Keuper, M., Tang, S., Andres, B., Brox, T., & Schiele, B. 
(2018).  Motion  Segmentation  &  Multiple  Object 
Tracking  by  Correlation  Co-Clustering.  IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence. 
Kim, C., Li, F., Ciptadi, A., & Rehg, J. M. (2015). Multiple 
hypothesis tracking revisited. Proceedings of the IEEE 
International Conference on Computer Vision. 
Kim,  W.,  &  Jung,  C.  (2017).  Illumination-Invariant 
Background  Subtraction:  Comparative  Review, 
Models, and Prospects. In IEEE Access. 
Leal-Taixé, L., Milan, A., Reid, I., Roth, S., & Schindler, 
K. (2015). MOT challenge 2015: towards a benchmark 
for multi-target tracking. Unpublished. 
Li,  Y.,  Huang,  C.,  &  Nevatia,  R.  (2009).  Learning  to 
associate:  Hybridboosted  multi-target  tracker  for 
crowded scene. IEEE Conference on Computer Vision 
and Pattern Recognition Workshops, 2953–2960. 
Lucas,  B.  D.,  &  Kanade,  T.  (1981).  An  Iterative  Image 
Registration Technique with an Application  to  Stereo 
Vision. Proceedings from the 7th IJCAI, 674–679. 
MATLAB 2020b. (2020a). Motion-Based Multiple Object 
Tracking.  Mathworks  Inc. 
https://www.mathworks.com/help/vision/ug/motion-
based-multiple-object-tracking.html 
MATLAB  2020b.  (2020b).  vision.ForegroundDetector. 
Mathworks  Inc. 
https://www.mathworks.com/help/vision/ref/vision.for
egrounddetector-system-object.html 
Migliore, D. A.,  Matteucci,  M., & Naccari, M. (2006). A 
revaluation  of  frame  difference  in  fast  and  robust 
motion  detection.  Proceedings of the ACM 
International Multimedia Conference and Exhibition. 
Milan, A., Leal-Taixé, L., Reid, I., Roth, S., & Schindler, 
K.  (2016).  MOT16:  a  benchmark  for  multi-object 
tracking. Unpublished. 
Munkres,  J.  (1957).  Algorithms  for  the  Assignment  and 
Transportation  Problems.  Journal of the Society for 
Industrial and Applied Mathematics, 5(1), 32–38. 
Oh,  S.,  Hoogs,  A.,  Perera,  A.,  Cuntoor,  N.,  Chen,  C.  C., 
Lee,  J.  T.,  Mukherjee,  S.,  Aggarwal,  J.  K.,  Lee,  H., 
Davis,  L.,  Swears,  E.,  Wang,  X.,  Ji,  Q.,  Reddy,  K., 
Shah,  M., Vondrick, C., Pirsiavash, H., Ramanan, D., 
Yuen, J., … Desai, M. (2011). A large-scale benchmark 
dataset  for  event  recognition  in  surveillance  video. 
IEEE Conference on Computer Vision and Pattern 
Recognition, 3153–3160. 
Perera, A. G. A., Srinivas, C., Hoogs, A., Brooksby, G., & 
Hu,  W.  (2006).  Multi-object  tracking  through 
simultaneous  long  occlusions  and  split-merge 
conditions. IEEE Conference on Computer Vision and 
Pattern Recognition, 666–673. 
Pirsiavash,  H.,  Ramanan,  D.,  &  Fowlkes,  C.  C.  (2011). 
Globally-optimal  greedy  algorithms  for  tracking  a 
variable  number  of  objects.  IEEE Conference on 
Computer Vision and Pattern Recognition, 1201–1208. 
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). 
You only look once: Unified, real-time object detection. 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 779–788. 
Reid,  D.  B.  (1979).  An  Algorithm  for  Tracking  Multiple 
Targets. IEEE Transactions on Automatic Control. 
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-
CNN: Towards real-time object detection with  region 
proposal  networks.  Advances in Neural Information 
Processing Systems (NIPS). 
Rezatofighi, S. H., Milan, A., Zhang, Z., Shi, Q., Dick, A., 
&  Reid,  I.  (2015). Joint  probabilistic  data  association 
revisited.  Proceedings of the IEEE International 
Conference on Computer Vision. 
Sadeghi,  M.  A.,  &  Forsyth,  D.  (2014).  30Hz  object 
detection  with  DPM  V5.  Lecture Notes in Computer 
Science (Including Subseries Lecture Notes in Artificial 
Intelligence and Lecture Notes in Bioinformatics). 
Satopää, V., Albrecht, J., Irwin, D., & Raghavan, B. (2011). 
Finding  a  “kneedle”  in  a  haystack:  Detecting  knee 
points in system behavior. Proceedings - International 
Conference on Distributed Computing Systems. 
Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. 
(2017).  DBSCAN  revisited,  revisited:  Why  and  how 
you should (still) use DBSCAN. ACM Transactions on 
Database Systems. 
Simonyan,  K.,  &  Zisserman,  A.  (2014).  Two-stream 
convolutional  networks  for  action  recognition  in 
videos.  Advances in Neural Information Processing 
Systems. 
Singla,  N.  (2014).  Motion  Detection  Based  on  Frame 
Difference  Method.  International Journal of 
Information & Computation Technology. 
Sobral,  A.,  &  Vacavant,  A.  (2014).  A  comprehensive 
review of background subtraction algorithms evaluated 
with  synthetic  and  real  videos.  Computer Vision and 
Image Understanding. 
Stauffer,  C.,  &  Grimson,  W.  E.  L.  (1999).  Adaptive 
background  mixture  models  for  real-time  tracking. 
Proceedings of the IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition. 
Tang, S., Andres, B., Andriluka, M., & Schiele, B. (2015). 
Subgraph  decomposition  for  multi-target  tracking. 
Proceedings of the IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition. 
Wen, L., Du, D., Cai, Z., Lei, Z., Chang, M. C., Qi, H., Lim, 
J.,  Yang,  M.  H., &  Lyu,  S. (2020).  UA-DETRAC:  A 
new benchmark and protocol for multi-object detection 
and  tracking.  Computer Vision and Image 
Understanding, 193. 
Wen, L., Li, W., Yan, J., Lei, Z., Yi, D., & Li, S. Z. (2014). 
Multiple  target  tracking  based  on  undirected 
hierarchical  relation  hypergraph.  Proceedings of the 
IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition. 
Wren, C. R., Azarbayejani, A., Darrell, T., & Pentland, A. 
P.  (1997).  P  finder:  real-time  tracking  of  the  human 
body.  IEEE Transactions on Pattern Analysis and 
Machine Intelligence. 
Zhan, C., Duan, X., Xu, S., Song, Z., & Luo, M. (2007). An 
improved moving object detection algorithm based on 
frame difference and edge detection. Proceedings of the 
4th International Conference on Image and Graphics, 
ICIG 2007. 
ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods