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Abstract: Although preterm labor is a major cause of neonatal death and often leaves health sequels in the survivors, 
there are no accurate and reliable clinical tools for preterm labor prediction. The Electrohysterogram (EHG) 
has arisen as a promising alternative that provides relevant information on uterine activity that could be useful 
in predicting preterm labor. In this work, we optimized and assessed the performance of the Dispersion 
Entropy (DispEn) metric and compared it to conventional Sample Entropy (SampEn) in EHG recordings to 
discriminate term from preterm deliveries. For this, we used the two public databases TPEHG and TPEHGT 
DS of EHG recordings collected from women during regular checkups. The 10th, 50th and 90th percentiles of 
entropy metrics were computed on whole (WBW) and fast wave high (FWH) EHG bandwidths, sweeping the 
DispEn and SampEn internal parameters to optimize term/preterm discrimination. The results revealed that 
for both the FWH and WBW bandwidths the best separability was reached when computing the 10th percentile, 
achieving a p-value (0.00007) for DispEn in FWH, c = 7 and m = 2, associated with lower complexity preterm 
deliveries, indicating that DispEn is a promising parameter for preterm labor prediction. 

1 INTRODUCTION 

A preterm birth (PB) is a high-risk situation and has a 
prevalence of up to 10% of all labor cases, affecting 
more than 15 million families worldwide (Fuchs et 
al., 2004). The consequences of PB affect maternal-
fetal health and is the main cause of mortality in 
children under 5 years of age (Leung, 2004). It also 
has a high economic cost for national healthcare 
systems (Petrou et al., 2019). There are now several 
techniques available for preterm birth detection, 
mainly the measure of cervical length (O’Hara et al., 
2013) and biochemical markers (Leung, 2004). 
However, while these techniques provide a highly 
negative predictive value, their positive predictive 
values are quite low and do not identify preterm 
deliveries (Berghella et al., 2008; Diaz-Martinez et 
al., 2020). 
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Intrauterine pressure catheter IUPC and 
tocodynamometry TOCO are the classical methods of 
measuring uterine dynamics. However, the former is 
an invasive method and involves risks, while the 
latter, although non-invasive, is neither very sensitive 
or precise (Euliano et al., 2016). The aim of the 
electrohysterographic technique is to deal with these 
limitations. The electrohysterogram (EHG) is the 
bioelectric signal recording of the muscular activity 
of the myometrium. The generation and propagation 
of action potentials through a suitable number of 
myometrial cells induce uterine muscle contractions 
and raise the internal uterine pressure. EHG can 
provide essential information on uterine activity 
(Devedeux et al., 1993). EHG energy is distributed 
between 0.1 and 4Hz and is composed of two waves. 
The slow wave (SW) has a period equal to the 
duration of contraction and as its bandwidth overlaps 
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the baseline wander it is difficult to analyze and 
extract reliable information from it. The fast wave 
(FW) is superimposed on the slow wave signal and 
can be divided into two parts according to the 
frequency in which it is presented: fast wave low 
(FWL), whose frequency peak is between 0.13 and 
0.26 Hz and is supposed to be associated with 
contraction propagation and fast wave high (FWH), 
whose frequency peak is between 0.26 and 0.88 Hz 
and is related to uterine cell excitability (Devedeux et 
al., 1993; Terrien et al., 2007) 

Previous studies have shown that EHG signals 
include relevant information on the state of the 
uterine electrophysiology and are better able to detect 
real preterm cases (Devedeux et al., 1993). It has been 
shown that as labor approaches synchronization, 
amplitude and predictability increase, complexity is 
reduced and there is a shift of frequency content to 
high frequencies (Devedeux et al., 1993; Garfield & 
Maner, 2007). The literature proposes different non-
linear parameters, such as entropy metrics, to 
characterize EHG. These latter reduce their values 
when regularity increases (Mischi et al., 2018).  

