Detection of <12 μV_{RMS} Extracellular Action Potential and Local Field Potential by Optimum Design of a Single Pixel Electrolyte-Oxide-MOSFET Interface in CMOS 28 nm

David Tomasella^{®a}, Elia Vallicelli^{®b}, Andrea Baschirotto^{®c} and Marcello De Matteis^{®d} Department of Physics, University of Milano Bicocca, Piazza della Scienza 3, Milano, Italy

- Keywords: Biological Neural Networks, Biosensors, Neural Engineering, Analog Integrated Circuits, Low-Noise Amplifier.
- Abstract: Microelectrode-Arrays (MEAs) allow monitoring thousands of neurons/mm² by sensing: extracellular Action Potentials and (in-vivo) Local Field Potentials. MEAs arrange several recording sites (or pixels) in a spatial grid, planarly and capacitively coupled with in-vitro cell cultures and/or integrated in electrocorticography grids. This paper focuses on Electrolyte-Oxide MOS Field-Effect-Transistors (EOMOSFET) MEAs for celllevel recording and presents a complete model of the neuron-electronics junction that reduces to a single electrical scheme all the biological (the neuron) and physical layers (the electrolyte, the Diffuse/Helmoltz capacitances, the oxide and the MOS transistor) composing the interface. This allows to predict the noise power coming from biological environment (electrolyte bath) and to optimize all electrical parameters with the main aim to minimize the final sensing Noise Figure and thus enhance the acquisition Signal-to-Noise-Ratio. Frequency domain simulations from the proposed model demonstrates that there is an optimum design point for all parameters involved in the building EOMOSFET pixel that allows to perform >9 dB Signal-to-Noise-Ratio at <12 μ V_{RMS} extracellular neuro-potentials power at the electroly te cleft that have not been never explored adopting planar capacitive coupling interfaces.

1 INTRODUCTION

There is a rather large lack of information between neuron membrane electrical activity of single neurons, and physiological or whole brain behavioural events. To fill this gap, we need to understand the activity of individual neurons and how it contributes to neural circuits functioning. Such ambitious perspective cannot be achieved by macroscale neural recording techniques (electroencephalogram, magnetic resonance, etc.), nor by patch clamps (monitoring single cell unit). One of the best options is to adopt Microelectrode-Arrays (MEAs, (Obien, 2015; Thomas, 1972; Pine, 1980)) that allow monitoring thousands of neurons/mm² by sensing: extracellular Action Potential (EAP in 300 Hz - 5 kHz bandwidth) and (in-vivo) Local Field Potential (LFP up to 300 Hz bandwidth). They are used as planar probes in neuron cells cultures forming a cell-electrode capacitive coupling. Implanted MEAs are typically needle-shaped probes that deeply penetrate the cortex for tissues recording/stimulating and for increasing proximity and signals detection rate.

Both in-culture and implantable MEAs can be integrated in commercial CMOS silicon substrates with an additional post-processing step consisting on covering CMOS metal aluminium electrodes by noble metal films (Pt/Au (Gross, 1982)) or dedicated oxide layers (TiO2 (Cianci, 2012)). Active MEAs embed both analog signal processing channels (by neural amplifier, low-pass filter for antialiasing and A-to-D conversion) and digital circuits synthesizing

^a https://orcid.org/0000-0001-8413-5751

^b https://orcid.org/0000-0003-0905-151X

^c https://orcid.org/0000-0002-8844-5754

^d https://orcid.org/0000-0003-1061-1262

⁶⁶

Tomasella, D., Vallicelli, E., Baschirotto, A. and De Matteis, M.

Detection of <12 VRMS Extracellular Action Potential and Local Field Potential by Optimum Design of a Single Pixel Electrolyte-Oxide-MOSFET Interface in CMOS 28 nm. DOI: 10.5220/0010346300660076

In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2021) - Volume 1: BIODEVICES, pages 66-76 ISBN: 978-989-758-490-9

Copyright © 2021 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

Detection of <12 VRMS Extracellular Action Potential and Local Field Potential by Optimum Design of a Single Pixel Electrolyte-Oxide-MOSFET Interface in CMOS 28 nm

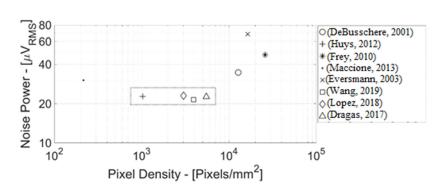


Figure 1: Microelectrode Arrays State-of-the-Art (Noise Power vs. Electrodes/Pixels Density).

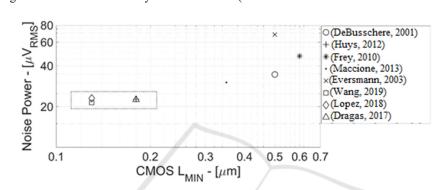


Figure 2: Microelectrode Arrays State-of-the-Art (Noise Power vs. CMOS Minimum Channel Length).

advanced Digital Spikes Detection ((Vallicelli, 2018; Shadid, 2009) DSD) algorithms. DSDs exploit the large array spatial resolution for separating relevant extracellular events from background noise by spatial correlation post-processing algorithms. They perform complex digital algorithm that require a certain computing power leading to a non-negligible dynamic power consumption and preventing integration in the same MEA silicon area.

