VisNLP: A Visual-based Educational Support Platform for Learning
Statistical NLP Analytics

Amorn Chokchaisiripakdee and Chun-Kit Ngan
Data Science Program, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, U.S.A.

Keywords:

Abstract:

Statistical-based NLP Learning, Educational Support, Data Visualization.

We develop and implement a web-based, interactive visual NLP learning platform that enables novice learners

to study the core processing components of statistical NLP analytics in sequence. More specifically, the
contributions of this work are three-fold: (1) the ease of learners to access and use our platform through
any web browser at no cost; (2) the interactive and dynamic visuals (e.g., mouseover events, collapsible tree
diagrams, and animations) that enhance the study environment and learners’ engagement; and (3) the in-focus
step-by-step process, using the job posting classification as an example, to demonstrate the core processing

components of statistical NLP approaches.

1 INTRODUCTION

In the Big Data era, there is a large amount of text in-
formation available on the Internet such as social me-
dia, web advertisements, and online documents. To
manage and process text information, Natural Lan-
guage Processing (NLP) is the critical Al technology
that can understand, analyze, and generate text with-
out requiring a human lift a finger. By using text an-
alytics and mining, NLP uses computational and sta-
tistical methods to give insight into observed human
language phenomena and make computers perform
various tasks with human languages. For example,
NLP text classifiers, e.g., MonkeyLearn (Text Anal-
ysis, 2020), can automatically analyze text and then
assign a set of pre-defined tags or categories based
on its content. NLP spell-checker applications, e.g.,
Grammarly app (Grammarly., 2020), are able to iden-
tify and correct any spelling mistakes in a text. NLP
machine translation technologies, e.g., Google Trans-
late (Google Translate, 2020), allow automatic trans-
lation from one language to another without any hu-
man intervention. However, to master NLP processes
and techniques to develop such kinds of applications
is not a trivial task even at an introductory level, as it
requires learners, particularly to novice professionals,
junior data scientists, and college students, to have a
good understanding of linguistic and computation that
NLP is based on.

Presently, there are many studying approaches
that can assist novice learners in mastering the con-

224

Chokchaisiripakdee, A. and Ngan, C.

VisNLP: A Visual-based Educational Support Platform for Learning Statistical NLP Analytics.

DOI: 10.5220/0010318202240232

cepts of NLP. First, the simplest and most economic
approach is to self-study and self-read NLP-related
text and electronic books (Deng & Liu, 2018; Ro-
drigues & Teixeira, 2015; Shaalan et al., 2017). This
approach requires the learners to (1) read and study
a text that consists of several hundred pages and (2)
possess a strong self-learning capability. Not only
is it time consuming but also noninteractive that re-
sults in deterring learners from investigating in this
area. The second approach to learn NLP is to com-
plete some on-campus or online programs and courses
at educational institutions (Data Science, 2020a; Data
Science, 2020b; Statistics and Data Science Micro-
Masters, 2020). Based upon well-structured and well-
organized program curricula and course syllabuses,
learners are able to study NLP step by step and piece
by piece with the guidance and support of highly ex-
perienced instructors. In addition to that, under this
active learning and interactive environment with other
students, learners can study NLP faster and more ef-
fectively. However, this approach is very expensive
that requires learners to pay a high tuition cost just
for studying one subject area of NLP.

To bridge the above research gap, Zobia and Ste-
fania (Rehman & Kifor, 2015) designed and devel-
oped an ontology-based educational Protégé tool to
demonstrate the NLP ontology to help learners study
NLP. Specifically, this ontology tool presents a tree
diagram of conceptual class nodes and subclass nodes
of NLP. For example, NLP is the root class node
which branches out to many subclass nodes such as

In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 3: IVAPP, pages

224-232
ISBN: 978-989-758-488-6

Copyright © 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

VisNLP: A Visual-based Educational Support Platform for Learning Statistical NLP Analytics

POS Tagging, Sentiment Analysis, Spell Checking,
and Text Classification. These subclass nodes also
have more subclass child nodes. For instance, there
are four subclass child nodes of Text Classification,
including Logistic Regression, Naive Bayes, Support
Vector Machine, and MaxEnt, which are all the com-
mon text classifiers. This ontology-based approach
combines the strengths of both previous two ap-
proaches (i.e., inexpensive and interactive), in which
learners can download the Protégé software (Protege,
2020) for free and learn NLP with the interactive tool
respectively. However, the NLP scope covered by
this tool is very broad that includes 16 study areas
of NLP and only illustrates the main concept and its
sub-concepts without providing any in-depth explana-
tions and descriptions that definitely could not assist
new learners in understanding any one of those top-
ics. More importantly, most of the concepts displayed
by the ontology are the NLP applications but not the
core processing components of NLP, including text
pre-processing, token building, and text vectorization.

