
Towards a Theory of Models in Systems Development Modeling

Andrea Hillenbrand a

Computer Science Division, University of Applied Sciences, Darmstadt, Germany

Keywords: Modeling, Model Theory, Model-driven Development, Development Methodology, Informatics, Logics.

Abstract: Despite decades of gaining experience in the development of software systems, the controversies on competing
methodologies have not subsided. The pivotal element of reasoning and justification of any perspective taken
thereon is arguably the recourse to models. Specifically, by means of a logical conceptualization of the notion
of model-being, judgments on models can then be assessed whether they are justified, because as model
judgments they are based on typical contextual constructive relationships. With such a conceptualization the
potential lies in the realization of an epistemic architecture that emerges as a systematic structure of relations
between models at object and meta levels. Each model application is then embedded in a systematic process
during which a software system is developed. In this article, the combinatorics of model interweavements
of such an epistemic architecture is presented, thereby providing the means to assess the development of a
particular system as well as best practices and methodologies of systems development in general.

1 INTRODUCTION

The discourse on development methodologies contin-
ues unabated. Currently it seems to be dominated by
the stance towards the agile paradigm as there are en-
tire conferences dedicated to this topic (Stray et al.,
2020). Large software companies involved in innova-
tive product development usually have the operational
luxury of implementing best practices of a concep-
tual methodology in unison with agile practices, like
DevOps and its toolchain (Macarthy and Bass, 2020).
Yet, many startups adopt speed-related agile practices
exclusively, in a lean startup approach (Pantiuchina
et al., 2017). Despite purported inadequacies, how-
ever, these startups do not necessarily sacrifice qual-
ity for speed more than other startups do. Oftentimes
the model of profit margin works in favor of startups,
arguably because agility draws in capable junior soft-
ware developers whose value is not yet reflected on
their payroll. In contrast to product development, the
scope of project development also appears less risky
as there exists more experience with regard to soft-
ware system requirements and thus, speed-related ag-
ile practices are sufficient (Pantiuchina et al., 2017).
Of course, a concrete answer whether agile develop-
ers are more prone to erroneous reasoning and biased
decision-making (Mohanani et al., 2020) or the first to
realize and reverse flawed thinking when focusing in-

a https://orcid.org/0000-0002-1063-5734

cessantly on interactions, working software, and cus-
tomer wishes (Dingsyr et al., 2010) has to be given by
domain experts. Regardless, any concrete answer de-
pends on the role models play during the development
of a system, either their explicit development and con-
scious, logical usage contributing to model adequacy,
or their implicit, though through experience routinely
established usage, or their rather vague, unconscious
usage, in which case model adequacy is potentially
in jeopardy. Thus, any perspective is taken with re-
gard to the role of models in systems development.
It is claimed in this article that justified reasoning and
taking a substantiated perspective are only guaranteed
to be meaningful with recourse to models. This arti-
cle explains why decision-making during the devel-
opment of a software system should be justified along
the lines of judgments about models in respect of their
adequacy and intent—and in retrospect, decisions are
defended or corrected better in that same respect.

Be the current frontline of development method-
ologies as it may, in any case judgments on how to
develop systems need a common conceptualization of
the underlying notion of models in order to discuss,
evaluate, and compare concrete development deci-
sions as well as competing methodologies. With the
Model of Model-being (Mahr, 2009), Bernd Mahr put
a logical conceptualization forward by which model
judgments can then be assessed whether they are jus-
tified, that is, if they are based on typical contextual
constructive relationships. Sadly, he was not able to

322
Hillenbrand, A.
Towards a Theory of Models in Systems Development Modeling.
DOI: 10.5220/0010322703220329
In Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2021), pages 322-329
ISBN: 978-989-758-487-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



complete the research on the Model of Model-being
in his lifetime. In Section 3 of this article, this con-
ceptualization is revisited. The potential of the con-
ceptualization of Mahr’s Model of Model-being now
lies in the realization of the epistemic architecture of
constructive relationships which emerges as a system-
atic structure of relations between models at object
and meta levels. The epistemological question, which
remained open and is now addressed in this article,
is how these contextual constructive relationships of
the involved models can, and can only, be interwo-
ven. This clarification facilitates the discussions how
any one model application is embedded in a system-
atic process during which a software system is devel-
oped. In this article, the combinatorics of model inter-
weavements of an epistemic architecture is presented,
thereby providing the means to assess the develop-
ment of particular systems as well as best practices
and development methodologies in general.