Despite outstanding advancements in neural probes development, there are still many phenomena that state-of-the-art MEA technology cannot observe at high spatial resolution:

- at membrane level, subthreshold events, such as synaptic potentials can influence cell rest status without producing an action potential;
- propagation of the action potentials (AP) in axons, the backpropagation of AP in the dendrites and the generation of dendritic spikes, and weak extracellular synaptic field potential;
- traces of membrane oscillations in the extracellular space, never observed by planar probes since they require single-cell patch recording techniques.

Simply speaking, these events and phenomena cannot be observed because noise power floor in cellelectrolyte-electrode-electronics junction, is to date higher than the signal power of those extracellular neuro-potentials carrying information coming from subthreshold or ultra-weak events.

Figure 1 shows some of most relevant MEAs stateof-the-art (DeBusschere, 2001; Huys, 2012; Frey, 2010; Maccione, 2013; Eversmann, 2003; Wang, 2019; Lopez, 2018; Dragas, 2017) in terms of noise power (in μV_{RMS} measured at the electrode node) vs. Pixel Density (electrodes count per mm²). Both axes are in log scale. There is a clear trend of noise power increasing with larger pixels density. Such trend is justified by the smaller electrode area (at higher pixel density) that increases flicker noise power coming from both the TiO₂/Metal film charge traps and the MOS transistor (MOST) placed just below the electrode.

In other words, to decrease the noise power and to detect sub-threshold events, it is necessary to increase the area of the single electrode but this would again lead to a reduction of the pixel density, degrading the neural recording spatial resolution.

Morevoer, this approach has already reached the point of maximum efficiency because ref. (Huys, 2012; Dragas, 2017) in CMOS 0.18 μ m and ref. (Wang, 2019; Lopez, 2018) in CMOS 0.13 μ m (rectangular box in both Figure 1 and Figure 2) show practically the same noise power (i.e. approximately 22 μ V_{RMS}) at the electrode equivalent node.

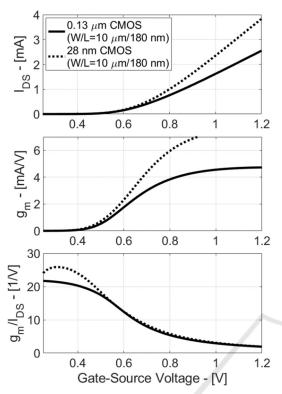


Figure 3: Drain-Source Current (I_{DS}), Transconductance (g_m) and Efficiency (g_m/I_{DS}) in CMOS 0.18 μ m and 28 nm for Standard-Process MOST.

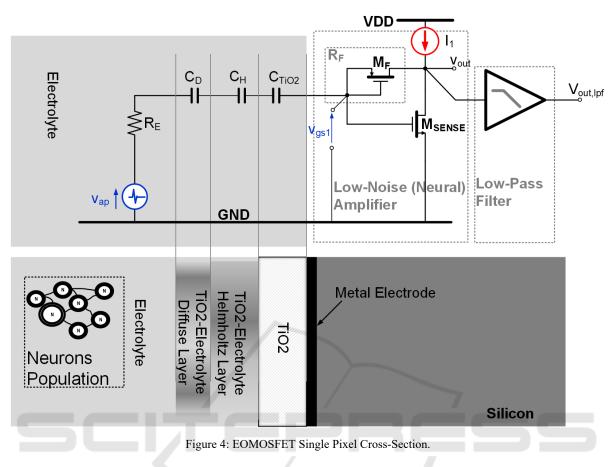
Furthermore, at such noise power levels, increasing electrode area (and thus reducing pixel density) does not involve a significant 1/f (flicker) noise power reduction because MOS transistors thermal noise (in first approximation independent on electrode area and dependent on MOST dc current) becomes more dominant.

More specifically in-band thermal noise power spectral density is inversely proportional to the MOS transistor transconductance (g_m) . Such g_m is proportional to the current consumption, that (in biosignals processing analog stages) operate the MOST with few μ A current (Harrison, 2003). Thus the efficiency of the MOST (defined as g_m/I_{DS} ratio (Sansen, 2007) or in other words the amount of g_m that can be synthesized by a MOST operating at a certain drain-source current I_{DS}) becomes a key parameter for both noise and power minimization in next generation MEAs.

Unfortunately, all most performant MEAs (Huys, 2012; Wang, 2019; Lopez, 2018; Dragas, 2017) are implemented in very old CMOS technologies (0.13 μ m processes nodes and beyond for flicker noise power reduction), where MOST efficiency is very much lower than nm-range CMOS nodes.

Figure 2 shows state-of-the-art MEAs noise power vs. CMOS process generation in terms of minimum MOST channel length.

These last considerations are validated in Figure 3, where MOST Drain-Source Current (I_{DS}), Transconductance (g_m) and Efficiency (g_m/I_{DS}) are plotted vs. gate-source voltage in CMOS 0.13 μ m and 28 nm for Standard-Process MOSTs.


Moreover, older CMOS processes increases system complexity (Baschirotto, 2009; De Matteis, 2006) and harness, because Digital Spikes Detection stages cannot be on-chip integrated due to its very high dynamic power in low scaled-down CMOS nodes. Effectively such power will be incompatible with a stable spatial temperature distribution for cell integrity in neuron cultures and with the limited power budget required by the portability of implantable devices.

