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Abstract: Data and statistics are key to soccer analytics and have important roles in player evaluation and fan engage-
ment. Automatic recognition of soccer events - such as passes and corners - would ease the data gathering
process, potentially opening up the market for soccer analytics at non professional clubs. Existing approaches
extract events on group level only and rely on television broadcasts or recordings from multiple camera view-
points. We propose a novel method for the recognition of individual actions and group activities in panoramic
videos from a single viewpoint. Three key contributions in the proposed method are (1) player snippets as
model input, (2) independent extraction of spatio-temporal features per player, and (3) feature contextuali-
sation using zero-padding and feature suppression in graph attention networks. Our method classifies video
samples in eight action and eleven activity types, and reaches accuracies above 75% for ten of these classes.

1 INTRODUCTION

Match event data gained an important role in soc-
cer, from team and player evaluation (Pappalardo,
2019a) to increasing fan engagement (Aalbers and
Van Haaren, 2018). The data often describes when,
where, what and by whom events are triggered dur-
ing a professional game. Competition Information
Providers (CIPs) manually annotate match event data
by a team of three or four persons (Pappalardo,
2019b). The procedure is expensive and time con-
suming considering the hundreds of annotated games
in hundreds of yearly competitions. Automating parts
of the annotation process would mitigate the disad-
vantages of manual annotation.

Over the previous decades, several methods have
been proposed for the detection of soccer highlights in
television broadcast videos (Giancola, 2018). How-
ever, these methods report general events rather than
individual player actions. Importantly, match event
data annotated by CIPs describe individual ball inter-
actions (e.g. high pass, heading) and may be labelled
with general event tags (e.g. corner, goal attempt).
Automating annotation of match event data thus re-
quires a shift towards event detection on an individual
level, accompanied with detections of general activi-
ties.

Methods that simultaneously recognise individ-
ual actions and group activities have been evaluated
on videos in the Volleyball Dataset (Ibrahim, 2016).

However, such methods are not trivially applicable to
soccer videos. In this work, we show that a state-
of-the-art method in the volleyball domain, the Actor
Relation Graph (ARG) (Wu, 2019), has a poor perfor-
mance in the soccer domain.

Our main contribution is the proposal of a novel
method for the automatic recognition of soccer
events. The method works with videos that are cap-
tured by a static panoramic camera, positioned at the
long side of the soccer field. We show that it is pos-
sible to recognise actions and activities that occur all
over the field from this perspective only. To the best
of our knowledge, it is the first method in the soccer
domain that infers both individual actions and group
activities simultaneously. Three key contributions in
the proposed method are:

(1) the use of player snippets as model input;

(2) per-player extraction of spatio-temporal features;

(3) and feature contextualisation using zero-padding
and feature suppression in graph attention networks.

This paper is structured as follows. In Section 2,
we present a brief overview of methods for event de-
tection and recognition in sport videos. In Section 3,
we explain the design and implementation of the pro-
posed method. In Section 4, a new soccer video
dataset and evaluation metrics are presented. In Sec-
tion 5, we present experiments and results. Conclu-
sions are given in Section 6.
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2 RELATED WORK

In this section, we describe methods that detect gen-
eral events (“group activities”) in soccer videos, and
we discuss approaches for the simultaneous recogni-
tion of actions and group activities, outside the soccer
domain.

2.1 Event Detection in Soccer

The aim of event detection is to detect temporal
boundaries of a match event or camera shot, and
to classify the isolated samples accordingly (Tavas-
solipour et al., 2013). Goal (attempts), corners, cards,
shoots, penalties, fouls and offsides have been de-
tected in television broadcast videos. Recent meth-
ods use a 3D-Convolutional Neural Network (CNN)
(Khan, 2018) or combine a CNN and a Recurrent
Neural Network (RNN) (Jiang et al., 2016) consec-
utively. Often, these methods rely on the detection of
cinematic features, based on general ways for televi-
sion production teams to record soccer events on cam-
era (Ekin et al., 2003). For example, a goal attempt is
often followed by a slow-motion shot of the event. We
consider these dependencies undesirable as it limits
the applicability of a model to broadcast videos only.
Performances range between 82.0% (Tavassolipour
et al., 2013) and 95.5% (Vanderplaetse and Dupont,
2020) multi-class accuracy (MCA), for the recogni-
tion of seven and four activity classes respectively.