Contributions. This article contributes:
• The logical conceptualization of systems devel-

opment modeling based on the Model of Model-
being is completed through the epistemic archi-
tecture of the constructive relationships between
models at object and meta levels.

• This epistemic architecture is clarified by means
of discussing the combinatorics of interweave-
ments with abstract logical means, including the
composition and superimposition of models, and
the application of meta models.

• This facilitates a methodological conceptualiza-
tion of systems development modeling as a sys-
tematic process of creating, applying, and inter-
weaving models, thereby forming a methodologi-
cal basis of the best practices and methodologies
of systems development in general.

Outline. Section 2 recognizes related work. Sec-
tion 3 revisits Mahr’s Model of Model-being as a log-
ical conceptualization of the notion of model-being.
Based on this, the combinatorics of model inter-
weavements is presented in Section 4, completing the
conceptualization of systems development modeling.
Section 5 concludes this article.

2 RELATED WORK

Bernd Mahr’s late work focused on the notion of
judgments (Mahr, 2010b), the Model of Model-
being (Mahr, 2009; Mahr, 2015; Mahr, 2010c), and
a model of conception (Mahr, 2010a). An issue

of a journal was dedicated to the Model of Model-
being (Mahr, 2015) including many critiques as well
as responses. The complete works of Mahr are in the
process of being published (Robering, 2020).

On the subject of conceptual modeling in com-
puter science Thalheim has published prominently,
for instance in (Thalheim, 2013; Thalheim, 2010;
Thalheim, 2011). The semantics of models is dis-
cussed in (Kralemann and Lattmann, 2013), among
many other noteworthy works left out here for the
sake of brevity. The notion of design rationale in
software engineering is investigated in (Burge et al.,
2008), which instantiates the presented conceptual-
ization consistently as a methodological basis of sys-
tems development. In (Boronat et al., 2009), semanti-
cally well-founded notions of a multi-modeling lan-
guage and of semantic correctness of model trans-
formations are proposed, to which the presented sys-
tematic process how model are embedded during the
systems development fits in. In (Pastor and Ruiz,
2018), the sound software production process based
on conceptual modeling is detailed going from the ini-
tial requirements model to the final application code
through a well-defined set of conceptual models and
transformations between them, with which the fol-
lowing discussion is consistent.

3 MODEL OF MODEL-BEING

Teaching computer science relies on the use of mod-
els. Generally speaking, models serve as conveyors
of knowledge shared by those who take an interest in
the facts of the matter being conveyed. It is argued
here that models appear constitutive as they form the
methodological basis of a science. But how do mod-
els do this? It turns out that what justifies perceiving
something as a model provides an insightful answer,
because a model judgment to be justified through log-
ical reasoning allows that models are being consulted
as conveyors of knowledge. In the tradition of philos-
ophy, the the act of a model judgment is determined
by that which in a model judgment is being modeled,
the intentionality. It addresses the age-old question of
the relationship between the outside world and the hu-
man perception of it. Although it seems far-fetched,
intentionality is of crucial importance to modeling,
because any scientific statement can only be under-
stood as qualified networks of judgments about mod-
els in respect of their adequacy and intent (Mahr,
2009, p. 366). Mahr’s Model of Model-being sheds
light on what the judgment of model-being implies,
thereby equipping us with the understanding of what
it is that we do in systems development modeling.

Towards a Theory of Models in Systems Development Modeling

323



In this section, the role of models in systems de-
velopment is introduced in 3.1, followed by the dis-
cussion of the judgment of model-being in 3.2, and
concluding with the logic of models in 3.3.