In this context, this paper proposes a dedicated design of EOMOSFET MEAs (for the case of a single recording site/pixel and that can be easily extended to spatial matrix MEAs) that efficiently sets the basis for definitely overcome the above issues by:

- adopting the CMOS 28 nm technology node and then including in the model the technology node parameters like dielectric constant, gate capacitance per unit area, sub-threshold slope factor coefficient, etc. This enables two key improvements:
 - o to take advantage of the higher g_m (and lower thermal noise power spectral density) for a given current of analog CMOS 28 nm SP MOST against 0.13 μ m and beyond;
 - to use on-chip DSD stages without exceeding in extra-power (by ultra-low digital dynamic power for Standard-Process MOST);
- rejecting the flicker noise by maintaining the electrode area equal to 100 µm² (approximately three times lower than neuron area) enabling about 1 k neuron recording for 1 mm² active MEA area.

This paper is organized as follows. Section 2 describes the cross-section layers of the CMOS 28 nm EOMOSFET pixel and all relevant signal/noise transfer functions as a function of the interface electrical parameters. Section 3 presents the

Detection of <12 VRMS Extracellular Action Potential and Local Field Potential by Optimum Design of a Single Pixel Electrolyte-Oxide-MOSFET Interface in CMOS 28 nm

simulation results of the model and the selected design point that allows to perform >9 dB SNR with $< 12 \mu V_{RMS}$ neuro-potentials signals power. At the end of the paper conclusions will be drawn.

2 EOMOSFET CROSS-SECTION AND ELECTRICAL CHARACTERISTICS

EOMOSFET biosensors are spatially organized in a matrix of pixels. The proposed model is based on the the single pixel electrical scheme shown in Figure 4. The neuron population and the silicon die separated by an electrolyte bath (NaCL at 0.1 Moles concentration). The TiO₂ post-processing layer (Cianci, 2012) isolates the silicon circuits from the biological environment. The extracellular ionic currents flow by the electrolyte equivalent resistance (R_E) inducing a small voltage variation. Thus, the voltage across R_E is coupled with the TiO₂ capacitance (C_{TiO2}) by the C_D - C_H series, where C_D and C_H are the double-layer region capacitances, respectively

(Massobrio, 2016)). Just beneath the TiO₂ there is an on-chip metal electrode, whose area (A_{ELE}) is in this case 100 μ m² (here M_{SENSE} area is 50% lower to maintain the imaging resolution). This oxide layer has approximately 6 nm thickness and builds a specific series capacitance (C_{TiO2}).

Notice that this scheme is referred to the worst case scenario of scarce neuron-chip adhesion (Massobrio, 2016), where neuro-potentials signals are very weak and are spread across the electrolyte bath. Thus the voltage source (v_{in}) models both EAP and LFP signals.

Thus, the equivalent capacitance (C_{DHT}) between the cells and the MOS transistor (MOST) M_{SENSE} gate is given by eq. (1):

$$C_{HDT} = \frac{1}{1/C_D + 1/C_H + 1/C_T}$$
(1)

 $C_{\rm D}$ and $C_{\rm H}$ capacitances depend on the charge concentration at the electrolyte-oxide interface.

More specifically such Helmoltz and diffuse layers capacitances can be calculated using the metal electrode area (A_{ELE}), the water permittivity (ε_w =78.4· ε_0 where ε_0 is the vacuum permittivity equal to 8.85 pF/m) and two physical lengths L_D (Deybe

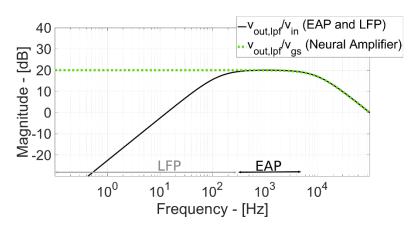


Figure 5: Signal Frequency Response.

Table 1: Neuron-Silicon Electrical Model Parameters.

Parameter	Explanation	Value
A _{ELE}	Metal Electrode Area	100 µm ²
R _E	Electrolyte Bulk Resistance	125 kΩ
Ср	Stern Capacitance	35.9 pF
Сн	Helmotz Capacitance	17.3 pF
Ст	TiO2 Capacitance	3.3 pF
MSENSE	Msense Aspect Ratio	50 μm / 1
Ws/Ls	WISENSE ASpect Ratio	μm
gms	MSENSE Transconductance	50 µA/V
rds	MSENSE Output Resistance	187 kΩ
τlp	Low-Pass Filter Dominant	100 μs
	Time-Constant	(10 kHz)
R _F	Pseudo-Resistor Value	5 GΩ

length, equal to 1 nm) and x_2 (Stern length, equal to 2 nm) depending on the electrolyte-oxide interface (Massobrio, 2016).

$$C_D = \frac{\varepsilon_W}{L_D} \cdot A_{ELE}$$
 and $C_H = \frac{\varepsilon_W}{x_2} \cdot A_{ELE}$ (2)

The TiO₂ isolation layer capacitance has $45 \cdot \epsilon_0$ and 6 nm permittivity and thickness, respectively (Cianci, 2012):

$$C_T = \frac{\varepsilon_{TiO2}}{x_{TiO2}} \cdot A_{ELE} \tag{3}$$

Table 1 resumes the main values of the neuronelectronics junction electrical model.

