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Abstract: Optical flow is a regression task where convolutional neural networks (CNNs) have led to major breakthroughs.
However, this comes at major computational demands due to the use of cost-volumes and pyramidal repre-
sentations. This was mitigated by producing flow predictions at quarter the resolution, which are upsampled
using bilinear interpolation during test time. Consequently, fine details are usually lost and post-processing
is needed to restore them. We propose the Normalized Convolution UPsampler (NCUP), an efficient joint
upsampling approach to produce the full-resolution flow during the training of optical flow CNNs. Our pro-
posed approach formulates the upsampling task as a sparse problem and employs the normalized convolutional
neural networks to solve it. We evaluate our upsampler against existing joint upsampling approaches when
trained end-to-end with a a coarse-to-fine optical flow CNN (PWCNet) and we show that it outperforms all
other approaches on the FlyingChairs dataset while having at least one order fewer parameters. Moreover, we
test our upsampler with a recurrent optical flow CNN (RAFT) and we achieve state-of-the-art results on Sintel
benchmark with ~ 6% error reduction, and on-par on the KITTI dataset, while having 7.5% fewer parameters
(see Figure 1). Finally, our upsampler shows better generalization capabilities than RAFT when trained and
evaluated on different datasets.

RAFT RAFT+NCUP (Ours)

1 INTRODUCTION

Computer vision encompasses a broad range of re-
gression tasks where the goal is to produce numeri-
cal output given a visual input. Some of these tasks

such as depth prediction and optical flow even require . e R e

pixel-wise output, which makes theses tasks more
challenging. Convolutional neural networks (CNNs)
have lead to major breakthroughs in these regression
tasks by exploiting deep representations of data. A
common design for these regression CNNs is coarse-
to-fine where a low-resolution prediction is produced
and then progressively upsampled and refined to the
full-resolution. This usually requires abundant GPU
memory, especially at finer stages as the spatial di-
mensionality grows. Therefore, the scale of these net-
works has been throttled by the availability of compu-
tational resources, which has been mostly mitigated
either by limiting the depth of the networks or reduc-
ing the resolution of the data.

As an example, the early work on CNN-based
depth estimation in (Eigen et al., 2014) employed an
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Figure 1: An example from the Sintel (Butler et al., 2012)
test set that shows the flow improvement achieved by
our proposed upsampler NCUP in comparison with RAFT
(Teed and Deng, 2020).

encoder/decoder network where the training datasets
were downsampled to half the resolution to fit into
the available GPU memory. Similarly, the preva-
lent optical flow estimation network, FlowNet (Fis-
cher et al., 2015), trains on a quarter of the full res-
olution and uses bilinear interpolation to restore the
full-resolution during test time. This practice has
been preserved in subsequent optical flow CNNs, par-
ticularly with the increased complexity of these net-
works and the emergence of the computationally ex-
pensive cost-volumes and pyramidal representations
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(Fischer et al., 2015; Sun et al., 2018; Ilg et al., 2017).
Nonetheless, pyramid levels with full and half the res-
olution were not utilized as they would not fit on the
available GPU memory. Unfortunately, operating on
a fraction of the full-resolution leads to loss of fine
details, which might be crucial in certain tasks.

To alleviate these shortcomings of coarse-to-
fine approaches, several joint image upsampling ap-
proaches have been applied as post-processing to the
output from optical flow and depth estimation net-
works (Li et al., 2019; Su et al., 2019; Wu et al.,
2018). These approaches substitute the bilinear in-
terpolation and they utilize RGB images as guidance
to perform adaptive upsampling for the predicted flow
that preserves edges and fine details. The key idea of
theses approaches is to use a guidance modality, e.g.
. RGB images, to guide the upsampling of a target
modality such as flow fields or depth values. How-
ever, these approaches act as post-processing and are
trained separately from the network of the original
task, omitting potential benefits from training them
end-to-end. Therefore, we investigate training these
joint upsampling approaches within the coarse-to-fine
optical flow CNNs, e.g. . FlowNet, PWCNet, in an
end-to-end fashion to allow optical flow networks to
exploit the fine details during training. Moreover, we
propose a novel joint upsampling approach (NCUP)
that formulates the upsampling as a sparse problem
and employs the normalized convolutional neural net-
works (Eldesokey et al., 2018; Eldesokey et al., 2019)
to solve it. Our proposed upsampler that is more ef-
ficient (2k parameters) and outperforms other joint
upsampling approaches in comparison on the task of
end-to-end optical flow upsampling. An illustration
for the proposed setup is shown in Figure 2a.