Others combine recordings of twelve (Zhang,
2019) or fourteen (Tsunoda, 2017) static cameras, po-
sitioned around the field. The latter approach reaches
70.2% MCA for the recognition of three classes. We
argue that multiple-camera setups are expensive in
purchase and require large computational resources.
Our method is designed for event recognition in
videos from one static panoramic camera, which are
more accessible for non professional clubs.

Soccer videos contain a majority of background
pixels due to the size of the field. Nevertheless, most
of the methods mentioned above classify events di-
rectly from video frames. Zhang et al. (2019) pro-
pose to detect events from latent player embeddings,
created by a U-encoder on pixels in player bound-
ing boxes. Our method creates latent player embed-
dings also, from normalised player snippets instead of
bounding boxes.

2.2 Action and Group Activity
Recognition

Three types of deep learning networks can be dis-
covered in state-of-the-art action and group activ-

ity recognition methods: spatio-temporal, multiple-
stream and hybrid networks. Spatio-temporal net-
works, such as a 3D-CNN (Ji, 2012), search for volu-
metric patterns at different scales of the input videos.
The I3D CNN (Carreira and Zisserman, 2017) is a
multiple-stream network that recognises actions from
RGB and optical flow videos. The network appears to
give better results in group activity recognition than
a standard CNN (Azar, 2019). In a hybrid network,
two networks are combined consecutively (Kong and
Fu, 2018). The approach is popular for group activity
recognition. First, a CNN extracts individual features
and creates a latent embedding per group member.
We will refer to this phase as feature extraction. Sec-
ond, a different network explores inter-human rela-
tions to update the embeddings accordingly. We will
refer to this phase as feature contextualisation. RNNs
(Tsunoda, 2017) and Graph Convolutional Networks
(Ibrahim and Mori, 2018) are often used for the latter
phase.

Our method uses a hybrid network with I3D
for feature extraction and graph attention networks
(GATs) (Veličković, 2017) for feature contextualisa-
tion. We have not yet seen these networks being ap-
plied to event recognition in the soccer domain.

2.3 Actor Relation Graph as Baseline

It is difficult to compare our method with state-of-the-
art in soccer event detection, because each method is
evaluated with another dataset. The sets vary in event
types, number of classes and input videos, while none
of the methods recognise individual actions.

The Actor Relation Graph (ARG) is a hybrid
network that uses an Inception-V3 CNN (Szegedy,
2016) for feature extraction and uses GATs with self-
attention (Vaswani, 2017) for feature contextualisa-
tion. The method reaches state-of-the-art perfor-
mance in action and group activity recognition on
Volleyball Dataset videos. Because the domain is re-
lated to soccer, and an open-source implementation is
available, the ARG is selected as baseline.

3 PROPOSED METHOD

We start this section with an overview of the proposed
method architecture, and note where it differs from
the baseline approach. Thereafter, the architecture is
explained along four phases in the data pipeline: data
pre-processing, feature extraction, feature contextual-
isation and the generation of predictions. Last, we
provide implementation details.
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Figure 1: Architecture of the proposed method. T is the number of consecutive frames considered in one activity. N is a
pre-defined number of persons to be detected on the soccer field. Ns = min(Nd ,N), with Nd the number of automatically
detected players by an ACF person detector. d is the dimensionality of a player embedding.

3.1 Overview of Architecture

The data pipeline of the proposed method is dis-
played in Figure 1. The method pre-processes the data
by generating player snippets using a virtual cam-
era algorithm. Such an algorithm synthesises frames
from a raw video stream where the camera virtu-
ally zooms and rotates, while normalising for lens
distortion (Matsui, 1998). The virtual camera algo-
rithm takes raw video frames, player positions and
a camera model as input. Spatio-temporal features
are extracted from RGB and optical flow videos by
the I3D network. The resulting player embeddings
are updated with multi-head self-attention in GATs.
The model outputs an action label per player and one
shared activity label per sample.

The Actor Relation Graph (ARG), extracts fea-
tures from the whole frame at once. The video frames
are sub-sampled to 1280× 720 pixels such that a fea-
ture map can be generated from the full scene. There-
after, a standard sized feature map is cut-out for ev-
ery player with RoIAlign. Only spatial features are
captured by a standard CNN. Similar to the proposed
method, the ARG uses GATs with self-attention to
contextualise player embeddings.