Sample entropy (SampEn) (Richman and 
Moorman, 2000) is a widely used metric to 
discriminate preterm from term (Garcia-Casado et al., 
2018). Studies in the literature suggest that SampEn 
performs best in discriminating term vs preterm 
deliveries in EHG recordings among the non-linear 
parameters tested (maximal Lyapunov exponent and 
correlation dimension) and even outperformed 
spectral parameters such as median frequency (Fele-
Žorž et al., 2008; Rostaghi and Azami, 2016). In 
addition, SampEn have been used to analyze the 
feasibility of using EHG to discriminate women with 
threatened preterm labor who gave birth in less than 
7 days from those who delivered in more than 7 days 
(Mas-Cabo, Prats-Boluda, Perales, et al., 2019).  

Rostaghi & Azami (2016) proposed Dispersion 
entropy (DispEn) to deal with the limitations of 
SampEn, which is sensitive to changes in 
simultaneous frequency and amplitude. DispEn is a 
computationally efficient measure of the regularity of 
time series and outperforms entropy metrics for 
characterizing other biomedical signals (Rostaghi and 
Azami, 2016). The performance of DispEn has been 
explored in different biomedical signals, but in EHG 
not yet. Azami et al analyzed magnetoencephalogram 
MEG signals to discriminate Alzheimer’s disease 
patients from an elderly control group. When 
SampEn, permutation entropy (PermEn) (Bandt & 
Pompe, 2002), fuzzy entropy (de Luca & Termini, 
1993) and DispEn were computed for MEG signals, 

DispEn presented the highest separability between 
the groups than other entropy metrics(Azami, 
Rostaghi, et al., 2016). Kafantaris et al used DispEn 
to characterize electrocardiogram ECG signals with 
different types of heartbeat (normal-healthy hearbeats, 
atrial premature beats and premature ventricular 
contractions) and concluded that the algorithm is 
capable of producing significantly different DispEn 
distributions between the different groups of 
heartbeats (Kafantaris et al., 2019). Rostaghi & 
Azami studied electroencephalographic signals with 
DispEn to test their ability for discriminating focal 
and non-focal EEG signals and found that DispEn had 
better separability than SampEn and PermEn 
(Rostaghi and Azami, 2016). All these case studies 
suggest that DispEn is a good estimator of signal 
regularity and improves the separability of the groups 
under study.  

In the present work, we attempted to optimize, 
assess and compare DispEn performance with 
SampEn to discriminate EHG recordings between 
term and preterm deliveries during routine checkups, 
when computed in the fast wave high and in the whole 
EHG bandwidth.  

2 MATERIALS AND METHODS 

2.1 EHG Data Bases 

Two public EHG data bases available in Physionet 
were used for the case study, the “Term-Preterm EHG 
Database” (TPEHG) (Fele-Žorž et al., 2008) and the 
“The Term-Preterm EHG Dataset with tocogram” 
(TPEHGT DS) (Jager et al., 2018) Both have been 
widely used in comparative studies on term and 
preterm cases and were obtained by the Department 
of Obstetrics and Gynecology at the Ljubljana 
University Medical Center.  

A total of 326 EHG signals with 275 term labor 
cases (labor > 37 weeks) and 51 preterm labor cases 
(labor < 37 weeks) were recorded during routine 
checkups of pregnant women between 22 and 37 
weeks of gestation. No induced labor cases or 
caesarean deliveries were included. 

Thirty-minute EHG signal were recorded in both 
databases with the same protocol, consisting of four 
disposable electrodes on the woman’s abdomen at an 
interelectrode distance of 7cm (Fele-Žorž et al., 2008). 
Three bipolar channels, S1, S2 and S3, were obtained 
after removing the monopolar EHG recordings, as 
shown in Figure 1. Previous studies pointed out that 
EHG features from S3 outperform S1 and S2 
channels in distinguishing term and preterm 
deliveries (Fele-Žorž et al., 2008; Mas-Cabo, Prats-
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Boluda, Garcia-Casado, et al., 2019). Therefore, only 
channel S3 was analyzed in the present study. The 
bipolar signals were digitized at 20 samples per 
second, with a resolution of 16 bits and over a range 
of ±2.5 millivolts (Fele-Žorž et al., 2008). 