Apparently, all the aforementioned approaches
lack the three important educational elements, i.e.,
inexpensive, interactive, and in-focus, to help ama-
teur learners master NLP. To mitigate the shortcom-
ings of the existing approaches, we propose the de-
velopment and implementation of a visual-based edu-
cational support platform for learning NLP Analytics
(VisNLP). Currently, there are two broad approaches
for the NLP analytical processes: (1) statistical-based
(Bengfort et al., 2018; Hastie et al., 2020; Lane et al.,
2019) and (2) neural network-based (Goldberg, 2017;
Kamath et al., 2020; Reese & Bhatia, 2018). The for-
mer approach is to perform statistical techniques to
process and analyze text data. The latter approach
is to use deep neural networks to conduct text min-
ing and analytics. In this paper, we mainly focus on
statistical-based methods using One-Hot Encoding,
Term Frequency-Inverse Document Frequency (TF-
IDF), and Word Probability approaches. Specifically,
we develop and implement a web-based, interactive
visual NLP learning platform that enables learners
to study the core processing components of statisti-
cal NLP analytics in sequence: (1) Text Preprocess-
ing (e.g., splitting sentences, spelling check, lower-
ing cases, converting numbers, and removing punctu-
ations); (2) Token Building (i.e., Bag of Words and
N-grams tokenization); (3) Text Vectorization (i.e.,
One-Hot Encoding, TF-IDF and Word Probability);
and (4) Text Similarity Dashboard (i.e., Heatmap Ta-
bles, Cosine Similarity Matrix, and Euclidean Dis-
tance Measurement). Using a variety of interactive vi-
sual diagrams with a practical example, novice learn-
ers can have a good grasp of the NLP process.

The remainder of the paper is organized as fol-
lows. First, we describe our VisNLP framework to
show the process of statistical NLP analytics in Sec-
tion 2. In Section 3, we illustrate our implemented
web platform and use the classification of job posi-
tion advertisements as a pilot example to demonstrate
how novice learners can utilize our interactive plat-
form to understand and study statistical NLP analyt-
ics step by step and piece by piece. In Section 4, we
conclude and briefly outline our future work.

2 VisNLP FRAMEWORK

Fig. 1, home page shows the high-level framework
of our VisNLP that consists of five main modules:
Text Preprocessor, Token Manager, Text Vectorizer,
Text Similarity Dashboard, and Visual Web Inter-
face. Each module has sub-components that manip-
ulate and process texts.

2.1 Text Preprocessor

Text Preprocessor is composed of ten sub-modules
that includes Document Separator (DS), Sentence
Splitter (SS), Spelling Corrector (SC), Contraction
Expander (CE), Number Converter (NC), Punctuation
Remover (PR), Non-alphanumeric Remover (NR),
Stopword Remover (SR), Word Lemmatizer (WL)
and Lowercase Converter (LC). First, the Text Pre-
processor takes a text corpus, i.e., a collection of
document files from a to z stored in a database of
the platform, as an input and the DS module segre-
gates them from the corpus into many individual doc-
uments. Each document is then sent to the SS mod-
ule, which splits the document into individual sen-
tences. The SC module conducts the spell check on
each sentence and uses the tokenization approach to
replace misspelled words with the highest-probability
corrected words. The corrected-word sentences are
then sent to the CE module, which expands the con-
tracted form of the words into a longer form, such as
“I’'m” to ’I am”, ”You’re” to ”You are”, "It’s” to "It
is”, ”S/He isn’t” to ”S/He is not”, "They aren’t” to
”They are not” and ”"We aren’t” to "We are not”, in
each sentence. Then, the NC module substitutes the
numeric value for words, such as 5 to "Five”, 11
to ”Eleven” and 3" to "Three”.

The subsequent modules, PR, NR, and SR, respec-
tively removes punctuations (e.g., full stop(.), comma
(), and colon (:)), non-alphanumeric characters (e.g.,
#GoLangCode123!$! to GoLangCode123), and stop-
words (e.g., “ourselves”, “hers”, “between”, “your-
self”, ”but”, and “again”) from expanded sentences.

225

IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications

Home Text Preprocessor Token Manager Text Vectorizer v Text Similarity Dashboard v Survey

VisNLP: A Visual-Based Educational Support Platform for Learning Statistical NLP Analytics

We develop and implement a web-based, interactive visual NLP learning platform that enables novice leamers to study the core processing components of statistical NLP analytics in sequence. More specifically, the contributions of this work
are three-fold: (1) the ease of learners to access and use our platform through any web browser at no cost; (2) the interactive and dynamic visuals (e.g., mouseover events, collapsible tree diagrams, and animations) that enhance the study
environment and leamners’ engagement; and (3) the in-focus step-by-step process, using the job posting classification as an example, to demonstrate the core processing components of statistical NLP approaches.

Visual Web Interface

Token Manager Text Vectorizer Text Similarity Dashboard

Preprocessed Document

One-Hot Encoder

Text Vectors

Unique Word Generator

Non alphanumenc
Remover

Preprocessed

Document
Slopwmd Remover j
Wore, Word, word,) Word, Word, Word, ' —| Tem
Word, Word)Word: | | Word, Word; Word,
ot o wors, | o worg word: Frequency
Word Lemmatizer = Generator
Word
) o i) |1 () e