3.1 Model-driven Systems Development

In the tradition of systems development, models ap-
pear constitutive in particular as they provide the
means to assert statements of possibility in theory and
in practice, for instance, when prototypes are being
developed as a proof of concept. This, broadly speak-
ing, corresponds to the notion of validity in model the-
ory, where certain propositions are considered valid
with regard to certain models. It seems that for any
kind of development, any constructive act toward a re-
alizing a goal, we need models to put our thoughts in
order and to reason in a certain direction. What this
reasoning entails is going to be discussed in 3.3. In
any case, the direction is naturally given through the
intent when developing something, as this connects
the factuality of the past experiences and the possibil-
ity of a future reality, both becoming accessible in the
present through models.

In the context of systems development, any seri-
ous activity is directed toward providing an answer to
the leading question: Does the system S comply with
the requirements for its application? (Mahr, 2009,
ibid.) An answer that addresses the future reality of
the system application fulfilling the requirements can
only be given using models, because models incor-
porate adequacy and intent referred to by the leading
question in systems development. For the activities
during the systems development, aimed at fulfilling
the requirements for its application, the future system
is accessible as a model only. In other words, the key
characteristic in the development of a system is that
the requirements to be complied with can only be for-
mulated in respect of models anticipating the scenar-
ios of the prospective system application. Even when
a system has been put into operation, the models still
remain models in respect of the system requirements.
As such, many models live on, so to speak, and form
the methodological basis of a science.

For complex systems to be developed, the process
of creating models in respect of fulfilling the system
requirements is oftentimes inaccurate. The crux lies
with a dilemma: Concluding from a necessarily finite
system description and from a necessarily finite num-
ber of application tests to a potentially infinite future
system behavior is an uncertain inductive conclusion.
Furthermore, the context of the future system applica-
tion is oftentimes unknown. Not to put too fine a point
on it, the problem can be aggravated through biased

or self-serving decision-making or questionable ex-
perience of the developers. Yet, inductive reasoning,
through its generalizing conclusion from premises of
particular incidents, has enormous potential and is
constitutive in the creation and application of models,
but it also has a potential to introduce errors as its con-
clusion cannot be formalized within a language rich
enough for the purposes at issue here—a dilemma
system developers should be aware of.

3.2 The Judgment of Model-being

A model judgment is indivisible, i.e., a subject de-
cides whether to perceive of an object as a model,
or conceive of it as a model consistent with Mahr’s
terminology (Mahr, 2010a). This judgment depends
on a subject’s conception of the object in a certain
context. Thus, Mahr distinguishes in the Model of
Model-being between the purely mental model µ and
the model object M by which µ is represented (rf. to
Figure 1). Now, the identity of an object as a model
depends on two constructive relationships, depicted
in Figure 1 horizontally, into which the model object
enters according to the conception of the judging sub-
ject: First, a model object is created via a constructive
act of production, selection, role assignment, abstrac-
tion, or mapping, on the basis of an initial object, for
instance, a prototype, a set of requirements, or some-
thing that is observed (Mahr, 2009, pp. 377/8). This
constructive act can be thought of or actually per-
formed, also through an act of speech when a role of
an object is assigned. Once the model object has been
created, the second constructive act of a model judg-
ment is the application of the model. As depicted in
Figure 1 from left to right, in the act of model creation
from an initial object A, the model object M is the re-
sulting object, whereas in the act of model application
to a resulting object B, the model object M is the ini-
tial object. Hence, a model µ can be viewed as both a
model of something and for something. This dual role
of M justifies viewing it as a model µ, the perspective
of which is highlighted in red in Figure 1.

Through the application of the model, certain
qualities are transferred with which M is loaded in
its model capacity, so to speak. The cargo χ of the
model, which was worked into M, can be unloaded
through the model application, in Figure 1 highlighted
in blue. The identity of χ depends on M as well as
it depends on µ (Mahr, 2009, p. 378). The judging
subject has decided for M that it carries the cargo χ

adequately when serving as a model. Hence, one can
distinguish two modeling perspectives, the perspec-
tive of model creation µ and the perspective of model
application χ. Note that even when a model has not

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

324



cargo

model

carries

is

from to

forof

Figure 1: The logical structure of the constructive acts of
the model judgment: Deduction Φ, transformation, and in-
duction Ψ; adapted from (Mahr, 2009, pp. 383).

yet been applied, it can still be a model, because it has
been created with a certain model capacity intended to
be used in order to transfer certain qualities. This is
the case, because M has been created from the per-
spective of µ as a model of and for something. How-
ever, if it is logically impossible for an object M to be
applied, for instance, in case of contradictions, then it
cannot be judged a model in this conceptualization.