Hence, the M_{SENSE} MOST is the core of a dedicated neural Low-Noise-Amplifier (LNA) that drives an ideal low-pass filter whose main aim is to limit the signal bandwidth at 10 kHz. M_{SENSE} small-signal current is proportional (by its transconductance (g_{ms})) to the induced extracellular AP and LFP (v_{in}). The M_{SENSE} MOST is here biased by a feedback pseudo-resistor (M_F) to synthesize a very high resistance (R_F in the order of few G Ω) that sets the low frequency pole (where LNA bandwidth starts).

The electrolyte bulk plays a key role for both signal and noise transfer function. Its equivalent resistance R_E depends on the electrolyte bulk conductibility k' and on the metal electrode area A_{ELE} (Deen, 2006) as follows:

$$R_E = \frac{1}{k'} \cdot \sqrt{\pi/A_{ELE}} \tag{4}$$

Assuming the same number of carriers ($N_C=N_P=N_N$) for both positive (N_P , cations) and negative (N_N , anions) charges, then the bulk electrolyte conductivity is related with the moles concentration (N_{MOL}) and the water density ($\rho=1000 \text{ Kg/m}^3$) as expressed in eq. 5 (Park, 2016):

$$k' = q \cdot (\mu_P \cdot N_P + \mu_N \cdot N_N) = q \cdot (\mu_P + \mu_N) \cdot N_C = q \cdot (\mu_P + \mu_N) \cdot \rho \cdot N_{MOL}$$
(5)

where $\mu_P - \mu_N$ are the mobility coefficients for cationsanions, respectively. Thus, the bulk electrolyte conductivity is equal to 12.6 mA/(V·m) and the bulk resistance R_E is then 125 k Ω at 100 mM.

2.1 EAP and LFP Signal Transfer Function

Previous considerations definitively fix the numerical values of all parameters involved in neuronelectronics junction as a function of the physical size and characteristics of the several layers composing the EOMOSFET pixel. It is thus possible to calculate the small signal transfer function for all relevant signal and noise contributions. This will provide a frequency domain map of the achievable Signal-to-Noise-Ratio and, more importantly, a clear limit in terms of maximum allowable noise power for analog stages with the main aim to avoid significant SNR degradation.

Input signal v_{in} includes both EAP and LFP neuropotentials. The transfer function between input signal

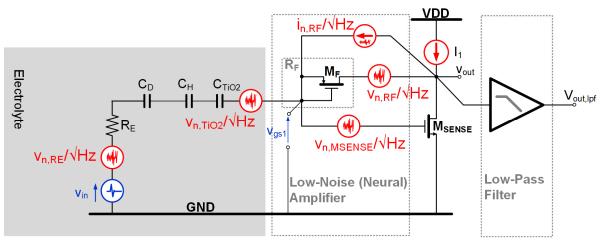


Figure 6: Noise Sources Frequency Response.

 (v_{in}) and Low-Pass Filter (LPF) output node $(v_{out,lpf}/v_{in})$ in Laplace domain) is given by eq. 6:

$$\frac{v_{out,lpf}}{v_{in}}(s) = \frac{g_{ms} \cdot r_{ds}}{1 + g_{ms} \cdot r_{ds}} \cdot \frac{s \cdot C_{HDT} \cdot R_F}{1 + s \cdot \frac{C_{HDT} \cdot R_F}{g_{ms} \cdot r_{ds}}} \cdot \frac{1}{1 + s \cdot \tau_{LP}} \quad (6)$$

where g_{ms} and r_{ds} are M_{SENSE} MOST small-signal parameters, and τ_{LP} is the low-pass filter dominant time constant (fixing the LPF -3dB passband at 10 kHz). Figure 5 shows the corresponding eq. 6 frequency response and includes the analog signal processing (Neural Amplifier and Low-Pass Filter) frequency response. Thanks to the very high resistance synthesized by pseudo-resistors (5 G Ω), the dominant pole time constant (C_{HDT}·R_F/(g_{ms}·r_{ds})) has a frequency of 136 Hz and more importantly the gain is higher than 0 dB (i.e.) from 13 Hz (channel starts to amplify the input signal) enabling recording of ultra-weak slow-oscillation and/or low-frequency neuro-potentials.

2.2 Noise Transfer Function

Figure 6 shows the EOMOSFET pixel equivalent circuit with the most relevant noise sources (coming from electrolyte resistance R_E ($v_{n,Re}$), TiO₂ film ($v_{n,TiO2}$), feedback pseudo-resistor R_F ($v_{n,RF}$) and sensing MOST M_{SENSE} ($v_{n,MSENSE}$)). The analog frontend is composed by the cascade of a neutral Low-Noise-Amplifier (LNA, for neural signal read-out and amplification) driving a Low-Pass Filter (LPF) at 10 kHz -3dB bandwidth for signal selection and out-of-band noise rejection. The amount of noise at the output of the analog signal processing chain ($v_{out,lpf}$, i.e. the LPF output node) depends on the specific noise power of each noise source and the frequency response associated to each noise source.