Tokens
Unique Tokens

Lowercase Convener

Word Probability Encoder

H]
' 1
' i ! i
i | i
1 H Preprocessed ! Wod\ 1
! | E| E| @ Document [Quetia Jrior Probabilty | !
H ' L. nc | ncode '
- | &88-8 S R)
i ! R — o0 700000 OneHot 0N : Vectors /|
: | e : Vectorizer : i !
' Word Tok < > —| — <0,1,1,....0> | !
' 1 Tokens H '
| ' N Cosine Similarity '
i | ' Calculator !
H]
! ! Term Frequency-1 quency (TF-IDF) Encoder | !
' H H '
' ' Unigram B T Preprocessed | '
' 1, 9 igram figram Document —=<a,a, a>— —<a’, | 1
i h) Torm LR ooy ' !
' 1 [T <by by b>~"] \Vector <t 1
Frequency \
' 1
' ' ’ @] Generator Multiplier ' |
! - e — e ;
H '
! 1
! i Bag of Bag of Bag of ! Text Vectors i
' I Unigram Bigram Trigram Inverse ! —
| Document 1/ One-Hot TF-IDF
! = <idf,, idt,, idf,, ..., idf,> '
i 1 Y9) que | Frequency [e B !| Encoded || Encoded Frobabi |1
i i !
' : Uniaue | Generator i\ Vecbors Vectors Vocors /|
!] H 1
' ' H 1
! ' | i
' ' H 1
4 ' H 1
i ! ! :
H]
i | L <a,a, .. .80 — <a @y ' !
| ! b, by b Word ey b by | i
! | Probability ! i
: ! : Generator : | !
| ! = <22y 20— <2y 2P |
H '
4] i '
! I ! i
i
i i ! i
[} N]

Euclidean
Distance
Calculator

Figure 1: VisNLP Home Page and Framework.

To shorten the length of each expanded sentence, the
WL module groups several forms of the same word
together even if their spelling is quite different. For
example, "walk”, walked”, ”walks”, and “walking”
would be treated the same as “walk”. This extensive
normalization down to the semantic root of a word is
called lemmatization. Finally, the LC module con-
verts each character of a word into a lowercase on
lemmatized sentences and then sends the processed
sentences to the Token Manager.

2.2 Token Manager

Token Manager is formed by five sub-modules that
include Word Tokenizer (WT), three Bag-of-Word
(BoW) DBs, and Unique Word Generator (UWG).
First, the sentences generated from Text Preprocessor
are passed into the WT module that splits each sen-
tence of a document into a collection of vocabularies
called tokens (i.e., unigram, bigram, and trigram) that
are stored in respective BoW DBs. Given the sen-
tence “I like apple.”, the Unigram tokenization gener-
ates “I”, “like”, and “apple” tokens. The Bigram to-
kenization generates “I like” and “like apple” tokens.
The Trigram tokenization generates a “I like apple”
token. It is called BoW, as the positional order and the

226

structure of those tokens are discarded but only their
occurrence in the document is annotated. The UWG
module then removes all the duplicated tokens to gen-
erate only the unique tokens (i.e., Token|, Token,,
Tokens, ..., Tokeny) among all the documents from
the Bow DB.

2.3 Text Vectorizer

Text Vectorizer is divided into three sub-modules:
One-Hot Encoder, TF-IDF Encoder and Word Proba-
bility Encoder. All three encoders take the two inputs
including the unique tokens among all the prepro-
cessed documents and the documents themselves in
the text corpus. The unique tokens among all the doc-
uments define the dimension of each document vector.
For example, if there are N unique tokens in a text cor-
pus, each document vector is a 1 X N one-dimensional
vector. The tokens with their occurrence in each doc-
ument are the components to generate the correspond-
ing vector. Since some corpus tokens do not appear in
all the documents, the value of each token may vary
according to different encoding schemes.

The One-Hot Encoder is composed of two com-
ponents: Zero Vector Generator (ZVG) and One-Hot
Vectorizer (OHV). The ZVG module generates o zero

VisNLP: A Visual-based Educational Support Platform for Learning Statistical NLP Analytics

binary vectors (0,0, ...,0), where o is the total number
of documents in the text corpus and the size of each
binary vector is N. And then, the OHV module gen-
erates o non-zero binary vectors (e.g., (1,1,0,...,1),
(0,0,1,...,1),..., {0,1,1,...,0)) (Goldberg, 2017, p.
212) for all the documents when a document contains
the unique token in a specific position, i.e., a one (1)
means on or hot and a zero (0) means off or absent.
This collection of vectors is called One-Hot Encoded
Vectors.

The TF-IDF Encoder consists of three sub-
modules: Term Frequency Generator (TFG), Inverse
Document Frequency Generator (IDFG), and Vec-
tor Multiplier (VM). The TFG module generates o
token frequency (TF) vectors (e.g., (ai,a2,...,an),
<b1 ,bz, "'7bN>7""<Zl ,22, ...,ZN>), where a,-,bl-, ..., are
the non-negative numeric values 3;, which counts the
frequency of a token appeared in a document, for
0 <i < N. The IDFG module generates one non-
negative numeric (IDF) vector (idfi,idf>,...,idfy),
where idf; = log% + 1 and D; is the total number
of documents containing a token, for D; < N. The
VM module takes the two vectors, i.e., one TF vec-
tor and the IDF vector, as inputs and computes the
multiplication B; x idf; for each token to generate a
TE-IDF vector (e.g., (d},d}, ...,ay), (b}, D},bY).,
(24,25, -.-,2y)) for a document.

The Word Probability Encoder contains Term Fre-
quency Generator (TFG) and Word Probability Gen-
erator (WPG). Similar to the TF-IDF encoder, the
TFG module generates the o token frequency vectors.
Then, the WPG module takes the TF vectors as the in-
put and computes the probability token p(;) of each
Z?j fl})([j), where f(z;) is
the frequency of term ¢ in document j and D is the
total number of documents.