3.2 Player Snippets as Model Input

A soccer field is about 40 times larger than a volley-
ball field, meaning that the distance between a player
and the camera can become much larger, players be-
come smaller and more pixels in the video capture ir-
relevant background. Therefore, the proposed method
uses high resolution player representations as model
input in the form of player snippets.

To create player snippets, the positions of all play-
ers must be known in field coordinates such that a vir-
tual camera algorithm can zoom in on these positions.
We denote a field coordinate with (X ,Y ), where (0,0)

is the centre spot of the field. An Aggregated Chan-
nel Features (ACF) person detector (Dollár, 2014) re-
turns Nd bounding boxes for persons located within
the soccer field lines. The detector is applied to all T
consecutive frames considered in one activity. Player
trajectories are created from bounding boxes that re-
late to the same player in consecutive frames, using
tracking software (Bouma, 2013). When trajecto-
ries are shorter than T frames, they are linearly in-
terpolated and extrapolated. For each activity, we
select the Ns trajectories with the largest mean con-
fidence of the person detector over T frames. Here
Ns = min(Nd ,N), with N(=23) the number of persons
that we strive to detect (22 players and one referee).

With the camera model, pixel coordinates (x,y)
can be transformed into real-world coordinates
(X ,Y ,Z) by the projection on a virtual plane at height
Z. The bottom-centre pixel in each bounding box
is projected onto the ground (Z = 0.0 meters) to be
transformed into a field coordinate. Finally, a virtual
camera zooms in on position (X t

i ,Y
t
i ,0.8m) for player

i in frame t. The zoomed image is cut-out from the
original frame and resized to 224 × 224 pixels, the
standard resolution for I3D input.

The use of player snippets gives two benefits for
action and activity recognition. First, the snippets
provide high resolution representations for all players,
including those located far from the camera. Second,
the virtual camera normalises for the rotated horizon
present at most field positions in our dataset.

3.3 I3D for Feature Extraction

The proposed method uses a two-stream I3D network
(Carreira and Zisserman, 2017) to create player fea-
ture embeddings. The CNN extracts spatio-temporal
features, which we expect to be more informative than
spatial features only, as they could describe move-
ment over time. For example, it could distinguish

ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods

596



between ball movements towards and away from a
player. We experiment with two temporal window
sizes for I3D, being 0.32 and 0.48 seconds, corre-
sponding to T = 9 (baseline) and T = 13 frames.

Optical flow images are generated from the player
snippets using the TV-L1 algorithm (Zach et al.,
2007). I3D processes RGB and optical flow videos in
two separate streams. For each stream, the videos are
given to the network in batches of Ns video samples,
where Ns relates to the number of detected players.
Then, I3D provides a d-dimensional player embed-
ding through d logits. The result of both streams is
added element-wise, in a late fusion fashion. For each
activity sample, I3D returns one Ns×d feature matrix.
Previously, we experimented with d=1024 (baseline)
and d=256, and found the latter to be more optimal
for our model. All presented results are with d=256.

3.4 Graph Attention Networks for
Feature Contextualisation

State-of-the-art methods for group activity recogni-
tion have shown that attention is a useful mechanism
for contextualisation (Gavrilyuk, 2020). We will fol-
low this approach and use multi-head self-attention
(Vaswani, 2017). Before feature contextualisation,
we apply layer normalisation over each embedding
independently and a ReLU activation thereafter.

Graph Attention Networks. We construct H(=64)
GATs, where each graph contains N(=23) vertices
representing the players and one referee. We adopt
the ARG approach, where the magnitudes of atten-
tion between players depend on inter-player relation-
ships and relative player distance (see Equation 1). A
distance-mask D∈ [0,1]N×N prunes player-pairs from
the graph when they are physically too far from each
other. Di, j = 0 if the distance between player i and j is
larger than µ, and Di, j = 1 otherwise. We use µ= 20.8
meters, which is 0.2 times the width of a soccer court.
It is comparable to the original ARG implementation,
using 0.2 times the image width.

G(h) = σ

D
(

W (h)
Q E +b(h)Q

)(
W (h)

K E +b(h)K

)T

√
d


(1)

with σ the softmax function, E ∈ RN×d the
original player embeddings and G(h) ∈ RN×N the
graph attention matrix from graph h. Weight matrices
W (h)

Q ,W (h)
K ∈ Rd×d and biases b(h)Q ,b(h)K ∈ Rd linearly

transform the player embeddings to query and key
embeddings.