3.3 The Logic of Models

The two constructive acts in the judgment of model-
being can be characterized as follows. Both construc-
tive relationships, A−M and M−B, are similar in the
sense that whatever influence is exerted on a resulting
object, here M and B, must be identifiable in an ob-
servation on the initial objects, here A and M. In this
subsection, M and B are abbreviated by Y , and A and
M by X . Φ(X) refers to a set of valid assertions ob-
servable on X . Accordingly, whatever has emanated
from X exerting an influence on Y must be identifi-
able in an observation on Y , henceforth called Ψ(Y ).
The model object M has the role of a mediator be-
tween the two constructive relationships. The set of
valid assertions Φ(X) emerges from the initial object
X through an observation on X , the relationship of
which is denoted by X −Φ(X). The set of valid asser-
tions Ψ(Y ) emerges from Φ(X) through a transforma-
tion, denoted by Φ(X)−Ψ(Y ). Ψ(Y ) can be under-
stood as requirements directed towards the resulting
object Y , which emerges through a realization of the
requirements Ψ(Y ) in Y , denoted by Ψ(Y )−Y . In
Figure 1, the complete sequence of the two construc-
tive acts of model creation and application, A−M and
M−B, are instantiated as follows.

These constructive relationships, according to
which a resulting object emerges from an initial
object, can be described further by using abstract
logic (Beziau, 2005). A logical theory is a set of
propositions in a formal language that is closed un-
der the consequence relation. If the objects X and Y
are replaced by their theories Th(X) and Th(Y ), i.e.,
by the sets of propositions valid in X and Y , resp.,
then Φ(X) ⊆ Th(X), and Ψ(Y ) ⊆ Th(Y ). Thus, the

object X and its theory Th(X) correlate in the sense
that within the scope of the logical language, noth-
ing else can be known about X than what is already
entailed in Th(X). The same holds true for Y and
Th(Y ). Hence, every observation in Φ(X) is a con-
sequence of Th(X) and valid in X , and every require-
ment in Ψ(Y ) is a consequence of Th(Y ) and valid
in Y . Therefore, an interpretation of the relationship
X − Φ(X), in Figure 1 occurring as A−Φ(A) and
M−Φ(M), can be identified as a logical deduction.
Analogously, the realization Ψ(Y )−Y , in Figure 1
occurring as Ψ(M)−M and Ψ(B)−B, is identifiable
as a logical induction. Hence, the logical structure
of the relationships between A−M and M−B, created
through two constructive acts, can be viewed as a se-
quence of an act of deduction comprehended as an
observation, a transformation, and an act of induction
comprehended as a realization, for each constructive
act. This is what is called the logic of models in this
context (rf. to (Mahr, 2009, pp. 380-385) for an ex-
tensive discussion).

By this notion of a logic of models, a double se-
quence of two constructive acts is inherent in the pro-
cess of modeling. Obviously, this is a powerful con-
cept, because an intermediate constructive act of a
model creation facilitates the exploration of possibil-
ities, the conception of scenarios of future applica-
tions, and the demonstration of a possible solution to
be implemented. Earlier in this section, it is referred
to this as activities during the systems development
aimed at fulfilling the requirements for its applica-
tion where the future system is accessible as a model
only. An intermediate constructive act of a model cre-
ation also makes decisions in the development process
comprehensible, the outcomes of which predictable
and defendable as decisions are based on judgments
about models in respect of their adequacy and intent.
In this sense, Mahr’s Model of Model-being, as a gen-
eral model, serves as a condition of correctness justi-
fying a model judgment. (Mahr, 2009, p. 385). This
can be extended to justify decision-making in the de-
velopment process, where decisions, that are based on
justified model judgments, are themselves justified,
which is currently being researched by the author.