2.2 EHG Signal Characterization  

The EHG recordings were filtered in the range 0.1 to 
4 Hz by a zero-phase shift 5th order Butterworth 
bandpass, since this bandwidth comprises the main 
content of EHG signals. 

 

Figure 1: Recording protocol of EHG signals. Modified 
from (Jager et al., 2018). 

Segments with motion artifacts were visually 
identified by experts and discarded from the study. 
The criteria adopted to discard EHG sections were: 
non-physiological events with a significant abrupt 
increase in amplitude compared to basal activity, and 
respiratory interference associated with the 
appearance of periodic components with frequencies 
in the band of 12 and 24cpm (0.2–0.4Hz). 220 term 
and 40 preterm EHG recordings were analyzed.  
SampEn and DispEn parameters were computed in 
120s EHG signal analysis windows with a 50% 
overlap (Mas-Cabo, Prats-Boluda, Perales, et al., 
2019) to keep the EHG section at a reasonable 
computational cost with the minimal loss of 
information (Azami & Escudero, 2018). This analysis 
does not require contraction segmentation, which can 
be tedious and subjective, and is more suitable for 
future clinical use in real-time applications. SampEn 
and DispEn were computed for both whole EHG 
bandwidth (0.1-4Hz, WBW) and in the Fast Wave 
High bandwidth (0.34-4Hz, FWH).  

2.2.1 Sample Entropy 

SampEn is the negative natural logarithm of the 
probability that two similar sequences for m points in 
the time series remain similar at the next point, in 
which self-matches are not included in calculating the 
probability (Richman and Moorman, 2000), so that a 
lower SampEn value also indicates more self-
similarity in the time series. SampEn is an 
improvement of approximate entropy (Pincus, 1991) 
and is a frequently used metric in EHG to distinguish 
between term and preterm cases for preterm birth 
detection (Fele-Žorž et al., 2008).  

SampEn depends on two internal parameters: the 
length m of the templates to be compared constructed 
from the time series, and a filtering threshold r, the 
tolerance of mismatch between the corresponding 
elements of the templates. Typically, the value of r is 
considered as 0.15 to 0.25 times the value of standard 
deviation (SD) of the time series, avoiding most of the 
noise present in it. The value of m may be taken 
considering that the length of the time series is 
between 10m and 10m+1, although this latter is not so 
restrictive (Xiong et al., 2019). 

For the present work r was considered as 0.2 
times the value of SD and sweeping m from 2 to 5. 

2.2.2 Dispersion Entropy 

Rostaghi & Azami (2016) proposed a new irregularity 
indicator termed dispersion entropy (DispEn) based 
on symbolic dynamics or patterns, transforming data 
into a new signal with only a few different patterns 
and simplifying the study of dynamic time series to a 
distribution of symbol sequences. It was aimed at 
dealing with the shortcomings of other entropy 
parameters such as SampEn and PermEn. Thus, 
unlike other entropy metrics, DispEn is sensitive to 
changes in simultaneous frequency and amplitude 
values and discriminate diverse biomedical and 
mechanical states (Azami and Escudero, 2018). 

DispEn depends on the mapping function and 
three internal parameters: the length m of templates; 
the number of classes c that determine the number of 
patterns or classes to be considered in the 
computation, and time delay d. It is recommended to 
assume d = 1 for the latter parameter and for m and c 
consider cm < N, N being the length of the time series. 
If c is too low, always with c > 1, signal values are 
too far and it leads to being assigned to the same class, 
while if c is too high, small variations in the signal 
can cause a change of class, making it sensitive to 
noise (Rostaghi & Azami, 2016). Taking these 
considerations into account, in the present work c was 
swept between 3 and 9, m between 2 and 5 and d fixed 
to 1. The mapping functions considered were: linear 
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mapping (linear), normal cumulative distribution 
function (NCDF), tangent sigmoid (tansig), 
logarithm sigmoid (logsig) and sorting method (sort).  

