accessed: 2019-03-
20.

Oracle. GraalVM. https://www.graalvm.org/.
Urbán., D., Theisz., Z., and Mezei., G. (2018). Self-

describing operations for multi-level meta-modeling.
In Proceedings of the 6th International Conference
on Model-Driven Engineering and Software Develop-
ment - Volume 1: MODELSWARD,, pages 519–527.
INSTICC, SciTePress.

Wimmer, C. and Würthinger, T. (2012). Truffle: a self-
optimizing runtime system. In SPLASH ’12.

Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Du-
boscq, G., Humer, C., Richards, G., Simon, D., and
Wolczko, M. (2013). One vm to rule them all. In
Onward!

Towards Evolutionary Multi-layer Modeling with DMLA

349