In order to motivate the following Section 4,
imagine that there is a shortcut possible from ob-
servations on A, that is from Φ(A), to requirements
on B, that is to Ψ(B). A shortcut seems feasi-
ble if B is realized from A in one constructive act,
but all the complexity usually carried by a model
cargo would have to be worked into the transforma-
tion from Φ(A) to Ψ(B). Though not impossible,
it seems much more plausible that models would be
present implicitly facilitating this transformation so

Towards a Theory of Models in Systems Development Modeling

325



that the complexity of Φ(A)−Ψ(B) is manageable.
Then, this transformation step would integrate a trans-
formation model in the development process, i.e.,
Φ(A)−Ψ(M)−M−Φ(M)−Ψ(B). Thereby, it would
be reconstructed what modeling is about: It makes the
reflective and anticipating activities more manageable
and provides the possibility to formulate the observa-
tions and requirements in a common language. The
implicit modeling would be made explicit. The ex-
plicitness of the model judgment allows an indepen-
dent consultancy of the model from the perspective of
χ thereby facilitating a validation of the model judg-
ment in terms of its condition of correctness. Now,
imagine further, that models are being created and
applied at different levels of abstraction. Modeling
at different levels of granularity, thereby creating a
structure of constructive relationships, seems not fea-
sible but rather prone to errors. While implicit rou-
tine modeling may be conceivable with regard to the
usual canon of models, which is commonly taught in
computer science, however, a discussion of the com-
binatorics of the model interrelationships sheds light
on what happens at different levels of abstraction in
case that it is not routine.

4 INFORMATICS OF MODELS

In order to fully understand how models are used
in systems development, the combinatorics of what
Mahr hinted at by the interweavements of model in-
terrelationships is discussed in this section. As ex-
plained, models appear constitutive as they form the
methodological basis of a science. Based on this, the
informatics of models can be viewed as the method-
ological practice of interweaving canonical models as
used in the development of software systems. Hav-
ing realized what a judgment of model-being implies,
the potential of the informatics of models now lies in
a realization of the epistemic architecture of the con-
structive relationships which emerges as a systematic
interweavement of relations to other models at object
and meta levels (Mahr, 2009, p. 397). The applica-
tion of one model is then embedded in a systematic
process of applying a range of models on all levels
during the systems development.

The interweavement of model interrelationships
can come about in three ways, that is the composition
and superimposition of models, and the application
of meta models. An analysis of the combinatorics of
model interweavements is presented here for the first
time. The influences of the combinatorics of model
interweavements on decision-making is currently be-
ing researched by the author. In the following, the

three possibilities of interweavements of model inter-
relationships are discussed, the composition of mod-
els in 4.1, the superimposition of models in 4.2, and
the application of meta models in 4.3.

4.1 The Composition of Models

The composition of models represents the linear de-
velopment and can be distinguished into two cases
depending on whether the constructive relationships
of the involved models overlap or not. In the latter
case, the resulting object of a model application is, in
turn, the initial object of a model creation, which is
depicted as Case 1 of Figure 2. This combination is
referred to here as complete model composition and
can be viewed as generic development process. If the
system to be developed is particularly complex, then
many consecutive steps of this process may be nec-
essary to finally implement a system in its production
setting. Some of steps can be intermediate models
serving as auxiliary models. In an evaluation pro-
cess, an auxiliary model could represent the changes
to be made in order to improve the preceding model in
this development. One example of such a normative-
actual comparison in software engineering is the sys-
tem analysis.

In Case 2 of Figure 2, the application of one model
and creation of a subsequent model overlap, which
is possible because their constructive acts match in
terms of their deduction, transformation, and induc-
tion. Note that the result of a model application is
again a model. The transformation Φ(Mi)−Ψ(Mi+1)
here is a process converting observations of one
model object to requirements of another model object.
Precisely, it transforms the set of assertions Φ(Mi)
valid in Mi to the set of assertions Ψ(Mi+1) valid
in Mi+1. In a transformation, the expressiveness of
Ψ(Mi+1) remains the same or becomes more or less
expressive, consistent with the claim of universality
of the Model of Model-being. Note that neither set is
required to be closed under the consequence relation
since this is not required of Φ or Ψ in general. The
case is canonical when Mi+1 is a better model (bet-
ter in respect of the conception µi+1) compared to Mi,
but despite the transformation Mi is still recognized as
predecessor of Mi+1.