N-gram document vector by

2.4 Text Similarity Dashboard

After the process of Text Vectorizer, One-Hot, TF-
IDF, and Word Probability encoded vectors are the
inputs of Text Similarity Dashboard, which computes
and generates four types of heatmap tables, including
(1) ”Token vs. Document”, (2) ”Text Vectorizer vs.
Document”, (3) Cosine Similarity Score (CSS) and
(4) Euclidean Distance Score (EDS) (Pattnaik, 2019;
Liu, 2019). The Cosine Similarity Score (CSS) is
calculated for any two document vectors (DV;, DV;),
where €SS = — 2% for |DV;|| and ||DV;|| are
DVl DVl

the length of vectors. The Euclidean Distance Score
is computed for any two document vectors (U ,\7),

where EDS = /Y7 (u; —vi)2, U = (uy,uz,...u,)

and V = (v1,v2,...vn), for u; is the i-th token value
of U and v ; is the j-th token value of V.

2.5 Visual Web Interface

Finally, to provide the educational support to novice
learners to understand the statistical NLP analytics,
we develop and implement a highly interactive visual
web interface that enables our learners to study the
entire process through the step-by-step guidance from
our interactive visual diagrams that are described in
Section 3.

3 VisNLP PLATFORM

In this section, we use the job posting advertisements,
which are collected from Monster (Monster, 2017),
as an example to describe and explain how learners
can use our VisNLP platform with the well-developed
interactive D3.js visuals (Bostock, 2020) to learn and
study the statistical NLP analytics. Fig. 1 shows the
Home page of our platform.

After learners use a web browser to access our
VisNLP platform, they see the five main module tabs,
including Text Preprocessor, Token Manager, Text
Vectorizer, Text Similarity Dashboard and Survey, at
the top of the page, the summary contributions of
our VisNLP and the framework at the bottom of the
page. Note that the ’Survey” tab shown on the plat-
form is only for learners to give us the feedback af-
ter using the platform that is not part of our paper
scope. Due to the large number of visual diagrams de-
veloped in our platform, we selectively choose some
representative diagrams in each module and make a
short video (https://youtu.be/ZbJuajHgAY Q) to intro-
duce our platform. To begin with our VisNLP, learn-
ers can start selecting the Text Preprocessor tab.

3.1 Text Preprocessor

The Text Preprocessor (TP) interface consists of the
”Corpus” and other ten sub-module tabs that we de-
scribe in Section II. Each tab contains both the TP
module and the tree diagrams to show how each high-
lighted sub-module impacts on the text. Specifically,
the process starts with showing one node of the tree
diagram named “Corpus” to learners, as the Cor-
pus” tab is selected by default at the top bar of the
page. The TP module also highlights the Text Cor-
pus”. When learners move the cursor over the ”Cor-
pus” node, the node turns the color to be red. The
corpus description, at the same time, is displayed to
explain the meaning of a corpus. As our text corpus is

227

IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications

Token Managor Toxt Veclorizer + [l S

fext Preproces: - Toxt Similarity
Text Preprocessor Token Manager Text Vectorizer + o

sentence Sveting
Spiter

Convacton Nomber Punctston
Conactr Somer Comerer Remorer

Sentence Splitter i

Each document is splitted ino many sentences.
'
experience in a number of following languages [tools - sql, python, matlab, SAS, java, spark. scala

xt Proproce o or + Text Simiarity
Text Preprocessor Token Manager Text Vectorizer ot S

Sentence Spoting
Gomecir

Contacion
Epader

Soter

' o
! copus |
Document Separator ||

popcts 1| Sentence Spiiter | !
a0, SAS, ava, spar, scal. ' !

Number Converter
Each number s converted Into text such as 5 to Five, 11 to Eleven, and 3 to Three.
3+ years of experience in data design X

Three + years of experience in data design . v/

05 > Five
Q5 > Three
i N joby 8
Spelling Corrector | | 10)
T (I O

(b) Number Converter

Text Preprocessor Token Manager

o Toxt Similaity
Text Vectorizer o Sl

Sentence speting Conacton Nomber Sopuord
Spiter Conecar Epandar Comerer over

| i
' Tt)
! Copus |
H '
1 [Document Separator | !
g g d i
Sentence Spitter

i
! Omethods > method
AR Qstatistics - statistc, projects > project
Speling Corrector | 1 Qlanguages - language, tools - tool
. O

Punctuation Remover
‘The punctuations e.g.,full stop(), comma (), colon (:), etc. are removed.
‘experience in a number of following languages / tools : sal , python , matlab | SAS |, java , spark | scala . X

experence in a numbor o olwing languages 00l salpython maflab SAS java spark scala '

w "
H Copus ¢
| '
: '
¢ [ocument separar | |
; ‘
‘gg--g |
P EETE
| '

Sentence Splitier | |

Spelling Corrector | 1
'

T

5606606

—Or

(¢) Punctuation Remover

Word Lemmatizer
Several inflected forms of a word are grouped together as a single word.
experience number following languages t0ols sql python matiab SAS java spark scela X

‘experience number folloving languiaga ool sql python matlab SAS java spark scala v/

Opyears = year
Oyears = year

LI

(d) Word Lemmatizer

Figure 2: Sub-modules in Text Preprocessor.

related to job posting advertisements, learners should
see the ”Corpus is a collection of text documents. In
our example, there are eight job posting documents.”
on top of the page.