Graph Convolution. The original player embed-
dings are non-linearly transformed via a graph convo-
lution layer, as in Equation 2, also adopted from the
ARG approach. Layer normalisation is applied over
all embeddings in one graph.

Ẽ(h) = ReLU
(

LayerNorm
(

G(h)EW (h)
V

))
(2)

with Ẽ(h) ∈ RN×d the updated context features
from graph h and weight matrix W (h)

V ∈ Rd×d that
transforms the collection of contextualised features to
value embeddings.

Missing Player Detections. Where it was possi-
ble to process Ns players per sample in the previ-
ous phases, feature contextualisation requires pre-
cisely N feature embeddings. This is required, as the
model processes feature matrices with dimensionality
BS×N× d, with BS=batch size. Code implementa-
tion1 of the ARG reveals that the method duplicates
N −Ns player embeddings in each graph, to fill in
for the missing players. The proposed method fills
the gaps with d-dimensional vectors containing zeros
only (“zero-padding”) instead. These embeddings are
thus ignored by the self-attention mechanism.

Multi-head Attention. The context features from
multiple graphs are combined using a fusion func-
tion. Previously, we found H = 64 to be optimal for
our model. The authors of the ARG propose to add
the contextualised embeddings element-wise. The
proposed method uses a concatenation operation (see
Equation 3) instead of an addition operation.

E ′ = E +Concat
(

Ẽ(1), Ẽ(2), . . . , Ẽ(H)
)

WO (3)

with E ′ the final feature embeddings before label
prediction, a residual connection to the original em-
beddings E and weight matrix WO ∈ RH×d×d . The
embeddings from H graphs are concatenated and lin-
early transformed through WO.

Implicit Bias. We consider players that are interact-
ing with the ball or that are involved in a duel as ac-
tive. Players that are not active are referred to as pas-
sive. Soccer games contain an implicit bias that when
no duel occurs, only one player is interacting with
the ball (“active”). A model with feature contextu-
alisation should explore this inter-player relation, and
predict fewer “false positives” (passive players that
are wrongly recognised as active); especially in activ-
ities with no duel where multiple players are initially

1github.com/wjchaoGit/Group-Activity-Recognition
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recognised as active. The duplication padding strat-
egy could accidentally duplicate active players in ac-
tivities where usually only one is interacting with the
ball. Zero-padding avoids this issue and is expected
to strengthen the implicit bias. Besides, the network
must find a way to diminish large activations that re-
late to active classes in passive players. We argue that
adding non-negative embedding values as fusion op-
eration does not diminish any activations. We call this
feature accumulation. With the concatenation opera-
tion, context features can be added as well as sub-
tracted. We call the latter feature suppression.

3.5 Predictions

The refined player representations E ′ are grouped in a
N× d feature matrix. Thereafter, two output streams
predict the action labels and activity label, separately.
Both classifications are performed through a fully-
connected (FC) layer and softmax. In the activity
stream, max pooling is applied to the feature matrix
beforehand, to obtain one d-dimensional vector.

3.6 Implementation Details

The I3D model is trained without feature contextu-
alisation first, and is initiated with model parameters
pre-trained on ImageNet (Deng, 2009) and Kinetics
(Kay, 2017). Hyperparameters that resulted in the
best performing ARG on soccer videos were selected
to train all models with. The model is trained in 20
epochs, with learning rate 1×10−5 (5×10−6 starting
from epoch 15), dropout probability of 0.3, no weight
decay and using an Adam optimiser (Kingma and Ba,
2014). Cross entropy with class weights is used to
calculate the action and activity prediction losses.

The GATs are trained afterwards, with all I3D lay-
ers frozen. Hyperparameters are unchanged, except
for the number of epochs (40 instead of 20).

4 EXPERIMENTAL SETUP

4.1 The Soccer Dataset

We constructed a new dataset including soccer videos
from one panoramic camera, which contains four
sensors that are positioned side-by-side and together
capture the whole field from one static perspective
(see Figure 2). A camera model is constructed for
each sensor by calibration with the field dimensions.
Videos from the four sensors are combined in one
video stream that has a resolution of 3840 × 2160
pixels at 25 frames per second. During 280 minutes

in four soccer games, we annotated 3717 activities in
eleven categories. The exact frame that an event oc-
curred was registered, i.e. the moment of ball contact,
when the ball leaves the players’ foot/hands, or when
the referee blows its whistle. This frame is the middle
frame in temporal window T . The training set con-
tains 2801 events from game one, game two and the
first half of game three. The validation set consists of
403 events in the second half of game three. All 513
events in game four are kept in the test set.