Another category of optical flow networks that
emerged recently is based on recurrent networks (Hur
and Roth, 2019; Teed and Deng, 2020), where the
predicted flow is iteratively refined. This requires the
availability of the flow in full-resolution at the end
of each iteration. The bilinear interpolation was used
for this purpose in (Hur and Roth, 2019), while a
learnable convex combination upsampler was used in
(Teed and Deng, 2020). However, this convex up-
sampler performs the upsampling with a scaling fac-
tor of 8 in a single-shot with a limited kernel support
of 3 x 3. Moreover, it has a large number of param-
eters which encompasses approximately 10% of the
entire network. We replace this convex combination
module with our efficient upsampler that performs the
upsampling at multi-scales, leading to state-of-the-art
results on Sintel dataset (Butler et al., 2012), simi-
lar results on the KITTI dataset (Menze et al., 2018),
better generalization capabilities, and using 5 times

fewer parameters. Figure 2b shows an illustration for
setup of recurrent networks, where we replace the up-
sampling module with our proposed upsampler.

Our Contributions Can Be Summarized as Fol-
lows:

e We propose a joint upsampling approach (NCUP)
that formulates upsampling as a sparse problem
and employs the normalized convolution neural
networks to solve it.

e We test our approach with coarse-to-fine opti-
cal flow networks (PWCNet) to produce the full-
resolution flow during training, and we show that
it outperforms all other upsampling approaches,
while having at least one order fewer parameters.

e When we use our upsampler with a recurrent op-
tical flow CNN, e.g. . RAFT (Teed and Deng,
2020), we achieve state-of-the-art results on the
Sintel (Butler et al., 2012) benchmark, and per-
form similarly on the KITTI (Menze et al., 2018)
test set using 5 times less parameters than their
convex combination upsampler.

e We show that our upsampler has better generaliza-
tion capabilities than the convex combination in
RAFT, when trained on FlyingThings3D (Mayer
et al., 2016) and evaluated on Sintel and KITTL.

2 RELATED WORK

CNN-based Optical Flow. Deep learning recently
surfaced as a plausible substitute for the classical
optimization-based optical flow approaches (Xu et al.,
2017; Bailer et al., 2015; Horn and Schunck, 1981).
CNNs can be trained to directly predict optical flow
given two images avoiding explicitly designing an op-
timization objective manually in classical approaches.
FlowNet (Fischer et al., 2015) introduced the first
CNN for optical flow estimation that is trained end-
to-end in a coarse-to-fine fashion. Subsequent ap-
proaches followed the same scheme where FlowNet2
(Ilg et al.,, 2017) proposed a stacked version of
FlowNet, PWCNet (Sun et al., 2018) introduced a
pyramidal variation, and LiteFlowNet (Hui et al,,
2018) designed a light-weight cascaded network at
each pyramid level. VCN (Yang and Ramanan, 2019)
proposed several improvements for matching cost-
volumes to expand their receptive field and they added
support for multi-dimensional similarities.

Recently, several recurrent approaches were pro-
posed where the flow is iteratively refined similar to
the optimization-based approaches. An initial flow
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Figure 2: An illustration for how we train our proposed normalized convolution upsampler (NCUP) with coarse-to-fine and
recurrent optical flow networks. In coarse-to-fine CNNs, e.g. . PWCNet (Sun et al., 2018) in (a), the flow is estimated at
different levels of a pyramid of features. However, pyramid levels with full and half the resolution are not utilized as it is not
feasible to fit them in GPU memory. We upsample the flow to the full-resolution during training using our proposed approach
leading to refined flow predictions. In recurrent CNNSs, e.g. . RAFT (Teed and Deng, 2020) in (b), the full-resolution flow
needs to be available after each iteration. We replace the convex combination upsampler in RAFT, with our more compact
upsampler NCUP and we achieve state-of-the-art results using fewer parameters.

prediction is produced at the first iteration and it is re-
fined for a number of iterations. IRR (Hur and Roth,
2019) proposed to use either FlowNetS (Fischer et al.,
2015) or PWCNet (Sun et al., 2018) as a recurrent
unit that iteratively estimates the residual flow from
the previous iteration. However, the number of iter-
ations was limited either by the size of the network
in FlowNet, or the number of pyramid levels in PWC-
Net. RAFT (Teed and Deng, 2020) introduced a light-
weight recurrent unit that is coupled with a GRU cell
(Cho et al., 2014) as an update operator. This cell al-
lowed performing more iterations and led to refined
flow predictions at a relatively lower computations.