The overlapping model composition can come
about by two motivations: First, the application of
Mi is intended to be used in the constructive process
of creating another model Mi+1. Here, applying Mi
facilitates creating Mi+1. The observations made on
the preceding model object are the observations on
the initial object of a model creation. The preceding
model’s cargo allows such usage or even intended the

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

326



Case 1:

Case 2: Model Development

Generic Development

Figure 2: Complete and Overlapping Model Composition: Generic Development and Model Development.

usage of applying the model to result in a succeed-
ing model. Another motivation could be that Mi+1 is
an improvement on Mi, where Mi is the precursor of
Mi+1. Epistemically, though, this can both be viewed
as model development. The ambivalence to view Mi
as a facilitator for and a precursor of Mi+1 also ap-
plies to the complete model composition, where the
applicate Bi is the initial object in the creation of a
subsequent model object Mi+1.

For instance, Case 2 allows these interpretations:
Recursion as such could be viewed as model devel-
opment, where Mi+1 is the model that emerges from
one step of a recursive application process prescribed
in Mi. This recursive application process continues
until the last model Mt is reached when the termina-
tion condition applies and the recursion ends with the
applicate Bt , the result of a recursively applied func-
tion defined in M1. A second, degenerated form of
modeling would be stagnation, where the transforma-
tion of Φ(Mi)−Ψ(Mi+1) is an isomorphism so that
Mi would equal Mi+1 in so far that no cargo would be
gained except for a potential renaming.

4.2 The Superimposition of Models

Two cases of the superimposition of constructive rela-
tionships can be distinguished depending on how the
constructive relationships overlap. In Case 1 of Fig-
ure 3, a model object is the resulting object of two (or
more) model creations. This can happen during a con-
structive act when an integration process takes place

Case 1: Superimposed Creation Case 2: Superimposed
Application

Figure 3: Model Creation and Application Superimposition.

of different observations, Φ(A1) on A1 and Φ(A2) on
A2. Instead of being transformed to different sets
of requirements for different models, they are trans-
formed to the set of valid assertions Ψ(M) which shall
be observable of M, i.e., to the requirements Ψ(M) for
the integrated model object M. This transformation
has to be consistent, which means that contradictory
requirements have to be resolved during the transfor-
mation so that the set of valid assertions Ψ(M) can be
realized into M. Accordingly, the modeling perspec-
tives µi and χi both change to be model and cargo of
an integrated M, implying integrated model perspec-
tive µ and integrated cargo χ.

Integration can also occur as a superimposed ap-
plication, as depicted in Case 2 of Figure 3, when
an applicate B is the resulting object of two (or
more) model applications. In this case, the integra-
tion comes about as transformation when two differ-
ent sets of observations Φ(M1) and Φ(M2) are trans-
formed to that which shall be observable of B, the
integrated requirements Ψ(B). This transformation
has to be consistent as well, which means that con-
tradictory observations on the model objects Φ(M1)
and Φ(M2) have to be resolved during or after the
transformation so that the set of transformed and inte-
grated valid assertions Ψ(B) can be realized into B. If
the models M1 and M2 are already mutually consistent
submodels of M, then the integration M is straightfor-
ward and has probably been anticipated. Therefore,
the two forms of model superimposition are both in-
terpretable as integration processes.

4.3 The Application of Meta Models

A meta model is a model whose resulting object of
its application is an element of at least one of the
two constructive relationships. This can occur in two
forms depending on whether the resulting object of a
meta model application is an object of the construc-
tive relationships (Case 1 of Figure 4) or whether it is
used during a transition from one object to the subse-
quent object (Case 2). Case 1 appears constitutive in

Towards a Theory of Models in Systems Development Modeling

327



Constitutive Meta Models

Constructive Meta Models

Transformation

Deduction Induction

Transformation

Deduction Induction

Creation Application

Case 1:

Case 2:

Figure 4: Applications of Meta Models.