Using an ACF person detector, we obtained
bounding boxes for persons located inside the field
lines, for each activity. The detected persons were an-
notated with an action label, in eight categories, or as
an incorrect detection. The number of action and ac-
tivity instances can be seen in Table 7 for the train,
validation and test set. In total, 83818 samples were
annotated with an individual action label. Note that
94.6% of the detections have a passive action label.

Figure 2: Example frame of the raw video stream.

4.2 Evaluation Metrics

In related work, performance in action and group ac-
tivity recognition is often reported in multi-class ac-
curacy (MCA). However, as the Soccer Dataset is
highly unbalanced, this metric gives a too optimistic
view. Therefore, we calculate a Matthew Correlation
Coefficient (MCC) (Matthews, 1975) per class label.
The metric is independent of class imbalance. To
avoid reporting nineteen MCCs at every evaluation,
we average the scores over all actions and all activi-
ties. The result is two mean MCC (MMCC) scores.

5 EXPERIMENTS AND RESULTS

Experiments are discussed along three phases: data
pre-processing, feature extraction and feature contex-
tualisation. Experiments in Sections 5.1-5.3 use the
validation set for evaluation. In Section 5.4, we eval-
uate the ability of the ARG as baseline and the pro-
posed method to generalise to samples in the test set.
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5.1 Sub-sampling and Player Snippets

In soccer, players can be positioned far from the cam-
era due to the large playing field. The ARG as used
by Wu et al. (2019) sub-samples the video frames to
a standard resolution. This causes soccer players that
are farthest from the camera to be represented with
very few pixels. In Figure 3 (a) it can be seen that for
a soccer player located at the goal line, the body pose
is difficult to recognise. The effect of using player
snippets instead, with and without horizon normalisa-
tion (see Figure 3 (b) and (c)), is evaluated by training
an Inception-V3 with the three different inputs.

(a) Sub-sampled (b) Player snippet (c) Pl.sn. + norm.

Figure 3: Sample of a player located at the left goal line.

In Table 1 it can be seen that using player snip-
pets increases the MMCC in action recognition from
0.163 to 0.264 and in activity recognition from 0.364
to 0.437. Normalisation of the rotated horizon further
increases these scores to 0.358 (actions) and 0.616
(activities). In Figure 4, the accuracies for action
recognition are provided per field region, where the
top regions are farthest away from the camera. It can
be seen that the use of player snippets not only im-
proves action recognition, but also results in more uni-
form performance scores over all field regions. Sub-
sampling gives the poorest results for players that are
rotated or that are positioned far away from the cam-
era. In the next experiments, player snippets with
horizon normalisation are used as model input.

Table 1: MMCCs for sub-sampling (baseline) and player
snippets, with and without horizon normalisation.

Model input Norm. Actions Activities
Sub-sampling 5 0.163 0.364
Player snippets 5 0.264 0.437
Player snippets X 0.358 0.616

(a) Sub-sampling (b) Player snippets + norm.

Figure 4: Accuracies of action predictions at different parts
of the soccer field. Top regions are farthest from the camera.

5.2 Inception-V3 and I3D

We compared Inception-V3 and I3D as backbone for
feature extraction. The former extracts spatial fea-
tures and uses temporal fusion via element-wise ad-
dition. I3D explores spatio-temporal features.

The previous experiment was carried out using
Inception-V3 with a batch size of four. In Table 2,
it can be seen that decreasing the batch size to one in-
creases action recognition performance to an MMCC
of 0.500. It can also be seen that spatio-temporal
features are particularly important for the recognition
of individual actions, increasing performance to an
MMCC of 0.646. Both networks give comparable re-
sults for activity recognition. We reason that group
activities develop over multiple seconds, rather than
the short time period that we selected for one sam-
ple (0.32 seconds). Increasing the temporal window
to 0.48 seconds results in MMCCs of 0.658 for action
and 0.641 for activity recognition. I3D, with a 0.48s
temporal window, is used in the next experiment.

Table 2: MMCCs when using Inception-V3 (baseline) or
I3D as backbone for feature extraction.