Joint Image Upsampling. The notion of joint
(guided) image upsampling is to use a guidance im-
age to steer the upsampling of another target image,
where both the guidance and the target images could
be from the same or different modalities. Several
classical approaches were proposed that are based on
variations of the bilateral filtering (Yang et al., 2007;
?). Li et al. (Li et al., 2019) proposed a CNN-based
architecture for joint image filtering that can be ap-
plied to joint upsampling. They employed two sub-
networks for target and guidance features extraction
followed by a fusion block. Wu et al. (Wu et al.,
2018) proposed a trainable guided filtering network
that was applied to clone the behavior of several vi-
sion tasks. Su et al. (Su et al., 2019) proposed pixel-
adaptive convolutions that modifies the convolution
filter with a spatially varying kernel. Wannenwetsch
et al. (Wannenwetsch and Roth, 2020) extended the
pixel-adaptive convolutions to incorporate pixel-wise
confidences.
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Optical Flow Upsampling. For coarse-to-fine net-
works, FlowNet (Fischer et al., 2015) suggested the
use of an iterative variational approach (Brox and
Malik, 2010) to produce the full-resolution flow dur-
ing test time. However, this approach is computa-
tionally expensive and is not possible to train jointly
with the network. For recurrent networks, the full-
resolution flow is required during the training at the
end of each iteration. IRR (Hur and Roth, 2019) at-
tempted a residual upsampling block, but found to be
futile with optical flow and they used the bilinear in-
terpolation. RAFT (Teed and Deng, 2020) produces
the flow in 1/8 of the full-resolution and employed a
convex combination upsampler to construct the full-
resolution. However, their upsampler has a limited
receptive field and has a large number of parameters.

For coarse-to-fine networks, we look into employ-
ing differentiable joint upsampling approaches to up-
sample the flow during training. Moreover, we pro-
pose a joint upsampling approach (NCUP) that maps
the upsampling task to a sparsity densificiation prob-
lem and employ the efficient normalized convolu-
tional neural networks (Eldesokey et al., 2018; Eldes-
okey et al., 2019) to solve it. Experiments show that
our upsampler performs better than other approaches
in comparison on optical flow upsampling. Different
to other joint upsampling approaches, our upsampler
estimates the guidance on the low-resolution data in-
stead of the full-resolution ones, which leads to fewer
computations and memory requirements compared to
other approaches.

For recurrent networks, i.e. . RAFT (Teed and
Deng, 2020), we replace the convex module with our
proposed upsampler, which performs the upsampling
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at multi-scales and has 5 times fewer parameters. This
modification leads to state-of-the-art results on Sintel
(Butler et al., 2012) dataset with ~ 6% error reduc-
tion, similar performance on the KITTI (Menze et al.,
2018) dataset, while using 7.5% fewer parameters. Fi-
nally, our approach shows better generalization capa-
bilities when trained on FlyingThings (Mayer et al.,
2016) and tested on Sintel and the KITTI datasets.

3 APPROACH

In joint image upsampling task, it is desired to train
a network 6 to upsample a low-resolution input Iy g
to a high-resolution output Igr, guided by some high-
resolution guidance data gpr; 0 : Itr — Inr|gur. The
guidance data is typically the RGB image, but can be
of any modality or even intermediate feature repre-
sentations from a CNN. In this section, we briefly de-
scribe the normalized convolutional neural networks
(Eldesokey et al., 2018) followed by our proposed
Normalized Convolution Upsampler (NCUP).

