
HyperPass: Secure Password Input Platform

Michael Kiperberg1 and Nezer J. Zaidenberg2

1Software Engineering Department, Shamoon College of Engineering, Beer-Sheva, Israel
2School of Computer Science, The College of Management, Academic Studies, Israel

Keywords: Virtual Machine Monitors, Hypervisors, Trusted Computing Base, Security Indicators.

Abstract: Confidential information, like passwords and credit card numbers, travel from the user’s local machine to a re-
mote server via secure communication protocols. Whereas remote servers are serviced by security specialists,
local machines are more vulnerable to memory attacks and keyloggers. To counter these attacks we propose
a secure password input platform, called HyperPass, which is based on a thin hypervisor. The thin hypervisor
acts as an isolated and secure environment for entering and encrypting user’s confidential information. Hyper-
Pass uses the keyboard’s scroll lock LED as a security indicator. Our evaluation shows that the performance
overhead of HyperPass is insignificant (≈ 2.79%).

1 INTRODUCTION

Confidential information, like passwords and credit
card numbers, travel from the user’s local machine to
a remote server via secure communication protocols,
like HTTPS (Rescorla et al., 2000). Remote servers
are serviced by security specialists and have many
protection layers, e.g., firewalls (Sharma et al., 2014),
antiviruses (Gandotra et al., 2014), intrusion detec-
tion systems (Axelsson, 2000). On the other hand,
the user’s local machine, which usually lacks some of
these protection mechanisms, is more vulnerable to
attacks.

The confidential information is at risk between the
moment of pressing a keyboard key until the moment
of encryption by a secure communication protocol.
Keyloggers (Hussain et al., 2016) can intercept the
confidential information while it is being typed by the
user. Software attacks can fetch the confidential infor-
mation from the memory of the target process, e.g., a
web browser. In order to protect the confidential in-
formation, it is required to: (a) safely acquire user’s
input, (b) store the input in an isolated environment,
and (c) encrypt the input before it leaves the isolated
environment.

Requirements (a) and (b) can be easily satisfied on
ARM processors using ARM’s TrustZone (Pinto and
Santos, 2019). A software module executing in Trust-
Zone’s isolated environment, the ”secure world”, can
prevent ”normal world” software from accessing to its
internal data.

In addition, ARM’s SoC devices are divided into
two categories: secure and non-secure (Rosenbaum
et al., 2019). A special bit, the ”NS bit”, on the sys-
tem bus is used to tag the security of each transaction.
Transaction issued by secure devices set the NS bit to
0, whereas non-secure devices set this bit to 1. Secure
devices will not handle transactions whose NS bit is
set to 1. The CPU issues a transaction the value of the
NS bit is determined by the current world of the CPU:
a normal world sets the bit to 1 and a secure world sets
it to 0. For example, a security LED, being a secure
device, can be turned off and on only by a software
module executing in the secure world.

On Intel CPUs, comparable memory isolation can
be achieved using virtualization (Neiger et al., 2006)
and enclaves (SGX) (Costan and Devadas, 2016).
However, Intel platforms are lacking built-in mech-
anisms for secure communication with external de-
vices. Fortunately, virtualization can be used to over-
come this deficiency. BitVisor (Shinagawa et al.,
2009) was the first attempt to use virtualization for
securing a hardware device. Specifically, BitVisor is
a thin hypervisor that intercepts the communication
between the operating system and a hard disk in order
to implement full disk encryption transparently.

In order to secure user’s input, we propose to use
a thin hypervisor, similarly to BitVisor. Unlike BitVi-
sor, our hypervisor intercepts the communication be-
tween the operating system and the keyboard. When
the user is required to enter a password, the hypervi-
sor turns on the scroll lock LED (Chapweske, 2003),

580
Kiperberg, M. and Zaidenberg, N.
HyperPass: Secure Password Input Platform.
DOI: 10.5220/0010301905800587
In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 580-587
ISBN: 978-989-758-491-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

indicating that the input of the user is safe. All at-
tempts to turn on the scroll lock LED from the oper-
ating system are circumvented by the hypervisor. The
scroll lock LED can be seen by the user as a security
indicator.

There are several ways to satisfy requirement
(c): encrypting the confidential information before it
leaves the isolated environment. The most common
approach is to move the communication stack from
the normal environment to the isolated (secure) envi-
ronment (Liu and Cox, 2014; Rubinov et al., 2016),
thus significantly increasing the size of the trusted
code and decreasing the overall security. Another ap-
proach attempts to move only the encrypting func-
tionality to the isolated environment (Bugiel et al.,
2010; Li et al., 2014). This approach usually requires
cooperating between the code in normal and secure
environments (Ying et al., 2018).

Following the idea of T-PIM (Hirano et al., 2009),
we propose to use an external proxy-server connected
to the isolated environment using a second commu-
nication line. Specifically, the isolated environment
encrypts confidential information using the proxy’s
public key and sends it via the second communica-
tion line. The proxy decrypts the confidential infor-
mation and inserts it in the communication flow. The
user ”marks” the place of insertion by entering a pre-
defined code-word.

