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Abstract: We present an approach to optimally deploy Deep Neural Networks (DNNs) in serverless cloud architectures. 
A serverless architecture allows running code in response to events, automatically managing the required 
computing resources. However, these resources have limitations in terms of execution environment (CPU 
only), cold starts, space, scalability, etc. These limitations hinder the deployment of DNNs, especially 
considering that fees are charged according to the employed resources and the computation time. Our 
deployment approach is comprised of multiple decoupled software layers that allow effectively managing 
multiple processes, such as business logic, data access, and computer vision algorithms that leverage DNN 
optimization techniques. Experimental results in AWS Lambda reveal its potential to build cost-effective on-
demand serverless video surveillance systems. 

1 INTRODUCTION 

Serverless computing is a cloud-native platform that 
hides server usage from developers and runs 
developer code on-demand, automatically scaled, and 
billed only for the time the code is running (Castro et 
al., 2019), under the scope of the Function-as-a-
Service (FaaS) paradigm. It represents an evolution in 
cloud computing, which matches better the original 
expectations for being treated as a utility (Ishakian et 
al., 2018). Its two key features are cost (pay-as-you-
go billing with millisecond granularity) and elasticity 
(scaling from zero to "infinity"). It allows developers 
to concentrate on providing a piece of code (function) 
to be executed by the serverless computing platform 
and to delegate all their operational complexity and 
scalability to the cloud provider without requiring a 
high level of cloud computing expertise. 

Most relevant cloud providers, such as Amazon, 
IBM, Microsoft, and Google, have already released 
serverless computing platforms, which are gaining 
popularity due to their simplicity and economic 
advantages. However, all these advantages over 
"serverfull" architectures come at the expense of 

some limitations of the current stateless platforms 
(Ishakian et al., 2018), namely: 

• The stateless nature of functions, which 
prevents them to be executed, relying on the 
serverless platform runtime to maintain the 
state between invocations to optimize 
performance. 

• The lack of access to GPUs (despite very recent 
initiatives to solve this limitation (Kim et al., 
2018)), which prevents deployed algorithms 
from making use of high parallelization 
capabilities within function instances. 

• Cold" starts, i.e., additional latencies that occur 
when the serverless function is invoked for the 
first time, due to the required setting-up of 
containers (part of the core capability of 
serverless platforms) and bootstrapping. 

• Scalability limits, i.e., despite their high 
scalability capabilities they cannot scale up to 
"infinity. 

• Space constraints for the deployed program, 
i.e., the main code, its dependencies, and the 
required resources (e.g., data files). 
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These limitations are especially relevant to build 
an on-demand video surveillance system (VSS) with 
computer vision algorithms that involve the 
deployment of Deep Neural Networks (DNNs), as 
their complexity is significantly higher for hardware 
platforms with limited computational resources 
(Bianco et al., 2018). Thus, very recently important 
efforts are being done towards the goal of optimizing 
DNNs, such as new methodologies (Elordi et al., 
2018) (Frankle and Carbin, 2019), new 
microprocessor classes (e.g., Intel's VPUs (Intel, 
2019) and Google's TPUs (Google, 2019) and new 
software tools for DNN model optimization included 
in deep learning frameworks (e.g., TensorFlow 
(Google, 2020), PyTorch (Facebook, 2019) and 
OpenVINO (Intel, 2020)). However, since both DNN 
optimization techniques and serverless architectures 
are still at early stages, few works have yet focused 
on the optimal deployment of DNNs on serverless 
platforms, tackling simultaneously the characteristics 
of both components. 

Our main motivation is to help building cost-
effective on-demand VSSs, leveraging (1) the latest 
advances of DNN optimization techniques for 
inference purposes along with (2) tailored 
deployment strategies to make the most of current 
FaaS architectures. Although this paper is focused on 
optimal DNN deployment in serverless 
environments, our approach considers the security 
and privacy measures to preserve the biometric data 
on VSS environments (Biometrics Institute, 2020). 

This work represents a step forward in distributed 
computational VSS infrastructures and the Video-
Surveillance-as-a-Service (VSaaS) paradigm (Limna 
and Tandayya, 2016). We have taken AWS Lambda 
(Baird et al., 2017) as the baseline to design our 
methodology. 

2 SERVERLESS VSS PLATFORM 

The FaaS platforms are materialized in function 
instances, which have two stages (Baird et al., 2017). 
The first stage begins when the FaaS function is 
invoked for the first time, creating an isolated runtime 
environment with the necessary resources. This 
process takes additional time to be completed and, 
consequently, this stage is called the cold start stage. 
When the container initialization is finished, the 
remaining function instances are executed 
concurrently. This second stage is called the warm 
stage. 