3.1 Normalized Convolutional Neural
Networks

Eldesokey er al. (Eldesokey et al., 2018; ?) proposed
the normalized convolution layer, which is a sparsity-
aware convolution operator that was used to interpo-
late a sparse depth map on an irregular grid. More for-
mally, they learn an interpolation function 6 : Tyg —
Inr |T(Thr ), where TR is a sparse high-resolution in-
put with missing pixels, and t() is a thresholding
operator that produces ones at pixels where data is
present and zeros otherwise. They recently proposed
to replace the thresholding operator T with a CNN &
that predicts pixel-wise weights from the sparse in-
put 8: Tyr — Inr \CID(THR) in a self-supervised manner
(Eldesokey et al., 2020). The high-resolution output
Iyr is predicted by a cascade of L normalized convo-
lution layers, where the output for layer / € {1...L},
is calculated as:

Il (X) _ ZmERZ I£17121 (X — m) W171 (X — m) al (m)
e Ymerz W (x—m) al(m)

)

(D
where x,m are the spatial coordinates of the image,
I%R =Tur, W' = CID(iHR), and a’ is the interpolation
kernel at layer /. The weights are propagated between
layers as:

w (X) _ Lmer? w! (X - m) al (m) )
Ymer? al (m) ’
At the final layer L, the high-resolution output is pro-
duced Iggr = IﬁR.

3.2 Formulating Upsampling as a
Sparse Problem

Typically, the standard interpolation operations, e.g.
. bilinear, bicubic, employ backward mapping to en-
sure that each pixel in the output is assigned a value.
Contrarily, if forward mapping is used, a sparse grid is
formed in the output. Fortunately, normalized convo-
lution layers were demonstrated to perform well with
irregular sparse grids, e.g. . depth completion, sparse
optical flow, and, consequently, can be used to inter-
polate regular sparse grids.

Given a low-resolution input image I r, a high-
resolution sparse grid iHR can be constructed using
forward mapping. The forward mapping from the
low-resolution grid coordinates (x’,y’) to the high-
resolution grid (x,y) for a scaling factor s can be real-
ized as:

(x,y) = (round(s-x"),round(s-y")) ¥V (x',y')  (3)

Note that the high-resolution grid is regular when s €
N.

The initial pixel-wise weights w° required for
the normalized convolution network can be estimated
using a weights estimation network & similar to
(Eldesokey et al., 2020). But different from (EI-
desokey et al., 2020) and other existing joint up-
sampling approaches, we estimate the pixel-wise
weights from the low-resolution guidance image, not
the high-resolution one. Predicting weights for the
low-resolution image requires less computations and
memory requirements making the weights estima-
tion network much smaller and shallower, and there-
fore, leading to a more efficient upsampling. For in-
stance, the entire upsampling network that we use
with coarse-to-fine optical flow networks, e.g.
FlowNet and PWCNet, has only 2k parameters (see
Figure 3 where ch1=16 and ch2=8), while being able
to outperform other approaches with at least one order
of magnitude more parameters.

Another difference from (Eldesokey et al., 2020)
is that we employ other modalities, e.g. . RGB in-
put image, intermediate CNN features, as guidance
for the weights estimation network similar to the ex-
isting joint upsampling approaches (Li et al., 2019;
Su et al., 2019); ®([ILr,gLr]). This allows exploit-
ing other modalities to adapt the weights based on the
context. The output from the weights estimation net-
work is also transformed to the high-resolution grid
using the forward mapping.

Essentially, we train an upsampling network 6 :
Ik — Igr|®([ILr,g1r]), where the sparse high-
resolution grid Tyg is an intermediate stage gener-
ated by applying forward mapping to the the low-
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Figure 3: An illustration of our proposed joint upsampling approach (NCUP). First, a sparse high-resolution grid is constructed
from the low-resolution image using forward mapping. Pixel-wise weights for the low-resolution image are produced by a
weights estimation network the (green block) which takes the low-resolution image and other auxiliary data as input. The
weights are mapped to the high-resolution grid in a similar fashion using forward mapping. Next, an interpolation network
that encompasses a cascade of normalized convolution layers (the orange block) receives the high-resolution grid as well as
the weights and produce the high-resolution image. Note that the notation ch () denotes number of channels.

resolution input. The pixel-wise weights are pre-
dicted using a CNN from the low-resolution input
and any other guidance data. The weights are sim-
ilarly mapped to the high-resolution grid using for-
ward mapping. Finally, a cascade of normalized con-
volution layers is applied to interpolate the missing
values in the sparse high-resolution grid. An illustra-
tion of the whole pipeline is shown in Figure 3.