2.2.3 Feature Extraction 

A previous study revealed that the 10th and 90th 
percentiles outperform the 50th percentile of EHG 
parameters for differentiating between different 
obstetric scenarios, including preterm versus term 
delivery (Mas-Cabo et al., 2020). We thus aimed to 
consider the contractile activity present in the 120s 
window analysis without segmenting the EHG 
recordings. For complexity parameters such as 
SampEn, the 10th percentile has been found to 
perform best in discriminating term and preterm labor 
from EHG registers. We therefore worked out the 10th, 
50th and 90th percentiles of SampEn and DispEn 
distributions. 

2.2.4 Statistical Analysis 

The Wilcoxon Rank-Sum Test was performed to 
compare SampEn and DispEn’s ability to distinguish 
term and preterm deliveries from EHG recordings in 
routine checkups. This is a non-parametric statistical 
hypothesis test used to compare two related samples 
to assess whether their population mean ranks 
differ( < 0.05). It is also suitable for non-normal 
distributions such as SampEn and DispEn (see 
Figures 2-3). 

3 RESULTS 

Figures 2 and 3 show the box and whisker plots of the 
of 10th, 50th and 90th percentiles of EHG SampEn and 
DispEn metrics for term and preterm groups 

considering the combination of internal parameter 
sweeps mentioned in Materials and Methods. As in 
the case of DispEN the different mapping functions 
obtained similar results, only the values for sort 
mapping are represented. 

In Figure 2, it can be seen that preterm group 
median values are lower than those of term for the 
10th and 50th SampEn percentiles. This agrees with 
other studies in the literature that found the shorter the 
time to delivery the higher the predictability of the 
EHG signal, and the lower the entropy value. In 
addition, the median values seem to decrease as m 
passes from 2 to 3. 

Table 1 contains the p-values of the Wilcoxon 
Rank-Sum Test of SampEn values for distinguishing 
term and preterm groups for each entropy parameter 
distribution considered. Only the 10th percentile of 
SampEn showed statistically significant differences 
(p-value < 0.05) between the term and preterm groups, 
and the results from the 10th to 90th percentile got 
worse as m increased. The p-values were lower in the 
FWH than WBW. 

Table 1: P-values (Wilcoxon Rank-Sum Test) for SampEn 
computed with r = 0.2ꞏSD when comparing different term 
and preterm groups. Significant differences (p-value < 
0.05) are shaded and the minimum p-value for FWH and 
WBW bandwidths are in bold. 

m 2 3 

10th 
FWH 0.00123 0.00964 
WBW 0.01071 0.01432 

50th 
FWH 0.08753 0.28320 
WBW 0.20581 0.44725 

90th 
FWH 0.83969 0.68999 
WBW 0.82898 0.81121

 
 

 

Figure 2: Boxplot SampEn distributions from EHG signals in different bandwidths and percentiles. 
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Figure 3: Box and whisker plot distributions of DispEn using sorting mapping function computed from EHG signals in 
different bandwidths and percentiles. 

The distribution of the 10th and 50th DispEn 
percentiles had lower median values for the preterm 
than term group, as shown in Figure 3, confirming, as 
has been stated in the literature, that EHG signal 
predictability increases as time to delivery decreases, 
but this was not so clear for the 90th percentile. Also, 
the DispEn median values decreased as the m and c 
values increased. Although Figure 3 only shows the 
distribution obtained for sort mapping function, it is 
representative for the rest of the cases, because of 
their similar trend presented.  

Tables 2 and 3 shows the p-values of the 
Wilcoxon Rank-Sum Test of DispEn values of the 
sort and NCDF mapping function. For the sort 
mapping (Table 2), statistically significant 
differences between term and preterm groups were 
only obtained for the 10th and 50th percentiles in FWH 
bandwidth for both m = 2 and 3. However, the lowest 
p-value was reached with m = 2 and c = 7 for the 10th 
percentile. There were thus no internal parameter 
combinations for WBW that achieved statistically 
significant differences (p-value < 0.05) between term 
and preterm groups with this mapping function. In the 
NCDF mapping function, p-values were lower than 
0.05 in the 10th and 50th percentiles for FWH and in 
the 10th percentile for WBW. If Table 2 and Table 3 

are compared it can be seen that although significant 
statistical results in WBW were reached using NCDF, 
the p-values were lower for FWH using sort mapping. 
The best discrimination between the groups was at m 
= 2 and c = 7, in which DispEn reached its optimum 
value in WBW and FWH, the latter having the lowest 
p-value. 