2.2.1 R_E Thermal Noise

The electrolyte resistance (R_E) generates thermal noise ($v_{n,RE}$) whose in-band power spectral density is given by eq. 7:

$$\frac{\langle v_{n,RE}^2 \rangle}{\Delta f} = 4 \cdot k \cdot T \cdot R_E \tag{7}$$

k and T are Boltzman constant and temperature (300 K) and R_E is 125 k Ω as reported in eq.4 and Table 1. The v_{out}/v_{n,RE} transfer function (in Laplace domain) gives the total amount of voltage signal at the output of the filter as a function of C_{HDT} capacitance (C_H, C_D, and C_{TiO2} serie), the feedback pseudo-resistor (R_F) and M_{SENSE} MOST main small-signal parameters (transconductance (g_{ms}) and output resistance (r_{ds})):

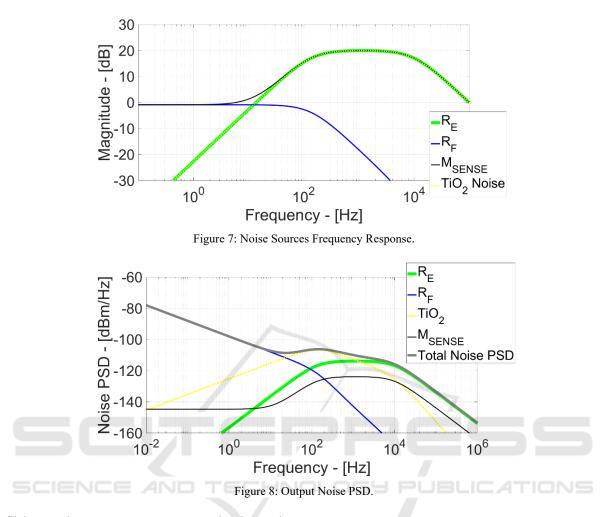

$$\frac{v_{out,lpf}}{v_{n,RE}}(s) = \frac{g_{ms} \cdot r_{ds}}{1 + g_{ms} \cdot r_{ds}} \cdot \frac{s \cdot C_{HDT} \cdot R_F}{1 + s \cdot \frac{C_{HDT} \cdot R_F}{g_{ms} \cdot r_{ds}}} \cdot \frac{1}{1 + s \cdot \tau_{LP}} \quad (8)$$

Figure 7 illustrates the corresponding frequency response and demonstrates that R_E thermal noise has the same signal transfer function. This is even demonstrated by Figure 8 where the noise power spectral density (PSD) for every EOMOSFET noise source with the total noise PSD is plotted.

Effectively R_E noise PSD (green line) perfectly overlap the v_{in} signal bandwidth and thus it is one of the most relevant ineliminable noise sources in EOMOSFET pixels and more generally in planar capacitively-coupled neural probes/MEAs.

2.2.2 TiO₂ Flicker Noise

 TiO_2 film (used to separate or couple the biological environment from silicon chip) mainly generates

flicker noise. Its power source is inversely proportional to the frequency f, as follows:

$$\frac{v_{n,TiO2}^2}{\Delta f} = \frac{k_{pf,TiO2}}{c_{TiO2}} \cdot \frac{1}{f}$$
(9)

where $k_{pf,TiO2}$ is the specific flicker constant and C_{TiO2} is the equivalent TiO₂ capacitance. $v_{n,TiO2}$ has the same transfer function as $v_{n,RE}$ (eq. 8). In this model TiO₂ has been preferred to other neuron-silicon junction coupling options, because it has lower flicker noise power comparing with Pt/Au noble metal films that can exhibit an $1/f^2$ noise, increasing the low frequency noise power at the output of the neutral amplifier.

Nonetheless the intrinsic neuron-electronics junction ac-coupling allows some filtering of TiO_2 flicker at low frequency. Afterwards, starting from 136 Hz, v_{n,TiO_2} frequency response has 20 dB gain but, at the same time, TiO_2 1/f noise behaviour has already reduced its noise power. This generate a TiO_2 noise PSD maximum at 132 Hz and, after this frequency, the circuit attenuates the TiO_2 flicker noise power.

2.2.3 M_{SENSE} Noise

The main noise contributions of the neural amplifier come from M_{SENSE} and R_F (feedback pseudo-resistor). M_{SENSE} is a MOST biased in subthreshold region synthesizing 50 μ A/V transconductance g_{ms} . This value allows to minimize M_{SENSE} thermal noise at few μ A current consumption and thus making feasible the integration of the proposed EOMOSFET setup in thousands of pixels resolution spatial grid/matrix without excess of power. The equivalent model for M_{SENSE} noise source is:

$$\frac{\langle v_{n,MSENSE}^2 \rangle}{\Delta f} = \frac{k_F}{W_S \cdot L_S} \cdot \frac{1}{f} + \frac{2}{3} \cdot 4 \cdot k \cdot T \cdot \frac{1}{g_{ms}}$$
(10)

where k_F is the CMOS 28 nm flicker constant and W_S and L_S are M_{SENSE} width and length. The transfer function associated to the $v_{n,MSENSE}$ noise source is:

$$\frac{v_{out,lpf}}{v_{n,MSENSE}}(s) \cong \frac{g_{ms}r_{ds}}{1+g_{ms}\cdot r_{ds}} \cdot \frac{1+s \cdot C_{HDT} \cdot R_F}{1+s \cdot \frac{C_{HDT} \cdot R_F}{g_{ms} \cdot r_{ds}}} \cdot \frac{1}{1+s \cdot \tau_{LP}} \quad (11)$$