3.3 Weights Estimation Network

Since the weights are estimated for the low-resolution
input, the receptive field of the weights estimation
network can be quite small. Therefore, we use two
convolution layers with a 3 x 3 filters followed by
Batch Normalization and ReLU activation. The num-
ber of channels per layer is determined based on the
guidance data that is used. When RGB images are
used, we use 16 and 8 channels for the two convolu-
tion layers, while we use 64 and 32 channels when
intermediate CNN features are used as guidance (chl
and ch?2 values in Figure 3). A last convolution layer
with a 1 x 1 filter is applied to produce the same num-
ber of channels as the low-resolution input Iy g. Fi-
nally, a Sigmoid activation is applied to produce valid
non-negative weights. Other function with a non-
negative co-domain can be used, e.g. . Softplus, but
the Sigmoid function was found to achieve the best
results. The estimated weights are transformed to the
high-resolution grid using forward mapping as well.

3.4 Interpolation Network

We build a U-Net shaped normalized convolution net-
work inspired by (Eldesokey et al., 2018). However,
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we perform downsampling only once, i.e. . we use
two scales instead of four in (Eldesokey et al., 2018),
since the sparsity in our case is significantly lower
than the LiDAR depth completion problem they were
solving. This leads to a smaller network with 224
parameters instead of 480 parameters in (Eldesokey
et al., 2018). The interpolation network receives the
high-resolution image grid Iyr and the weights grid
w® as an input. The weights are propagated and up-
dated within the interpolation network until the final
dense output Iyr is produced at the final layer.

3.5 Optical Flow Upsampling

Optical flow is represented as two channels for ver-
tical and horizontal flow field. We process the two
channels jointly within the weights estimation net-
work, i.e. . ch(l r) = 2 in Figure 3. However, for the
interpolation network, the two channels are processed
separately and then concatenated. In coarse-to-fine
optical flow estimation networks, e.g. . FlowNet (Fis-
cher et al., 2015) and PWCNet (Sun et al., 2018), the
flow is produced at quarter the resolution. We attach
the upsampling module to the optical flow estimation
network to upsample the flow from H/4 x W /4 to
HxW

Typically, the multi-scale loss is employed in
coarse-to-fine networks:

Z Op |fp _flcy}T|2 ’ “
peEP
where f? is the flow estimation at pyramid level p
in PWCNet or resolution p in FlowNet, where P =
{3,4,5,6,7}, and fZ; is the corresponding down-
sampled groundtruth. The choice of o,’s were
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Table 1: Summary of the results fpr two coarse-to-fine optical flow networks trained end-to-end with joint upsampling ap-
proaches. Relative Params. indicates the number of parameters for each upsampler. The stated results are the Average
End-Point Error (AEPE) on the FlyingChairs (Fischer et al., 2015) test set. The relative improvement is shown between
parentheses. The best results are shown in Bold and the second best in [zalics. Our upsampler NCUP outperforms all other
approaches DJIF (Li et al., 2019), PAC (Su et al., 2019), ConvComb (Teed and Deng, 2020) with PWCNet , while having the

least number of parameters.

Baseline Bilinear DIJIF PAC ConvComb NCUP
(Ours)
PWCNet (Sun 1.69 1.58 1.51 1.50 1.52 1.46
etal., 2018) (+6.5%) (+10.6%) (+11.2%) (+10.0%) (+13.6%)
FlowNetS (Fischer 2.53 2.23 2.16 2.11 2.16 2.13
etal., 2015) (+11.8%) (+14.6%) (+18.8%) (+14.6%) (+15.8%)
| Relative Params. || - [ - | 456k | +I8%k | +#4k | 42k |

empirically determined in (Fischer et al., 2015) as
{0.32,0.08,0.02,0.01,0.005}. Note that that p =
1, p =2, where not considered during training as ex-
plained earlier. We consider another level/scale in the
loss for the full-resolution flow, i.e. . we set P =
{1,3,4,5,6,7}, and following (Fischer et al., 2015),
we found empirically that the best performance is ob-
tained when oy = 0.02 for most methods. This de-
notes that the flow is upsampled by a factor of 4 from
quarter the resolution to the full-resolution. For the
recurrent network RAFT, we use their proposed loss
(Teed and Deng, 2020).