Comparing the SampEn and DispEn outcomes, 
commonly is obtained that lower median values of the 
preterm than the term group were obtained and the 
median values of the 10th to 90th distributions 
decreased as m increased. Both entropy measures 
were best able to distinguish between term and 
preterm groups (lowest p-values in the test of 
Wilconxon) when m = 2 in the 10th percentile.  

DispEn outperformed SampEn in discriminating 
in FWH (p-value, 0.00007), suggesting a better 
ability to separate term and preterm groups. However, 
in WBW SampEn reached a lower p-value, 0.01071 
than DispEn. 

4 DISCUSSION 

SampEn is considered as one of the most used non-
linear metrics to discriminate between term and 
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preterm cases. One of the facts which do this possible 
is when SampEn is evaluated for women delivering 
prematurely, it is obtained a lower median value than 
those of term case (di Marco et al., 2014). This fact is 
consistent with the outcomes reaches in this study for 
SampEn, and in the same way, the mean values of 
DispEn acquired similar distributions. Consequently, 
DispEn might be considered as a replacement of 
SampEn in the measure of complexity in EHG signals 
for discriminate between term and preterm cases. Our 
findings reveal that DispEn better distinguishes term 
from preterm deliveries than SampEn when 
computed on EHG signal sections obtained in routine 
checkups, (p-value of 0.00007 vs 0.00123). The 
optimization of internal DispEn parameters was 
achieved for an embedding dimension of m = 2 and a 

number of classes c = 7, for the FWH and 10th 
percentile. This result agrees with our previous work 
that showed the 10th percentile of sample entropy and 
Lempel-Ziv non-linear parameters also outperformed 
the 50th for distinguishing term and preterm labor and 
other obstetric scenarios (Mas-Cabo et al., 2020). 
This suggests the possibility of characterizing 
contractile activity present in 120s EHG analysis 
windows without the need for segmentation. 

However, other approaches should also be 
considered. The present study was performed using 
channel S3 only, which had outperformed channels 
S1 and S2 in term/preterm discrimination in previous 
studies (Ahmed and Mandic, 2011; Azami et al., 
2019; Azami, Smith, et al., 2016). In future work it is 
aimed to extend this study by assessing the  
 

Table 2: P-values (Wilcoxon Rank-Sum Test) for DispEn computed with sort mapping function when comparing different 
term and preterm groups. Significant differences (p-value < 0.05) are shaded and the minimum p-value is in bold. 

 

Table 3: P-values (Wilcoxon Rank-Sum Test) for DispEn computed with mapping function NCDF when comparing different 
term and preterm groups. Significant differences (p-value < 0.05) are shaded and the minimum p-value is in bold. 

 

m   c 3 4 5 6 7 8 9 

2 

10th 
FWH 0.00015 0.00019 0.00012 0.00015 0.00018 0.00015 0.00016 
WBW 0.02078 0.02040 0.02732 0.03194 0.01850 0.02797 0.03176 

50th 
FWH 0.00550 0.00611 0.00414 0.00393 0.00438 0.00594 0.00558 
WBW 0.27108 0.27912 0.30853 0.28115 0.28115 0.30314 0.31510 

90th 
FWH 0.09229 0.13584 0.14194 0.12937 0.15148 0.15148 0.17418 
WBW 0.70182 0.66823 0.70691 0.77772 0.80236 0.76897 0.76548 

3 

10th 
FWH 0.00020 0.00021 0.00017 0.00022 0.00022 0.00019 0.00020 
WBW 0.02913 0.02732 0.03362 0.03381 0.02247 0.03051 0.03381 