At low frequency (<< 13 Hz) the C_{HDT} capacitor behaves like an open circuit. M_{SENSE} is then diodeconnected and thus its noise source transfers to the output by unitary gain. At very high frequency (>> 13 Hz) C_{HDT} features very low impedance (ideally a short circuit), then the feedback is broken and $v_{n,MSENSE}$ is directly applied between M_{SENSE} gate and ground. Thus output voltage noise is 20 dB higher. One of the objectives of this model is to minimize such noise contribution by acting on both M_{SENSE} area (W·L for flicker noise power reduction, here set at 50 μ m²) and transconductance (for thermal noise power reduction at 50 μ A/V resulting in 14.8 nV/ \sqrt{Hz} inband noise PSD).

2.2.4 R_F Pseudo-resistor Noise

To enhance the pass-band gain of the EOMOSFET pixel and to enable observation of ultra-weal ultralow frequency neuro-potential signals, the feedback resistance must be in the $G\Omega$ order. Integrated resistors in silicon technologies are not a feasible option for such a large resistance value, hence this model adopts a MOST in off region (pseudo-resistor) where gate-source nodes are shorted, preventing any conductive channel between drain and source and exploiting the parasitic diodes formed by source-bulk and drain-bulk junctions. Such diodes are automatically biased in reverse region synthesising a very high resistance (5 G Ω in this case). Starting from these considerations, the R_F pseudo-resistor noise source has two main noise sources: shot (from diodes) and flicker as follows:

$$\frac{\langle v_{n,RF}^2 \rangle}{\Delta f} = \frac{k_F}{W_F \cdot L_F} \cdot \frac{1}{f}$$
(12)

$$\frac{\langle i_{n,RF}^2 \rangle}{\Delta f} = 2 \cdot q \cdot I_{LEAK}$$
(13)

where W_F and L_F are width and length of the pseudoresistor MOST, I_{LEAK} is the leakage current mainly coming from M_{SENSE} gate oxide and approximately equal to few pA. Notice that since R_F is connected in feedback, its noise is relevant at very low frequency (< 136 Hz). So, this effect will be important in 13 Hz – 136 Hz bandwidth. The transfer functions for $v_{n,RF}$ and $i_{n,RF}$ noise sources are respectively:

$$\frac{v_{out,lpf}}{v_{n,RF}}(s) \cong \frac{g_{ms} \cdot r_{ds}}{1 + g_{ms} \cdot r_{ds}} \cdot \frac{1 + s \cdot C_{HDT} \cdot R_E}{1 + s \cdot \frac{C_{HDT} \cdot R_E}{g_{ms} \cdot r_{ds}}} \cdot \frac{1}{1 + s \cdot \tau_{LP}} \quad (14)$$

$$\frac{v_{out,lpf}}{i_{n,RF}}(s) \cong R_F \cdot \frac{g_{ms} \cdot r_{ds}}{1 + g_{ms} \cdot r_{ds}} \cdot \frac{1 + s \cdot C_{HDT} \cdot R_E}{1 + s \cdot \frac{C_{HDT} \cdot R_F}{g_{ms} \cdot r_{ds}}} \cdot \frac{1}{1 + s \cdot \tau_{LP}} (15)$$

Bandwidth	Noise Source	Value [µV _{RMS}]
	RE	5.5
	TiO ₂	15.7
< 300 Hz	R _F	10.4
	M _{SENSE}	1.73
	Total Noise	19
300 Hz – 5 kHz	R _E	30
	TiO ₂	27.2
	R _F	1
	MSENSE	9.5
	Total Noise	42
	RE	30.6
	TiO ₂	31.4
< 5 kHz	R _F	10.4
	Msense	9.66
	Total Noise	46.08

3 NOISE SUMMARY AND SIGNAL-TO-NOISE-RATIO

The small-signal electrical and analytical model based on Figure 6 scheme allow to easily evaluate the noise and signal behaviour across the EOMOSFET pixel.

More in details, by reducing the M_{SENSE} MOST thermal/flicker noise power and taking into account both shot and flicker noise sources coming from MF pseudo-resistor, the presented setup enables very low noise performances (1.9 μ V_{RMS} and 4.2 μ V_{RMS}) at the electrode (or at the M_{SENSE} gate node).

Table 2 presents the noise summary of this specific setup where, in both LFP and EAP bandwidths, dominant noise contributions come from electrolyte bath (thermal) and TiO_2 (flicker) coupling.

In other words by a dedicated design of the interface in terms of both biological and circuital electrical parameters, it is possible to set MOSTs (M_{SENSE} and M_F) dc current and aspect ratio with the main aim to minimize read-out noise power and in first approximation remaining with the only interface noise due to the electrolyte-electrode junction.

Effectively in LFP bandwidth, total noise (measured at the low-pass filter output node) is 19 μV_{RMS} (with 5.5 $\mu V_{RMS} R_E$ noise power and 15.7 μV_{RMS} TiO₂ noise power, respectively).