Back- Temp. Batch Actions Activitiesbone window size
Inc-V3 0.32 sec 4 0.358 0.616
Inc-V3 0.32 sec 1 0.500 0.615
I3D 0.32 sec 1 0.646 0.619
I3D 0.48 sec 1 0.658 0.641

5.3 Padding and Fusion Function

The action classifications made in the previous exper-
iments are without feature contextualisation. Putting
player embeddings into the context of other players is
expected to improve model predictions. However, in
Table 3 can be seen that using GATs with an additive
fusion function and duplication for missing player de-
tections does not improve upon the model without
contextualisation. Using zero-padding and concate-
nation does improve the results towards MMCCs of
0.687 for action and 0.676 for activity recognition.

Table 3: MMCCs with or without (first row) feature con-
textualisation, using different fusion functions and padding
strategies for missing player detections.

Fusion Padding Actions Activities
- - 0.658 0.641
Addition Duplication 0.651 0.628
Addition Zero 0.669 0.607
Concat. Zero 0.687 0.676
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In Table 4 can be seen that the number of false
positives (FPs) can be reduced with feature contextu-
alisation, in activities where only one player can in-
teract with the ball. When a network recognises mul-
tiple players as active (X≥2) in one activity, it should
discover that only one of these is correct. However,
the duplication padding strategy weakens this implicit
bias, resulting in more FPs than a model without con-
textualisation. Zero-padding and the suppression of
features via the concatenation operation reduces the
number of initial FPs with 83%.

Table 4: Number of misclassified passive players that are
recognised as active (false positives), in all activities where
only one player can interact with the ball.

Fusion
function

Padd-
ing

# FPs, when X are
recognised as active: Total

#FPsX=1 X≥2
- - 5 36 41
Addition Dupl. 3 43 46
Addition Zero 3 18 21
Concat. Zero 1 6 7

5.4 Test Samples From an Unseen Game

We evaluated the ARG (Wu, 2019) and the proposed
method on test samples from an unseen game. The
former is not able to generalise to these samples and
gains MMCCs equal to random predictions (see Ta-
ble 5). The domain gap between volleyball and soccer
is too large for the method to be applied right away.
Nevertheless, with the proposed adaptations it is pos-
sible to gain MMCCs of 0.623 for action and 0.632
for activity recognition. Compared to the scores on
the validation set, the performance drop is only 0.064
and 0.044 respectively. Our method reaches 98.7%
MCA for action and 75.2% MCA for activity recog-
nition. However, recall that the dataset is unbalanced.

Table 5: Performance of the baseline and proposed method,
both trained with soccer videos, on test samples from an
unseen game.

Method Actions Activities
MMCC MCA MMCC MCA

ARG 0.005 21.6% 0.000 7.2%
Proposed 0.623 98.7% 0.632 75.2%

For group activity recognition, we can compare
the results with related work in the soccer domain (see
Table 6). Our method recognises a large number of
activity classes, while it cannot rely on cinematic fea-
tures in television broadcasts and does not use video
input from multiple camera positions. Nevertheless,
the maximum reduction in MCA is 20.3%.

Table 6: MCA for activity recognition in soccer videos,
with #C the number of classes.

Method Video input #C MCA
Tavassolipour, 2013 TV broadc. 7 82.0%
Jiang, 2016 TV broadc. 4 89.1%
Khan, 2018 TV broadc. 4 94.5%
Vanderplaetse, 2020 TV broadc. 4 95.5%
Tsunoda, 2017 Multi cam. 3 70.2%
Ours Panorama 11 75.2%

In Table 7, the correlation coefficients and accu-
racies can be seen per class. The proposed method
recognises four actions and six activities with an
MCC above 0.7 and with an accuracy above 75% (see
classes in bold).

6 CONCLUSION

We proposed a novel method for the recognition of in-
dividual actions and group activities in soccer videos
from a static panoramic camera. We showed that it
is possible to recognise four actions and six activities
with accuracies above 75%, in videos captured from
a single perspective. We introduced three novel as-
pects: (1) player snippets and horizon normalisation,
(2) spatio-temporal feature extraction, and (3) the use
of context information by graph attention networks
that use zero-padding and feature suppression.
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Table 7: Performance of the proposed method on test samples from an unseen game. Three activity classes describe different
kinds of duels: air duel (A), duel with one player in ball possession (P), duel with a loose ball (L). “Ball OOB” is an
abbreviation for “ball out-of-bounds”. The numbers of training/validation/test samples are provided in the last three rows.
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