4 EXPERIMENTS

In this section, we evaluate our proposed joint upsam-
pling approach with two types of optical flow estima-
tion CNNs: coarse-to-fine and recurrent networks.

4.1 Joint Upsampling for Coarse-to-fine
Networks

We choose two of the most popular coarse-to-fine
optical flow CNNs, ie. . FlowNet (Fischer et al.,
2015) and PWCNet (Sun et al., 2018). Different joint
upsampling approaches are attached to the two net-
works and they are trained end-to-end as illustrated
in Figure 2a. The joint upsampling approaches that
we compare against are DJIF (Li et al., 2019), PAC
(Su et al., 2019), the convex combination from RAFT
(Teed and Deng, 2020) which we refer to as Con-
vComb, and the bilinear interpolation. We train only
on the FlyingChairs (Fischer et al., 2015) as its spa-
tial resolution is smaller than its counterparts allow-
ing training memory-demanding joint upsampling ap-
proaches. For instance, PWCNet trained with PAC
fully occupy a 32 GB V100 GPU when trained of
FlyingChairs with a batch size of 3. We use the of-

ficial PyTorch implementations provided by the cor-
responding authors.

Experimental Setup. We initialize FlowNetS and
PWCNet using pretrained models on the FlyingChairs
dataset, while the joint upsampling approaches are
initialized randomly. We train each network for 60
epochs with an initial learning rate of 0.0001 that is
halved at epochs {20,30,40,50,55}. Since we can
only fit a batch size of 3 for PAC on a 32GB V100
GPU, we use a batch size of 4 for all other approaches
for a fair comparison. We use data augmentation as
described in (Hur and Roth, 2019).

Quantitative Results. Table 1 summarizes the re-
sults for coarse-to-fine networks. All upsampling ap-
proaches lead to performance gains demonstrating the
advantage from making the full-resolution flow avail-
able for coarse-to-fine networks during training. On
PWCNet, our upsampler achieves the best improve-
ment over the baseline despite having at least one or-
der of magnitude lower parameters than its counter-
parts, while other approaches performs comparably
well. On FlowNetS, our upsampler performs second
best with a small margin to PAC. We believe that the
larger model of PAC allows it to refine the poor pre-
dictions from FlowNetS slightly better than our up-
sampler.

Qualitative Results. A qualitative example for differ-
ent approaches on the FlyingChairs dataset is shown if
Figure 4. All upsampling approaches make edges and
details more sharp and defined compared to the stan-
dard PWCNet as a result of making the full-resolution
flow available during training. Nonetheless, PAC
and our upsampler tend to produce sharpest results
amongst all. However, our upsampler does a better
job preserving small objects in some situations such
as the red chair at the bottom of the scene.
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Figure 4: A qualitative example from the FlyingChairs (Fischer et al., 2015) dataset when PWCNet (Sun et al., 2018) is trained
end-to-end using different joint upsampling approaches. Our upsampler produces sharp edges and preserves fine details such
as the arm of the green chair and the small red chair at the bottom. Better viewed on a computer display.

4.2 Joint Upsampling for Recurrent
Networks

We test our proposed upsampler as a substitute for the
convex combination upsampler in the recurrent opti-
cal flow approach RAFT (Teed and Deng, 2020). The
convex upsampler which has ~ 500k parameters is re-
moved and replaced with our upsampler constituting
~ 100k parameters. We use the output from the GRU
cell, which has 128 channels as guidance data as they
suggested in addition to the low-resolution flow. For
efficiency, we upsample the flow from 1/8 to 1/4 the
full-resolution and then use our upsampler for restor-
ing the full-resolution.

Experimental Setup. We initialize the network using
the pretrained weights provided by the authors (Teed
and Deng, 2020). We use the same training hyperpa-
rameters as described in (Teed and Deng, 2020) ex-
cept for the weight decay that we set to 0.00005 and
we only train for 50k iterations. For Sintel, we do
not include FlyingThings3D and HD1k during fine-
tuning. For KITTI, we disable the batch normaliza-
tion in the weights estimation network as it leads to
better results.