In EAP bandwidth, total output noise is 42 μV_{RMS} when R_E and TiO₂ have 30 μV_{RMS} and 27.2 μV_{RMS} noise power, respectively.

About SNR performances, Table 3 reports a final resume of the achieved SNR in both EAP and LFP bandwidths, also including Noise Figure performances.

Parameter	Explanation	Value	
< 300 Hz Output Noise	LFP Bandwidth Output Noise	19 µV _{RMS}	
< 300 Hz Electrolyte Noise	LFP Bandwidth TiO ₂ +R _E Output Noise	16.63 μV _{RMS}	
< 300 Hz Electrode SNR at $v_{in} {=} 10 \; \mu V_{RMS}$	LFP Bandwidth SNR at the Electrode (considering only TiO ₂ and R _E Noise)	15.5 dB	
< 300 Hz LPF SNR	LFP Bandwidth Output SNR (at the LPF Output Node)	14.42dB	
< 300 Hz NF	LFP Noise Figure	1.15 dB	
300 Hz - 5 kHz Output Noise	EAP Bandwidth Output Noise	$42 \mu V_{RMS}$	
300 Hz - 5 kHz Electrolyte Noise	EAP Bandwidth TiO2+RE Output Noise	40.5 μV _{RMS}	
300 Hz - 5 kHz Electrode SNR at v_{in} =10 μV_{RMS}	EAP Bandwidth SNR at the Electrode (considering only TiO ₂ and R _E Noise)	7.8 dB	
300 Hz - 5 kHz LPF SNR	EAP Bandwidth Output SNR (at the LPF Output Node)	7.5 dB	
300 Hz - 5 kHz NF	EAP Noise Figure	0.31 dB	

Table 3: Noise Summary, SNR and Noise Figure.

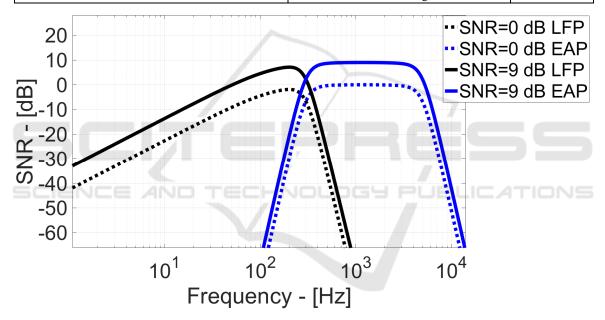


Figure 9: SNR vs. Frequency for LFP and EAP.

Assuming $10 \ \mu V_{RMS}$ LFP signal at electrolyte bath level (state-of-the-art (DeBusschere, 2001; Huys, 2012; Frey, 2010; Maccione, 2013; Eversmann, 2003; Wang, 2019; Lopez, 2018; Dragas, 2017) operates with >22 μV_{RMS} detection threshold), the SNR at the electrode (without considering the LNA additional noise) is 15.5 dB and after amplification 14.42, resulting in very low noise figure of 1.15 dB. More interestingly, since most of DSD detects neuropotential spikes with SNR≥9 dB (Shahid, 2009), then the proposed EOMOSFET setup enables the detection of < 10 μV_{RMS} slow ultra-weak events. At 10 μV_{RMS} EAP, Noise Figure is 0.31 dB, meaning that the system introduces a very negligible egradation of the SNR.

Finally, Figure 9 shows the SNR vs. frequency when LFP/EAP input signal power equals the noise power in the corresponding bandwidths (0 dB SNR) and when such signal power is 9 dB higher than the noise.

Effectively, the proposed analog read-out has a certain frequency-dependent channel response (mainly due to the R_F low frequency bandwidth limitations). Thus, some neuro-potential signals can experience different gain values and, at the same noise power, this results in different SNR.

Maximum 7.5dB SNR is achieved at 201 Hz with 5.5 μV_{RMS} LFP signal power. For EAP neuropotentials, SNR reaches 9 dB with 11.8 μV_{RMS} input power, against 22 μV_{RMS} state-of-the-art in Figure 1 and Figure 2.

Hence, this demonstrates that the presented setup can be adopted for thousands of pixels resolution MEAs with the key advantadge of improving the noise performances and thus decreasing the minimum detectable signals power.

4 CONCLUSIONS

In this paper a complete electrical model of a singlepixel Electrolyte-Oxide MOS Field-Effect-Transistors neural interface has been presented. The model includes all biological and electrical parameters building the interface. Thanks to specific noise and signal simulation results, the proposed setup allows optimum design and sizing of all MOS transistors embedded in the analog signal processing, minimizing noise power, and enabling ultra-weak slow oscillation detection. More specifically the proposed optimum design features 9 dB SNR at 11.8 µV_{RMS} extra-cellular Action Potentials power and 7.8 dB SNR for 5.5 μV_{RMS} Local Field Potentials, at the electrode node.

ACKNOWLEDGEMENTS

This work has been supported by Brain28 PRIN Project founded by the Italian Ministry of the University, Education and Research.