nature, i.e., this kind of meta model is necessarily ap-
plied during modeling. Two subcases of Case 1 can
be distinguished: First, as such, model creation and
application themselves are constitutive meta models
for the construction of models, because their appli-
cations result in the final objects of the constructive
relationships M and B. Second, the meta models rep-
resenting notions of deductive and inductive reason-
ing as well as a notion of transformation make the
creation and application of models possible, in which
they appear as meta models. Here, the resulting ob-
ject of the application of this constitutive meta model
coincides with an object of the model construction in
three ways: (1.) It coincides with the result Φ(A) of
the observation on A or the result Φ(M) of the obser-
vation on M both via deductions unloading the car-
goes χ1 and χ4, resp. (2.) It coincides with the result
of the realization M of the requirements Ψ(M) or the
result of the realization B of the requirements Ψ(B)
via inductions (χ3 and χ6), or (3.) with the results of
the transformations into Ψ(M) or Ψ(B) (χ2 and χ5).

As depicted in Case 2 of Figure 4, meta mod-
els are used during a transition from one object to
the subsequent object of the constructive relation-
ships. These meta model applications are construc-
tive in nature, i.e., applying these meta models con-
tributes their cargoes during the application of consti-
tutive meta models as explained above. The model of
reference (highlighted in gray in Figure 4) then gains
the weights of the cargoes χi in the respective parts of
the constructive relationships. For instance, the cargo
of the meta model χ1 is contributed during the deduc-

tive reasoning observing A and leading to Φ(A) while
deducing assertions valid in A. In general, the result-
ing objects of the applications of constructive meta
models coincide with the observation A−Φ(A) on A
or the observation M −Φ(M) on M, the transforma-
tions Φ(A)−Ψ(M) or Φ(M)−Ψ(B), or the realiza-
tion Ψ(M)− M of the model object M or the real-
ization Ψ(B)−B of the applicate B. Consequently,
in the creation and application of the model of refer-
ence, multiple meta models can be applied and thus
contribute to the cargo χ of the model of reference.

5 CONCLUSION

Decision-making during the development of a soft-
ware system can only be justified along the lines of
judgments about models. The pivotal element of rea-
soning and justification of all perspectives taken is al-
ways their recourse to models, because models incor-
porate adequacy and intent through the typical con-
textual constructive relationships. With the presented
conceptualization all aspects of systems development
can be discussed in a common language and with the
same underlying notion of models. Systems devel-
opment can then be assessed by the way models are
created, applied, and interwoven, and whether these
model judgments are justified.

Taking up the discussion in the introduction on the
usage of agile practices, the justification of which can
be assessed based on the adequacy and intent of the
involved models, whose detailed analysis is beyond
the scope of this article. However, consider some
other examples when model judgments are not jus-
tified due to lacking model adequacy: First published
in 1975, Brooks et al. had already recognized that de-
cision biases are quite common in software engineer-
ing (Brooks, 1975). They proved that initial inquiries
are often based on inadequate information and that
requirements emerge when prototypes are already de-
veloped, a classical case of disregarding the construc-
tive relationships of modeling. Cross et al. coined the
notion of the solution-first bias stating the tendency of
designers to prematurely decide on a prototypical so-
lution, before having fully grasped the problem, and
to use this premature solution to explore the problem
further (Cross, 2001). What he calls fixation in design
fits into Nobel laureate Kahneman’s notion of cogni-
tive ease, the reason for the manifold biases in human
decision-making (Kahneman and Tversky, 2000).

In the context of systems development, any seri-
ous activity is directed toward creating a system that
complies with the requirements for its application.
The future reality of a system application can only

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

328



be addressed using models, because models incorpo-
rate adequacy and intent referred to by the compliance
of the requirements for the application of the system.
Such a conceptualization has been introduced in this
article. The above discussions constitute the potential
of the informatics of models realizing the epistemic
architecture of the constructive relationships which
emerges as a systematic structure of relations between
models at object and meta levels. The application of
one model is then embedded in a systematic process
of applying a range of models on various abstraction
levels during the systems development. Then sys-
tems development modeling form a methodological
basis and practice in respect of all abstraction levels
throughout the informatics of models. Models, that
have become canonical in this process, serve as con-
veyors of knowledge and systematize it into different
levels of abstraction. With such a general method-
ological conceptualization based on the same under-
lying notion of a model a wide variety of topics can
be discussed related to systems development, such as
its best practices, business process modeling, the in-
tegration of multiple views in management systems,
adequate or biased decision-making, or the conceptu-
alization of fairness in machine learning.