Benchmark Comparison. Table 2 shows the re-
sults for Sintel and KITTI benchmarks. On the Sintel
benchmark, we outperform the standard RAFT with
a 6.3% error reduction on the challenging final pass,
while the error is slightly increased by 1.8% on the
clean pass. We believe that this performance boost on
the final pass is caused by multi-scale interpolation
scheme employed by our upsampler that can elimi-
nate large faulty regions in the predicted flow. On the

748

KITTI benchmark, we perform similarly the standard
RAFT despite having 7.5% fewer parameters.
Generalization Results. To examine the generaliza-
tion capabilities of our upsampler, we train it on Fly-
ingChairs followed by FlyingThings3D and evaluate
it on the training set of Sintel and KITTI. Table 2
shows that our upsampler outperforms the standard
RAFT on clean pass of Sintel and KITTI, while it per-
forms slightly worse on the final pass of Sintel. We
believe that the slight degradation on the final pass
is due to training the clean and the final pass of Fly-
ingThings3D together without a weighted sampling.
However, the large improvement on KITTI signifi-
cantly indicates that our upsampler posses better gen-
eralization.

Qualitative Results. Figure 5 shows some qualita-
tive results from the Sintel test set. The use of our
upsampler leads to better flow estimations compared
to the standard RAFT. The first row shows an example
where a large region of faulty flow prediction (the pur-
ple region under the dragon) produced by the standard
RAFT that is corrected when our proposed upsampler
was used. The second row shows another example
where the flow is improved at fine details such as the
hair. These results clearly demonstrates the impact of
upsampling on the quality of the flow. Qualitative ex-
amples for the KIITI dataset can be found on the on-
line benchmark: http://www.cvlibs.net/datasets/kitti/
eval_scene_flow.php?benchmark=flow .
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Table 2: Summary for quantitative results when using our upsampler NCUP with the recurrent network RAFT (Teed and
Deng, 2020). The best results are shown in Bold and the second best in Italics. Different datasets are indicated as following:
FlyingChairs (Fischer et al., 2015) — C, FlyingThings3D (Mayer et al., 2016) — T, Sintel (Butler et al., 2012) — S, KITTI-
Flow 2015 (Menze et al., 2018) — K, and HD1K (Kondermann et al., 2016) — H. Results between brackets are training
set score and hence not comparable. Note that we did not use FlyingThings3D and HD1K during finetuning for Sintel. We
outperform RAFT on the challenging final pass of Sintel and perform similarly on the test set of KITTI, while having 5 times
smaller upsampler. * Indicates that warm starts (Teed and Deng, 2020) were used.

. . Sintel (Train) KITTI (Train) Sintel (Test) KITTI
Training Dataset || Method ) .
Clean Final | AEPE  FI-All | Clean Final (Test)
PWCNet (Sun 2.55 3.93 10.35 33.7 - - -
etal., 2018)
LiteFlowNet (Hui 2.48 4.04 10.39 28.5 - - -
etal., 2018)
VCN (Yang and 2.21 3.67 8.36 25.1 - - -
Ramanan, 2019)
MaskFlowNet 2.25 3.61 - 23.1 - - -
(Zhao et al., 2020)
C+T FlowNet2 (Ilg 2.02 3.54 10.08 30.0 3.96 6.02 -

etal., 2017)
RAFT-Small (Teed 2.21 3.35 7.51 26.9 - - -
and Deng, 2020)
RAFT (Teed and 1.43 2.71 5.04 17.4 - - -
Deng, 2020)
RAFT+NCUP 141 2.75 4.83 17.4 - - -
PWCNet+ (Sun (1.71) (2.34) | (1.50) (5.30) 3.45 4.60 7.27
et al., 2019)
VCN (Yang and (1.66) (2.24) | (1.16) (4.10) 2.81 4.40 6.30
Ramanan, 2019)

C+T+S+K+H MaskFlowNet - - - 2.52 4.17 6.10
(Zhao et al., 2020)
RAFT* (Teed and ©.77) (1.27) | (0.63) (1.50) 1.61 2.86 5.10
Deng, 2020)
RAFT+NCUP* 0.71) (1.09) | (0.67) (1.68) 1.66 2.69 5.14

4.3 Ablation Study

We conduct an ablation study to justify specific de-
sign choices in our proposed approach. Experiments
are reported for PWCNet+NCUP on the FlyingChairs
(Fischer et al., 2015) test set. Table 3 summarizes
the average end-point-error scores for different exper-
iments.