After the DS module tab is clicked, the TP module
highlights the ”Document Separator” and the tree di-
agram shows up and branches out to eight leaf nodes.
Each leaf node represents a text of job posting ad-
vertisements in the corpus and is composed of many
sentences. In Fig. 2a, the SS sub-module branches
out the tree from each job posting node to many sen-
tence leaf nodes that are depended on the number of
sentences in each job posting advertisement. For in-
stance, the job posting node No. 1 is split into six
sentences. When learners move the cursor over a sen-
tence node, the node and its parent turn the color to
be red. The link associated with that sentence node
is also changed the color to be red and show the path
up to the corpus node. The corresponding sentence is
also displayed at the top of the page.

The SC module then takes every single word in
a sentence as an input and replaces any misspelled
word with the highest-probability corrected word. For
example, the misspelled word “metthods” is replaced
by the corrected word “methods”, i.e., “metthods —
methods”, shown at the end of the node. Similarly,
the selected node shows the red link path up to its
parent and ancestor. By moving the cursor over the
node, learners can also see the correction on top of the
page, i.e., the "before” sentence with a red cross mark
and the "after” sentence with a green check mark. The
misspelled word is highlighted and the corrected word

228

is underlined. For a sentence that does not contain any
misspelled words, it is shown with a green check mark
only. In the CE module, at the end of the leaf node,
learners can see some words that are expanded. For
instance, ”You’re” is highlighted and changed to ”You
are” with the underline. In the NC module, a stand-
alone numeric value is replaced by its English word.
For instance, in Fig 2b, 73" is replaced by “Three”
and 7’5" is replaced by “Five”. Both before and after
sentences are displayed in the same format as that of
the SC module on top of the page.

The next three modules are PR, NR, and SR that
take a sentence from the NC module and remove
some characters, symbols, and words from the sen-
tence. The PR module removes a punctuation in the
sentence. Learners can see all the removed punctua-
tions, such as ”full stop (.)”, "hyphen (-)”, “exclama-
tion mark (!)”, and ”question mark (?)”, highlighted
at the end of the node. For example, in Fig 2c, the
PR module takes a sentence “experience in a num-
ber of following languages/tools: sql, python, matlab,
SAS, java, spark, scala.” and then removes “comma
(,)”, “colon (:)”, and “full-stop (.)” to generate the
output sentence ~’experience in a number of following
languages / tools sql python matlab SAS java spark
scala”.

Likewise, the NR and SR modules remove
“l;; @#$%&*” and stopwords (e.g., a, an, the, is, am,
and are) respectively in any sentence. Any charac-
ters, symbols, numbers, and words that get removed
are highlighted in the original sentence. For exam-
ple, the NR module takes the sentence “please con-

VisNLP: A Visual-based Educational Support Platform for Learning Statistical NLP Analytics

Text Similarty
Dashboard

Toxt Vecorizer +

Text Preprocsssor Token Manager
iram

nput from Text Preprocessor

Bag ot Wors =

Token Manager

s the preprocessed sentence from text preprocessar.

xperience advanced stafistcal technique

% % v g ree year experience data design
o sxparioncs et analysis modsiing method
H—} L sirong background proven

maching learning project
axperince number following languags tool sal python math szs ava spark scala
please contact jobmail

Word Tokenizer
rprores s ot
four year experience data architecture
iob; sxvensnce data analysis modelling method
L knowledge variety machine learing technique
strong background proven data science
Negram experience number following anguage ‘ool s python matiah s2s java spark scala aws tableau
| __—Qthree year experience data modeling

Text Similarty

Text Veclorizer +

Text Preprocessor

Token Manager

Token Manager

Words Tokenizer

Preprocessed Document

88-8

Word Tokenizer

Ogeovens
Osentencet
Osentoncyg
Osey
oy

Os&”tsn
oy
s

“‘ - “Z“?K; f\“‘z
& O ofade o

(c) Words Tokenizer in Radial Tree

Tox Similarty

Text Vectorizer ~ Dashboard

Text Preprocessor

‘Token Manager

Bap of Words (Bigram) =

Token Manager
Words Tokenizer

Preprocessed Document

E| a E| three year
year experience
sentence2 O Q experience data
v @ data design
Word Tokenizer gx enenlce data
ata analysis
sentery § ana sis mode\lmg
odelling method
O strong statistic
Bgram statistic programming
| § ogramiming background
umund proven

(b) Words Tokenizer in Vertical Tree

Tox Similarty

Text Vectorizer ~ Dashboard

Text Preprocessor

Token Manager

Viords Token)~

Token Manager
Bag of Words

Preprocessed Document

886
—

Word Tokenizer

N
VS &0 i
(o) K
5% “\\

@
o
S &2\\,‘) ‘\a &

Q
RN i cionce -4

Bigram " e\wef\\"g o
I Adelvet™®

(d) Bag of Words (Bigram)

Figure 3: Sub-modules in Token Manager.

tact job#1 @mail” as the input and removes some non-
alphanumeric characters “hashtag (#)” and “at (@)~
to get the output sentence “please contact joblmail”.
After passing the sentence through the SR module,
for example, the sentence “experience in a number of
following languages / tools sql python matlab SAS
java spark scala” is changed to “experience number
following languages tool sql python matlab SAS java
spark scala” by removing the ”in”, ”a”, and "of” stop-
words. All the above Corrections in a sentence are
shown on the top of the page as well by moving the
cursor over the node.