Wrong management of resources in the 
initialization process and the concurrent instances 

could drastically increase the cold start and serverless 
execution (warm stage) time. Therefore, the key is to 
identify strategies to minimize processing time in 
both stages for a good quality of service. In the 
following, we summarize the current performance 
strategies presented in the literature (Baird et al., 
2017) (Bardsley et al., 2018). 

• Concise function logic if 3rd-party 
dependencies are required, avoid using open-
source packages. Since their general-purpose 
and 3rd-party interdependency nature, open-
source packages include more functionalities 
than required and, thus, can cause a significant 
slowdown in cold start time and increase 
processing time. 

• Third-party dependencies: limit the space and 
the use of third-party libraries to match the 
serverless function storage limitations.  

• Resource management: limit the 
reinitialization of local variables on every 
instance. Instead, use global/static variables or 
singleton patterns to handle the application 
scope variables.  

• Allocated function memory:  finding the trade-
off between the configuration of computing 
resources and execution cost can be the key to 
optimal serverless execution.  

• Language agnostic advice: the interpreted 
programming languages achieve faster initial 
invocation time, while compiled languages 
perform best in the warm stage. 

• Keep the container in the warm state: make 
preconfigured periodical calls to serverless 
functions to avoid changing to a cold stage. 

 
Although these strategies are available for general 

serverless architectures, the complexity of DNN 
models (Bianco et al., 2018) requires a deep analysis 
of DNN model deployment to cope with the 
serverless platform limitations. With that purpose, we 
present a FaaS architecture with tailored DNN 
optimization strategies to maximize inference 
efficiency.  

The proposed serverless architecture is illustrated 
in Figure 1, together with the lifecycle of the 
processing pipeline, where each processing task is 
numbered from 1 to 11. This pipeline contains two 
main components: the initialization process (from 
step 1 to 7) and the on-demand invocation task (from 
step 8 to 11). The event controller shown in the 
architecture represents the event-triggering design of 
FaaS platforms (see Figure 1). In this context, each 
input-image source triggers an event to the FaaS 
function. In terms of security, the images are stored 
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in a Virtual Private Cloud (VPC). Also, the image 
data is encrypted.  

Following the serverless strategies described 
above, the designed FaaS function references the 
resources in the global scope (software layers) and the 
processing workload relies on the handler function. 

3 INITIALIZATION PROCESS 

When the serverless function is invoked for the first 
time (cold start), the initialization process begins, and 
the warm-up process initializes the runtime execution 
container along with the software layers (step 2-3). 
Then, DNN models are downloaded to the runtime 
container (step 5-6). Finally, the DNN models are 
loaded along with library initializations.  

FaaS functions should be simple and concise. 
Besides, FaaS architectures are based on ephemeral 
storage, which means data will be erased when the 
function finishes. Based on these requirements, we 
decoupled the functionalities into three layers which 
are shared across serverless function instances: 

• Deep Learning (DL) layer: in charge of 
handling DNN workload operations such as 
model loading and inference processing, along 
with pre- and post-processing low-level image 
operations for Computer Vision (CV).  

• High-Level Algorithm (HLA) layer: containing 
the library for complex CV pipelines such as 
face detection, face recognition and body pose 
detection, supported by several DNN models 
for inference processing.  

• Business Logic (BL) layer: which provides 
utilities deal with for accessibility to I/O 
operations, communications, and business 
logic algorithms.  

 
Ideally, an optimal initialization process will 

preserve the accuracy and the inference latency of 
DNN models (Bianco et al., 2018) under FaaS 
limitations such as storage size, memory 
consumption, and computing resources. Model 
compression techniques, such as pruning and 
quantization (Han et al., 2015), reduce the size of the 
DNN files, and therefore the required amount of 
memory to load the compressed model, lessening the 
cold start delay. These compression techniques are 
especially relevant when several DNN models are 
loaded into a layer, because of the rigorous constraint 
of storage size on FaaS platforms. However, these 
techniques require special attention in the 
deployment, since too much compression could affect 
the accuracy of the models (Liu et al., 2018). 