ACKNOWLEDGEMENTS

This work has been funded by the German
Research Foundation/Deutsche Forschungsgemein-
schaft (DFG) – grant 385808805.

The author would like to thank Klaus Robering for
constructive criticism of the manuscript.

REFERENCES

Beziau, J.-Y. (2005). From Consequence Operator to Uni-
versal Logic: A Survey of General Abstract Logic. In
Logica Universalis. Birkhäuser, Basel.

Boronat, A., Knapp, A., Meseguer, J., and Wirsing, M.
(2009). What Is a Multi-modeling Language? In
Proc. WADT’16, volume 10644 of LNTCS, pages 71–
87. Springer, Berlin.

Brooks, F. (1975). The Mythical Man-Month: Essays on
Software Engin. Addison-Wesley, Boston.

Burge, J. E., Carroll, J. M., McCall, R., and Mistrik,
I. (2008). Rationale-Based Software Engineering.
Springer, Berlin.

Cross, N. (2001). Design Cognition: Results from Protocol
and other Empirical Studies of Design Activity. In De-
sign Knowing and Learning, pages 79–103. Elsevier,
Oxford.

Dingsyr, T., Dyb, T., and Moe, N. B. (2010). Agile Soft-
ware Development: Current Research and Future Di-
rections. Springer, Berlin.

Kahneman, D. and Tversky, A. (2000). Choices, Values,
and Frames. Cambridge University Press.

Kralemann, B. and Lattmann, C. (2013). The Semantics of
Models: A Semiotic Philosophy of Science Approach.
In Proc. SDKB’13, volume 4925 of LNCS, pages 50–
69. Springer, Berlin.

Macarthy, R. W. and Bass, J. M. (2020). An Empirical Tax-
onomy of DevOps in Practice. In Proc. Euromicro
SEAA’20, pages 221–228.

Mahr, B. (2009). Information Science and the Logic of
Models. J. SoSyM, 8(3):365–383.

Mahr, B. (2010a). Intentionality and Modeling of Concep-
tion, pages 61–87. Logos Verlag, Berlin.

Mahr, B. (2010b). On Judgements and Propositions. ECE-
ASST, volume 26.

Mahr, B. (2010c). Position Statement: Models in Software
and Systems Developm. ECEASST, 30.

Mahr, B. (2015). Modelle und ihre Befragbarkeit. Grundla-
gen einer allgemeinen Modelltheorie. Erwägen Wis-
sen Ethik, volume 26.

Mohanani, R., Salman, I., Turhan, B., Rodrı́guez, P., and
Ralph, P. (2020). Cognitive Biases in Software Engi-
neering: A Systematic Mapping Study. J. TSE (IEEE),
46(12):1318–1339.

Pantiuchina, J., Mondini, M., Khanna, D., Wang, X., and
Abrahamsson, P. (2017). Are Software Startups Ap-
plying Agile Practices? In Proc. XP’17, volume 283
of LNBIP, pages 167–183. Springer.

Pastor, O. and Ruiz, M. (2018). From Requirements to
Code: A Conceptual Model-based Approach for Au-
tomating the Software Production Process. EMISAJ,
13(Special):274–280.

Robering, K., editor (2020). Schriften zur Modellforschung.
To be published.

Stray, V., Hoda, R., Paasivaara, M., and Kruchten, P., editors
(2020). Proc. XP’20, volume 383 of LNBIP. Springer,
Berlin.

Thalheim, B. (2010). Towards a theory of conceptual mod-
elling. J. UCS, 16(20):3102–3137.

Thalheim, B. (2011). The Theory of Conceptual Models,
the Theory of Conceptual Modelling and Foundations
of Conceptual Modelling, pages 543–577. Springer,
Berlin.

Thalheim, B. (2013). The Conception of the Model. In
Proc. BIS’13, volume 157 of LNBIP, pages 113–124.
Springer, Berlin.

Towards a Theory of Models in Systems Development Modeling

329