REFERENCES

- Obien, M. E. J., Deligkaris, K., Bullmann, T., Bakkum, D. J., & Frey, U. (2015). Revealing neuronal function through microelectrode array recordings. Frontiers in neuroscience, 8, 423.
- Thomas Jr, C. A., Springer, P. A., Loeb, G. E., Berwald-Netter, Y., & Okun, L. M. (1972). A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Experimental cell research, 74(1), 61-66.
- Pine, J. (1980). Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Journal of neuroscience methods, 2(1), 19-31.
- Gross, G. W., Williams, A. N., & Lucas, J. H. (1982). Recording of spontaneous activity with photoetched microelectrode surfaces from mouse spinal neurons in

culture. Journal of neuroscience methods, 5(1-2), 13-22.

- Cianci, E., Lattanzio, S., Seguini, G., Vassanelli, S., & Fanciulli, M. (2012). Atomic layer deposited TiO2 for implantable brain-chip interfacing devices. Thin solid films, 520(14), 4745-4748.
- Vallicelli, E. A., Reato, M., Maschietto, M., Vassanelli, S., Guarrera, D., Rocchi, F., ... & De Matteis, M. (2018). Neural Spike Digital Detector on FPGA. Electronics, 7(12), 392.
- Shahid, S., Walker, J., & Smith, L. S. (2009). A new spike detection algorithm for extracellular neural recordings. IEEE Transactions on Biomedical Engineering, 57(4), 853-866.
- DeBusschere, B. D., & Kovacs, G. T. (2001). Portable cellbased biosensor system using integrated CMOS cellcartridges. Biosensors and Bioelectronics, 16(7-8), 543-556.
- Huys, R., Braeken, D., Jans, D., Stassen, A., Collaert, N., Wouters, J., ... & Verstreken, K. (2012). Single-cell recording and stimulation with a 16k micro-nail electrode array integrated on a 0.18 μm CMOS chip. Lab on a Chip, 12(7), 1274-1280.
- Frey, U., Sedivy, J., Heer, F., Pedron, R., Ballini, M., Mueller, J., ... & Kirstein, K. U. (2010). Switch-matrixbased high-density microelectrode array in CMOS technology. IEEE Journal of Solid-State Circuits, 45(2), 467-482.
- Maccione, A., Simi, A., Nieus, T., Gandolfo, M., Imfeld, K., Ferrea, E., ... & Berdondini, L. (2013, June). Sensing and actuating electrophysiological activity on brain tissue and neuronal cultures with a high-density CMOS-MEA. In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII) (pp. 752-755). IEEE.
- Eversmann, B., Jenkner, M., Hofmann, F., Paulus, C., Brederlow, R., Holzapfl, B., ... & Gabl, R. (2003). A 128× 128 CMOS biosensor array for extracellular recording of neural activity. IEEE Journal of Solid-State Circuits, 38(12), 2306-2317.
- Park, C. H., & Chung, I. Y. (2016). Modeling of Electrolyte Thermal Noise in Electrolyte-Oxide-Semiconductor Field-Effect Transistors. Journal of Semiconductor Technology and Science, 16(1), 107.
- Wang, S., Garakoui, S. K., Chun, H., Salinas, D. G., Sijbers, W., Putzeys, J., ... & Lopez, C. M. (2019). A Compact Quad-Shank CMOS Neural Probe with 5,120 Addressable Recording Sites and 384 Fully Differential Parallel Channels. IEEE transactions on biomedical circuits and systems, 13(6), 1625-1634.
- Lopez, C. M., Chun, H. S., Wang, S., Berti, L., Putzeys, J., Van Den Bulcke, C., ... & Van Helleputte, N. (2018). A multimodal CMOS MEA for high-throughput intracellular action potential measurements and impedance spectroscopy in drug-screening applications. IEEE Journal of Solid-State Circuits, 53(11), 3076-3086.

BIODEVICES 2021 - 14th International Conference on Biomedical Electronics and Devices

- Dragas, J., Viswam, V., Shadmani, A., Chen, Y., Bounik, R., Stettler, A., ... & Hierlemann, A. (2017). In vitromulti-functional microelectrode array featuring 59 760 electrodes, 2048 electrophysiology channels, stimulation, impedance measurement, and neurotransmitter detection channels. IEEE journal of solid-state circuits, 52(6), 1576-1590.
- Harrison, R. R., & Charles, C. (2003). A low-power lownoise CMOS amplifier for neural recording applications. IEEE Journal of solid-state circuits, 38(6), 958-965.
- Sansen, W. M. (2007). Analog design essentials (Vol. 859). Springer Science & Business Media.
- Baschirotto, A., Delizia, P., D'Amico, S., Chironi, V., Cocciolo, G., & De Matteis, M. (2009). Low power analog design in scaled technologies.
- De Matteis, M., D'Amico, S., & Baschirotto, A. (2006, June). Power-minimization design procedure for Rauch biquadratic cells. In 2006 Ph. D. Research in Microelectronics and Electronics (pp. 141-144). IEEE.
- Massobrio, P., Massobrio, G., & Martinoia, S. (2016). Interfacing cultured neurons to microtransducers arrays: a review of the neuro-electronic junction models. Frontiers in neuroscience, 10, 282.
- Deen, M. J., Shinwari, M. W., Ranuárez, J. C., & Landheer, D. (2006). Noise considerations in field-effect biosensors. Journal of applied physics, 100(7), 074703.