FaaSification consists in changing the execution 
runtime from monolithic architectures (code 
processed in the same execution unit) to FaaS 
architecture. Based on (Spillner et al., 2017), this 
process depends on the Atomic Units (AU), which 
depending on the level of complexity (3rdparty 
dependencies, inter-function dependencies, etc) is 
classified as shallow (AU: functions or method), 
medium (AU: lines of code) and deep (AU: 
instructions). Since the complexity of the DNN 
processing algorithm lies in three functions (load 
model, DNN inference, post-processing), our 
approach is deployed following a shallow 
FaaSification supported by HLA and DL layers. 

4 ON-DEMAND INVOCATION 
TASKS 

After the first invocation of a serverless function 
instance, the system verifies that all resources are in 
the warm state and ready for DNN inference. Next, 
several instances of the handler function are triggered 
by the input data. These handler instances execute a 
set of CV algorithms that involve multiple DNN 
inferences (step 10). Supported by HLA and DL layer 
to process CV tasks and DNN inferences, when the 
FaaS function finishes, the BL layer encodes the 
algorithm output in the preferred output (step 11).  

The serverless platform capabilities to offload the 
computation across several instances could leverage 
an impressive DNN inference throughput. However, 
the virtualization nature of this platform hardware 
resources relies on a bottleneck, especially, when CV 
processing tasks require to process many DNN 
models at the same pipeline.  

Based on the analysis of the computational 
complexity of DNN models (Bianco et al., 2018), 
choosing the ones that lower inference time while 
preserving the accuracy is crucial for this type of 
architecture. Moreover, vectorization programming 
libraries such as Single Input Multiple Output 
(SIMD) instructions and multi-threading-block 
libraries provide extra processing power. 

The assigned memory to each FaaS function 
instance plays an important role in performance 
optimization because more memory per function 
means more resources for the handler function, but 
also a higher price per execution. On the contrary, 
FaaS instances are billed by function execution time, 
so less time per function means a lower price. Thus, a 
good trade-off between allocated memory and 
function execution cost becomes an essential strategy. 
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Figure 1: The proposed serverless video surveillance system architecture.

5 VSS CASE STUDY AND 
EXPERIMENTS 

We evaluate the potential of our approach in the 
following case study: a VSS that periodically receives 
(every few minutes) images acquired by several 
surveillance cameras to detect human presence and 
recognize registered individuals in uncontrolled 
environments.  

Deep Learning models are complex and require a 
huge amount of processing power. A Deep Learning 
model inference lies in Matrix-multiplication, 
regularization, and the number of weights. So, 
choosing the most optimal DNN with minimum 
latency and maximum accuracy is a crucial strategy. 
More specifically, in this VSS we deploy four DNNs 
trained for the following purposes:  

• Camera coverage detection (CM): a 
MobileNet v1-based image classifier to detect 
whether the image comes from a camera that 
has been covered (by a hand, a sticker, etc.) or 
not. 

• Human body points detection (BP): an 
OpenPose-based regression model with 
MobileNet v1 as the backbone to detect 
people’s body landmarks. 

• Human face landmarks detection (FL): a 
classic convolutional design-based regression 
model that localizes both eyes, nose tip, and 
mouth corners in a cropped facial image.  

• Human face reidentification (FR): a MobileNet 
v2-based facial feature extractor for 
reidentification purposes. The extracted facial 
features are compared with the registered ones 

to determine whether they correspond to 
registered individuals. 

 
The table 1 shows the performance parameters of 

the selected models. 

Table 1:Selected DNN model parameters. 

NAME Complexity 
(GFlops) 

AVG 
Precission 

(Mp) 

AVG 
Precission(%) 

CM 0.569 4.24 70.9
HP 15.435 4.099 42.8
FL 0.021 0.191 92.95
FR 0.588 1.107 99.47
 
We have taken AWS Lambda as a baseline to 

design and test our methodology. The source code is 
written in Python language. We used OpenVINO as 
DNN framework and OpenCV for CV algorithms. 
Also, we used the AWS boto3 library for I/O 
operations. Since video surveillance environments 
manage biometric data, to preserve the security of 
user privacy, we stored all images in a Virtual Private 
Cloud (VPC) along with an encrypted Amazon S3 
storage service. We also have given the minimum and 
only necessary permissions to the handler lambda 
function. Finally, we monitor function calls with 
Amazon X-Ray. The low-economic impact to process 
10,000 images with different batch sizes per request 
and memory configurations per function is shown in 
Figure 2. Notice the minimum memory to support the 
VSS application logic is 704MB. The cost calculation 
is based on the following equation: 

 
cost = nr *((0.0009765625*am)* 

(0.001*ru(rd,m)*mcc+mrc (1)
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Where: 
• nr: number of requests in a month  
• am: allocated memory (in MB)  
• rd: request duration (in ms) 
• ru: round up operation to the nearest M 

multiple (m=100 ms)  
• mcc: monthly compute charges (0.0000166667 

USD/GB-s)  
• mrc:  monthly request charges (0.0000002 

USD/request) 
 