50th 
FWH 0.00914 0.00932 0.00655 0.00582 0.00620 0.00866 0.00920 
WBW 0.23236 0.28525 0.29780 0.26515 0.27810 0.29044 0.30745 

90th 
FWH 0.12538 0.17059 0.19301 0.20746 0.21751 0.22792 0.30962 
WBW 0.72398 0.71713 0.72912 0.78826 0.77947 0.76199 0.74637

m   c 3 4 5 6 7 8 9 

2 

10th 
FWH 0.00015 0.00014 0.00009 0.00008 0.00007 0.00009 0.00008 
WBW 0.10883 0.08668 0.10053 0.09097 0.06042 0.07938 0.07516 

50th 
FWH 0.00777 0.00692 0.00793 0.00849 0.00726 0.00772 0.00692 
WBW 0.41908 0.39326 0.46521 0.41777 0.39579 0.39579 0.39199 

90th 
FWH 0.07667 0.10783 0.11241 0.09679 0.10486 0.11189 0.11241 
WBW 0.76199 0.80060 0.82720 0.85760 0.84684 0.84148 0.86299 

3 

10th 
FWH 0.00019 0.00016 0.00011 0.00015 0.00012 0.00013 0.00011 
WBW 0.11138 0.09588 0.10148 0.08216 0.05856 0.07078 0.06168 

50th 
FWH 0.01335 0.00938 0.01158 0.01121 0.00908 0.01121 0.01196 
WBW 0.41384 0.40734 0.46381 0.40476 0.39707 0.37330 0.36116 

90th 
FWH 0.09497 0.15811 0.16846 0.18607 0.17274 0.20094 0.21077 
WBW 0.77597 0.77947 0.80944 0.85939 0.80060 0.84505 0.80944
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performance of multivariate DispEn and other 
multivariate entropy algorithms (Mas-Cabo et al., 
2020) in multichannel EHG databases so as to define 
an optimal set of features to develop a preterm labor 
predictor.  

Other point to be considered is that SampEn has 
certain limitations, such as its higher computational 
cost than other entropies in similar assessment 
conditions and its undefined or unreliable results for 
short signals (Azami & Escudero, 2018). For a real-
time or a fast post-processed application in preterm 
birth prediction with EHG signals may be useful 
provide of an algorithm capable to compute a 
measure of complexity of the signal as faster as it is 
possible. Thus, DispEn outperform SampEn and 
other relative entropy metric in which computational 
cost is referred (Azami and Escudero, 2018).  

In addition, only a statistical approach of the 
separability of probability distributions of term and 
preterm registers is taken into account. However, for 
summiting a robust preterm labor discriminator, not 
only one metric is used. In this way, the 
complementation with other metrics related to EHG 
signals should be evaluated and so obtain if the 
append of DispEn outperforms the scores obtained 
with SampEn in similar conditions. 

Although this work focused on term vs preterm 
discrimination with EHG entropy metrics, EHG can 
also be used in other obstetric scenarios (Mas-Cabo et 
al., 2020). DispEn may be suitable for the prediction 
of labor induction success (Benalcazar-Parra et al., 
2019) or detecting imminent delivery in women with 
threatened preterm labor under tocolytic treatment 
(Mas-Cabo, Prats-Boluda, Perales, et al., 2019). 

5 CONCLUSSIONS 

This work assessed the performance of DispEn, a new 
complexity parameter in EHG characterization to 
distinguish term from preterm deliveries in EHG 
recordings picked up during regular checkups. Its 
performance was compared with the traditionally 
used SampEn. Both entropy metrics computed in 
window analyses of 120s show statistically 
significant differences (p-value < 0.05) in women 
who delivered at term from those who delivered 
preterm. DispEn outperformed SampEn 
discrimination in FWH, unlike WBW, for which 
SampEn reached a lower p-value. In both FWH and 
WBW the best discrimination was in the 10th 
percentile, with the lowest p-value for DispEn in 
FWH and internal parameters c = 7 and m = 2, with 
lower entropy values for the preterm group. 
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