The last two modules are WL and LC, which are
to simplify the words. The WL module takes a sen-
tence from the SR module and converts all the words
to their semantic roots, for example, “help”, help-
ing”, "helps”, and "helper” transformed to "help”. In
Fig. 2d, the input sentence from the SR module is "ex-
perience number following languages tools sql python
matlab SAS java spark scala”. The WL module takes
that input and lemmatizes the word “languages”
“language” and “tools” to “tool”. The changes are
then shown as “languages — language and tools —
tool” at the end of the node. Likewise, the LC module
takes the sentence from the WL module and converts
each character of a word into a lowercase. For in-
stance, the LC module takes the output from the WL
module, changes the word ”SAS” to ’sas”, and shows
”SAS — sas” at the end of the node. Thus, the final re-
sult of this sentence is “experience number following
language tool sql python matlab sas java spark scala”.
After the LC module returns all the output sentences,

the sentences are sent to Token Manager to create the
Bag of N-grams DBs.

3.2 Token Manager

The Token Manager (TM) interface consists of the
“Input from Text Processor” and other sub-module
tabs that we describe in Section 2. Likewise, each tab
contains both the TM module and the tree diagrams
to show how each highlighted sub-module impacts on
the text. The TM module starts with the input sen-
tences generated from the TP module shown in Fig.
3a. The WT module takes these inputs and splits each
sentence into a collection of single vocabularies called
tokens. Each token can be Unigram, Bigram, or Tri-
gram depended on the learners’ selection. In this to-
kenization process, learners can select which N-gram
token should be used as a vocabulary. Specifically,
when learners click the WT tab and the “Bigram”
option, the tree diagram branches out each sentence
node to its token nodes shown as a huge zoomable
vertical tree diagram in Fig. 3b. For instance, if
the input sentence is “experience data analysis mod-
eling method”, after the bigram tokenization, “experi-
ence data”, “data analysis”, “analysis modeling”, and

”modeling method” are generated. As there is a large
number of tokens in the text corpus and the vertical
tree is very lengthy, learners can zoom and drag to the
bottom to see the rest of the tree. By clicking the tree
diagram, the vertical tree can also be transformed to
the radial tree shown in Fig. 3c. Based upon the input
tokens with their occurrence from the WT module,

229

IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications

the BoW (Bigram) tab shows the radial tree, in Fig.
3d., with two layers, i.e., corpus and tokens, which
displays all the bigrams with their total occurrence in
the corpus. Learners can see the detail by moving
the cursor over the node. For example, when learners
move the cursor over the token node “’data science”, it
displays the node in the red color and shows the text
“data science : 4, which means that this token “data
science” occurs four times in this corpus. Finally, the
UWG module takes the result from the BoW (Bigram)
DB and generates the unique tokens. Token Manager
then sends those unique tokens from the UWG mod-
ule to Text Vectorizer.

3.3 Text Vectorizer

In Text Vectorizer, there are three options for learn-
ers to select: One-Hot Encoder, TF-IDF Encoder, and
Word Probability Encoder. Each encoder has the three
Bag of N-grams to be chosen. All encoders take the
same inputs from the UWG module and the TP mod-
ule respectively to generate the vectors.

If the One-Hot Encoder is selected, the ZVG mod-
ule takes the unique token from the UWG module as
an input and generates the radial tree diagram with
the white color nodes and the corresponding words
for each job posting advertisement. The diagram is
a zero-value vector of each document since each job
document starts with all zero values and the length of
each document vector is the same due to the number
of unique tokens in the entire corpus. Learners can see
that when the word “’data” is selected, the node shows
“data : 0”. There is a color scheme at the bottom of
the page. The white color means a zero value. To
visualize One-Hot encoded vectors, the OHV module
takes the zero vector and the corresponding prepro-
cessed job posting advertisement as the inputs to dis-
play the vector as a radial tree, in which the red node
indicates the value ”1” and the white node means the
value 0. If learners move the cursor over the node,
the node is enlarged and displays the detail of the to-
ken. For example, in Fig. 4a, the word “data : 1” in
the red node is shown up. It means this word appears
in this job posting advertisement.

If the TF-IDF Encoder is chosen, the TFG module
takes the same inputs as that of the ZVG module and
shows the radial tree diagram with different color in-
tensity of nodes from white (0) to red (1) depending
on the normalized color value of each token. For ex-
ample, when the cursor is moved over the word “data
design”, the node is enlarged to display “data design
: 1(0.16)”. The value of 1 means “data design” ap-
pears only one time in this job posting advertisement
and its normalized color intensity value is 0.16. The

230

Tot Simary
Dasnboard

Word Probabllity Generator

Figure 4: Text Vectorizer.

IDFG module calculates id f; based upon the equation
shown on the web page. For instance, as there are
eight job posting advertisements in the corpus, N =
8. Because the token “data design” appears in one
documents, D = 1. By substituting these two values
into the equation, the id f; value of the word data de-
sign” is 2.504. Finally, the VM module takes both
computed results from the TFG and IDFG modules
as the inputs and performs the multiplication for each
token to generate a TF-IDF vector, which is shown as
a radial tree diagram in Fig. 4b. “data design: 2.504
(0.204)” is displayed with the tf-idf value (2.504) and
the normalized color intensity value (0.204).