This cost experiment evinces that more images 

per request involve cost-saving, especially when the 
allocated memory function is higher. However, 
despite the cost fluctuation of the first three 
configurations (704MB to 1536MB) being negligible, 
the price evolution of the remaining configurations is 
increased from 13.38% (2048MB) to 61%. 
(3008MB). Despite the AWS Lambda free tier offers 
1 million Amazon Lambda function instances, these 
function instances are activated with images (put 
request) coming from S3 online storage service. This 
S3 free tier offers 2000 put requests (images) in a 
month. So, for this experiment, the Amazon free tier 
is discarded because it represents only the 1% of the 
experiment. 

 

 
Figure 2: Average cost to process 10K images with VSSH 
in AWS Lambda. The horizontal axis represents image 
batch size per request (1,5,10) and the colour bars represent 
the allocated memory per function, from 704MB to 
3008MB. AWS free tier is not included in this experiment. 

Figures 3 and 4 analyse the influence of the cold 
start delays according to local and global scope 
resource management strategies. In the local scope 
strategy, all initialization process is executed in the 
handler function while the global scope initializes all 
resources before the first handler function. Each 
figure contains three different lines which represent 
container setup time (blue), function runtime init time 
(red), and function code execution total time (green). 
The container setup is the time delay to create an 
isolated image container. In the function runtime init 
we evaluate the time delay of the serverless function 

resources (loading external resources, classes 
initializations, loading 3rdparty libraries, code 
downloading). Finally, the function code execution 
calculates the total execution time of a serverless cold 
instance. 

 

 
Figure 3: Cold start time analysis of the global scope 
strategy according to the amount of allocated memory per 
function (from 704MB to 3008MB). 

 
Figure 4: Cold start time analysis of the local scope strategy 
according to the amount of allocated memory per function 
(from 704MB to 3008MB). 

This analysis of the resource management 
strategies reveals that initializing the resources in the 
global scope improves the performance of the cold 
start delays (about 2-4 seconds difference). Also, the 
increased time delay of the global scope in function 
runtime initialization is due to the DNN models, code, 
and libraries are loaded in this step.  

As it was expected, as far as the allocated memory 
per function instance increases, the cold-start time 
delay is reduced in both scope strategies. This time 
reduction is especially visible when the allocated 
memory is between 704 and 1536MB. In contrast, the 
container setup’s minimal time variations reveal that 
the FaaS container initialization does not depend on 
the allocated memory per function instance.  

To analyse the cost-worthiness of serverless 
computing deployment, Figure 5 unveils that our 
FaaS architecture leverages an outstanding 
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performance with an important time saving from 
hours that would be needed with an off-the-shelf PC 
to minutes (our approach). Also, the influence of the 
allocated memory per function instance is shown in 
Figure 3, where the reduction of the processing time 
is very significant, especially between the 704MB 
and 1536MB configurations.  

 

 
Figure 5: Total times to process 10K images with the VSS 
in AWS-Lambda. The colour bars represent image batch 
size. 

Considering the economic and the time 
performance analysis shown in Figures 2, 3, and 4, 
we conclude that the optimal allocated memory per 
function remains on 1536MB. Also, as observed in 
Figure 3, the optimal way to achieve the maximum 
processing throughput is processing one image per 
each FaaS instance. 

6 DISCUSSION AND 
CONCLUSION 

The FaaS platform environment offers a suitable 
distributed execution model to provide parallel 
processing at a high scale. Nevertheless, the resource 
limitations of this platform collide with the DNN 
complex environment.  

To overcome this challenge, we have presented a 
methodology to optimally deploy several DNN 
models to FaaS platforms supported by the latest CV 
techniques to maximize the DNN processing 
performance at minimum cost.  

We have also evaluated a VSS case study 
supported by experimental results that reveal an 
outstanding performance improvement of our 
serverless architecture. Furthermore, we conclude 
that the major bottleneck lies in the processing of each 
FaaS function, while the influence of the memory 
allocation per function is visible in the processing 
speed. Nevertheless, there is a large room for 

improvement in reducing the DNN complex 
environment, while the bottleneck could be addressed 
by analysing the possibilities of distributing the DNN 
processing into multi-tenant systems. 
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