Weights Estimation Network. We replace the fi-
nal activation with SoftPlus function instead of Sig-
moid to get the estimate weights in the range of [0, o[
instead of [0,1] produced by the Sigmoid function.
The network converges faster when using the SoftPlus
function, however the AEPE score is slightly worse.
We also attempt to feed the full-resolution guidance
data to the weights estimation networks similar to
other joint upsampling approaches. The kernel size

of the first two convolution layers was increased to
5 x 5 for a larger receptive field. The results are sig-
nificantly worse, which is probably because a larger
network is needed to exploit the interesting informa-
tion in the full-resolution data. Finally, we omit the
low-resolution flow from being used with guidance
data. The results shows that using the low-resolution
flow with guidance data contributes significantly to
the results.

Interpolation Network. We experiment with two
downsamplings, which indicates that the interpola-
tion is performed at three scales instead of two. The
results show that the the best results are achieved
when using only one downsampling. We also test the
standard max pooling for downsampling instead of
the confidence-based pooling proposed in (Eldesokey
et al., 2018). The results show that the confidence-
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RAFT (Teed and Deng, 2020)

Market 4, EPE all = 10.438

Wall, EPE all = 2.538

RAFT+NCUP (Ours)

‘ Market 4, EPE all = 10.268

Wall, EPE all =2.477

Figure 5: Qualitative examples from the Sintel (Butler et al., 2012) test set.

Table 3: Ablation results on the FlyingChairs (Fischer et al.,
2015) test set. The baseline is PWCNet (Sun et al., 2018)
trained with our upsampler NCUP.

| Model | AEPE |
PWCNet+NCUP (Baseline) ‘ 1.46
Weights Estimation Network
Final activation is SoftPlus 1.48
Estimate from High-Res 1.75
Low-Res not used as guidance 1.52
Interpolation Network
Two downsampling instead of one 1.49
Max instead of Conf. pooling 1.48
Loss Function
a; = 0.002 1.48
o =0.02 1.46
a;=0.2 1.46

based pooling is slightly superior to max pooling.
The Loss Function. We experiment with one order
of magnitude higher and lower factor o; in (4). The
results indicates that the choice of oy =0.02 and o} =
0.2 lead to the best results. So, we choose o; = 0.02
since it works the best for the majority of methods in
comparison, but the value of o; can be tuned further
for our approach.

4.4 What Does Our Upsampler Learn?

Figure 6 shows an example of the predicted weights
within our upsampler when used with RAFT on the
Sintel dataset in comparison to the bilinear interpo-
lation. The estimated weights essentially highlight
edges and fine details with low-weight regions sep-
arating them. The width of these regions defines to
what extent each object is extrapolated and ensures
the separability between objects. Based on the de-
sign of the interpolation network, the width of these
regions is adapted accordingly. On the other hand,
solid regions, e.g. . the girl’s face, with no texture are
assigned uniform weights acting as averaging. This
adaptive behavior shows a great potential for using
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Figure 6: An example of the predicted weights from NCUP
when used with RAFT (Teed and Deng, 2020).

Estimated Weights

our upsampling with other regression tasks, where the
weights estimation network would learn the upsam-
pling pattern that minimizes the reconstruction error.

S CONCLUSION

We introduced an efficient upsampling approach
based on the normalized convolutional networks that
we incorporated in training coarse-to-fine and recur-
rent optical flow CNNs. In coarse-to-fine networks,
e.g. . PWCNet, the full-resolution flow was pro-
duced by our upsampler during the training leading
to the fines flow estimations compared to other joint
upsampling approaches in comparison, while having
at least one order of magnitude fewer parameters.
When trained with the recurrent optical flow network
RAFT, it achieved state-of-the-art results on the Sin-
tel dataset, and achieved a similar score on the KITTI
dataset, while having 400k less parameters. Addition-
ally, our approach showed better generalization capa-
bilities compared to the standard RAFT.
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