If the Word Probability Encoder is chosen, the
TFG module generates the TF vector as the same way
as that of TF-IDF Encoder. For example, the radial
tree diagram shows the trigram “data analysis model-
ing : 1 (0.186)”, which means “data analysis model-
ing” appears only one time in jobl. The WPG module
then (1) counts the number of times of a token ap-
peared in a specific document, (2) computes the total
frequency of that token appeared in all the document
in the entire corpus, and (3) divides these two values
to get the token probability in the specific document.

VisNLP: A Visual-based Educational Support Platform for Learning Statistical NLP Analytics

Token Manager

Unigram Heatmap Table

One-Hot Vectors. TF-DF Vectors Word Probability Vectors.

L et analy sis : job2 = 2.099(0.163) analysis : job2 = 0.5
=
- e .-

TF-IDF Vectors

[]

g oo+ :1ovs - .53
[———
]

[|] o

|] o |]

(c) Cosine Similarity Heatmap Table

Text Similarty

Dashboerd
Word Probability Encoder Heatmap Table

Unigram Bigram Trigram

o analysis modellin
analysis : job2 = 0.5 metli’od +job2 = Dg
)
. - - -
-

- - -
aws tableau : job2 = 1.0
- p

Euclidean Distance of Unigram Heatmap Table

ahere EDS ST 00
i ok vau ot] an v o ik v of

One-Hot Vectors TF-IDF Vectors.

N j0b3 : job2 = 0.773 (0.261)
i 1]

Word Probability Vectors

job3 : job2 = 0.881 (0.279) job3 : job2 = 3.365 (0.361)
- =

EIERIEEE

(d) Euclidean Distance Heatmap Table

Figure 5: Text Similarity Dashboard.

In Fig. 4c, the probability of the token “data analysis
modeling” is 0.5, which means this token is rare and
can be found in only two documents.

3.4 Text Similarity Dashboard

After the Text Vectorizer generates all the One-Hot,
TF-IDF, and Word Probability vectors, they are sent
to Text Similarity Dashboard for similarity evalua-
tions. In the Text Similarity Dashboard tab, learn-
ers can select: (1) N-gram Heatmap Table, (2) Vec-
torizer Heatmap Table, (3) Cosine Similarity Matrix,
and (4) Euclidean Distance Matrix. For the N-gram
Heatmap Table, learners can choose unigram, bigram
or trigram. For example, when learners select ”Uni-
gram”, shown in Fig. 5a., the table for each vector-
ization approach has the rows as the tokens and the
columns as the jobs. In the table of One-Hot vec-
tors, if the token appears in a specific document, it is
displayed with a red color box and the value "1, or
else it shows a white color box with the value 0.
When the cursor is moved over the token “analysis”
in the second column, it displays “analysis : job2 =
17, i.e., the token “analysis” appears in the job2. In
the table of TF-IDF vectors, learners can see different
color intensity of mixing red and white due to their
tf-idf values. For instance, “analysis : job2 = 2.099
(0.163)” means the tf-idf value of the word “analy-
sis” is 2.099 and its normalized color intensity value
is 0.163. The table of Word Probability vectors shows
“analysis : job2 = 0.5”, which means the probability
of token “analysis” appears in job 2 document is 0.5.
Similar to the N-gram Heatmap Table, the Vectorizer
Heatmap Table display the “Text Vectorizer vs. Doc-
ument” among all the N-grams in Fig. 5b.

The text similarity among the job posting adver-
tisements can be compared by computing the CSS
score and EDS score. The Cosine Similarity Cal-
culator takes the job posting vectors and substitutes
them into the given formula to generate the heatmap
tables for each vectorization approach. For the One-
Hot vectors, the same job posting advertisement is
displayed with a red color and the value 1 shown
in the diagonal of the tables, as they are the same job
posting. In the table, learners can see that there are
three red color clusters, including (1) Job 1, 2, and 3,
(2) Job 4, 5, and 6, and (3) Job 7 and 8. It means that
those jobs in their own clusters are very similar. Job
1, 2, and 3 are about data scientists; Job 4, 5, and 6
are about graphic designers; and Job 7 and 8 are about
mechanical engineers. When learners move the cur-
sor over a red cell, they can see the detail of it. For ex-
ample, in Fig. Sc, it shows “’job4 : job5 =0.733”. This
is the value of the CSS score between Job 4 and Job 5.
Learners can apply the same value scheme to view the
CSS score of TF-IDF and Word Probability between
any two jobs. The Euclidean Distance Calculator also
takes the same inputs to compute the distance value.
Howeyver, the scores show in the Euclidean Distance
Heatmap Table are different from those shown in the
Cosine Similarity Heatmap Table. For instance, in
Fig. 5d, it shows “job3 : job2 = 0.733(0.261)” which
are the value of the EDS score between Job 3 and Job
2 and the normalized color value. Likewise, learners
can apply the same value scheme to view the EDS
score of TF-IDF and Word Probability between any
two jobs. Note that the reason why these three ta-
bles in each vectorization approach look quite simi-
lar to one another is because these three approaches
have quite similar vectors with different scaling val-

231

IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications

ues only, i.e., 0 or 1 for One-Hot encoding, > 0 for
TF-IDF, and 0~1 for Word Probability. Due to the
large number of tokens in our corpus, most of the
vectors are sparse vectors (i.e., a lot of zero values
in each vector), as many tokens do not appear in each
job posting advertisement. Hence, both scores of all
three methods are very close to one another.

4 CONCLUSIONS AND FUTURE
WORK

To our best knowledge, this is the first paper to intro-
duce a visual-based educational support platform for
learning statistical NLP Analytics. Specifically, we
develop and implement a web-based, interactive vi-
sual NLP learning platform that enables novice learn-
ers to study the core processing components of statis-
tical NLP analytics in sequence. The contributions of
this work are three-fold: (1) the ease of learners to ac-
cess and use our platform through any web browser at
no cost; (2) the interactive and dynamic visuals (e.g.,
mouseover events, collapsible tree diagrams, and an-
imations) that enhance the study environment and
learners’ engagement; and (3) the in-focus step-by-
step process, using the job posting classification as an
example, to demonstrate the core processing compo-
nents of statistical NLP approaches. However, there is
still a lack of many important research questions, e.g.,
how the 3D diagrams should be designed and imple-
mented to strengthen the interactivity between novice
learners and the platform, how neural network-based
methods should be developed visually to deliver the
knowledge and to be a contrast with statistical-based
approaches, and how the platform can be further en-
hanced to visualize a NLP pipeline to solve real-world
problems.

REFERENCES

Bengfort, B., Bilbro, R., & Ojeda, T. (2018). Ap-
plied Text Analysis with Python: Enabling Language-
Aware Data Products with Machine Learning (1sted.).
O’Reilly Media.

Bostock, M. (2020). D3.js - Data-Driven Documents. D3JS.
https://d3js.org/

Data Science. (2020a). ~ WPI Data Science Program.
https://www.wpi.edu/academics/departments/data-
science

Data Science. (2020b). Harvard University Data Sci-
ence Program - The Graduate School of Arts
and Sciences. https://gsas.harvard.edu/programs-of-
study/all/data-science

232

Deng, L., & Liu, Y. (2018). Deep Learning in Natural Lan-
guage Processing (1st ed. 2018 ed.). Springer.

Goldberg, Y. (2017). Neural Network Methods for
Natural Language Processing. Synthesis Lectures

on Human Language Technologies, 10(1), 1-309.
https://doi.org/10.2200/s00762ed1v01y201703h1t037

Google Translate. (2020). Google Translation Website.
https://translate.google.com/

Grammarly. (2020). Write your best with Grammarly.
https://www.grammarly.com/

Hastie, T., Tibshirani, R., & Friedman, J. (2020). The El-
ements of Statistical Learning: Data Mining, Infer-
ence, and Prediction, Second Edition (Springer Series
in Statistics) (2nd ed.). Springer.

Kamath, U., Liu, J., & Whitaker, J. (2020). Deep Learning
for NLP and Speech Recognition (1st ed. 2019 ed.).
Springer.

Lane, H., Hapke, H., & Howard, C. (2019). Natural Lan-
guage Processing in Action: Understanding, analyz-
ing, and generating text with Python (1st ed.). Man-
ning Publications.

Liu, Y., Xu, Q., & Tang, Z. (2019). Research on Text
Classification Method Based on PTF-IDF and Co-
sine Similarity. 2019 International Conference on In-
telligent Informatics and Biomedical Sciences (ICI-
IBMS). doi:10.1109/iciibms46890.2019.8991542

Monster. (2017, May 26). Job Search, Find Job Openings
Monster.com. https://www.monster.com/jobs/search/

Pattnaik, S., & Nayak, A. K. (2019). Summariza-
tion of Odia Text Document Using Cosine Sim-
ilarity and Clustering. 2019 International Con-
ference on Applied Machine Learning (ICAML).
doi:10.1109/icaml48257.2019.00035

Protege. (2020). Protege. https://protege.stanford.edu/

Reese, M. R., & Bhatia, A. (2018). Natural Language Pro-
cessing with Java: Techniques for building machine
learning and neural network models for NLP, 2nd Edi-
tion (2nd Revised edition). Packt Publishing.

Rehman, Z., & Kifor, S. (2015). Teaching Natural Lan-
guage Processing (NLP) Using Ontology Based Ed-
ucation Design. Balkan Region Conference on En-
gineering and Business Education, 1(1), 206-214.
https://doi.org/10.1515/cplbu-2015-0024

Rodrigues, M., & Teixeira, A. (2015). Advanced Appli-
cations of Natural Language Processing for Perform-
ing Information Extraction (SpringerBriefs in Speech
Technology) (2015th ed.). Springer.

Shaalan, K., Hassanien, A. E., & Tolba, F. (2017). Intelli-
gent Natural Language Processing: Trends and Appli-
cations (Studies in Computational Intelligence (740))
(1sted. 2018 ed.). Springer.

Statistics and Data Science MicroMasters. (2020).
Statistics and Data Science MicroMasters.
https://micromasters.mit.edu/ds/

Text Analysis. (2020). Text Analytics Website Mon-
keyLearn. https://monkeylearn.com/