From the user’s perspective the process of pass-
word entering is very natural. The user opens his
browser and navigates to the login screen of some
portal, which asks for a username and password. In
response the user enters his username and a prede-
fined code-word. A window pops up on the screen
asking for the actual password. The scroll lock LED
is turned on, signifying that it is now safe to enter the
password. The user enters his password and presses
enter. The password is encrypted and sent to the proxy
server, which replaces the code-word with the actual
password and sends the resulting form to the remote
web server. The login succeeds.

The main contributions of this paper are as fol-
lows. We present a novel method for secure in-
put from a conventional keyboard using the scroll
lock LED as a security indicator. We describe a
hypervisor-based system, called HyperPass, which
takes advantage of this input method. HyperPass al-
lows the user to enter his password and other con-
fidential information naturally and securely. Unlike
previously described approaches, HyperPass does not
require any modifications to existing software nor
does it require execution of additional VMs on the
user’s machine. We present and evaluate a prototype
implementation of HyperPass. Our results show that

the performance overhead of HyperPass is insignifi-
cant (≈ 2.79%).

2 BACKGROUND

Intel introduced virtualization extensions to their
CPUs more than a decade ago (Neiger et al., 2006).
The main reason for introducing these extensions was
enabling the execution of multiple operating systems
simultaneously in an isolated environment, called a
”Virtual Machine” (VM). A special software compo-
nent, called a ”Virtual Machine Monitor” (VMM) or
”hypervisor”, manages the virtual machines. The hy-
pervisor can configure interception of various events
that occur in the VMs, e.g., execution of privileged
instructions, access to IO ports, triggering of an ex-
ception, access to Model-Specific Registers (MSRs),
etc. Upon the occurrence of a pre-configured event, a
”VM-exit” occurs, which transfers the control to the
hypervisor. The information about the occurred event
is stored in a special data structure for the hypervisor’s
inspection.

The hypervisor inspects the information about the
occurred event and handles it accordingly. After com-
pletion of the event handling, the hypervisor performs
a ”VM-entry”, which transfers the control to the VM.

The hypervisor manages the memory via a mecha-
nism called ”Extended Page Tables” (EPT). ETP acts
as a secondary page table, which translates VM’s
physical addresses to real physical addresses. In addi-
tion, the hypervisor can use the EPT to make certain
pages inaccessible by the VM. An attempt to access
these pages trigger and EPT-violation, transferring the
control to the hypervisor.

A hypervisor can intercept a wide range of events.
While interception of some events, e.g., access to IO
ports, can be disabled, others, e.g., execution of the
CPUID instruction, are intercepted unconditionally.

HyperPass uses three types of events: (1) access
to IO ports, (2) execution of the CPUID instruction,
and (3) EPT-violations. The hypervisor can select the
ports that need to be intercepted. Attempts to access
the selected ports will trigger a VM-exit, whereas ac-
cessing other ports will not incur any overhead.

The CPUID instruction is used by many hypervi-
sors, e.g., Xen, KVM, Hyper-V, as a hypercall instruc-
tion (Microsoft, 2012), i.e. an instruction that allows
a software module executing inside a VM to invoke a
function of a VMM. The eax register is used to select
the required function, whereas other registers act as
arguments.

An EPT-violation occurs when the virtual ma-
chine attempts to access a page that was marked as

HyperPass: Secure Password Input Platform

581

inaccessible by the hypervisor. In response to such
access, the control is transferred to the hypervisor.
The hypervisor can respond by modifying the access
rights and performing a VM-entry.

2.1 PS/2 Keyboards

The current implementation of HyperPass supports
only PS/2 keyboards. This type of keyboards was
selected for the simplicity of its communication pro-
tocol. The communication with the PS/2 keyboards
is managed by a PS/2 controller (Chapweske, 2003).
The PS/2 controller uses two IO ports for its opera-
tion, 0x60 as a data port and 0x64 as a command and
status port. Port 0x64 is used for communication with
the controller itself, e.g., reading and writing its inter-
nal RAM, and for selection of the destination device.
Port 0x60 is used to send and receive data from the
previously selected destination device.

Assuming that the selected destination device is
a PS/2 keyboard, the act of reading from port 0x60
reads the last scan code of the keyboard. A scan code
represents a keyboard event, like pressing or releasing
a key. The scan codes can then be translated into a
character according to a conversion table. Some scan
codes, e.g., presses and releases of shift keys, affect
the translation of other scan codes. For example, in
order to type a capital ’A’, one can produce the fol-
lowing sequence of events: (1) pressing the left shift
key, (2) pressing the ’a’ key, (3) releasing the ’a’ key,
(4) releasing the left shift key. The presses left shift
key causes the pressed ’a’ key to be translated into the
capital ’A’ character.

The act of writing to port 0x60, sends a command
to the keyboard. The commands configure various as-
pects of a keyboard’s behavior. Some commands are
single byte, others are followed by an argument. For
example, the 0xFF command is a single byte com-
mand, which resets the keyboard. The 0xF3 com-
mand defines the rate at which a pressed key produces
events. The rate is defined by the byte that follows the
0xF3 byte. Another example is the 0xED command,
which defines the LEDs state. The lower three bits in
the byte that follows the 0xED command define the
state of scroll lock (bit 0), number lock (bit 1) and the
caps lock (bit 2) LEDs.

3 THREAT MODEL

We assume that the attacker has full control over the
software of the local machine. In particular, we as-
sume that the attacker is able to execute random code
in kernel-mode. We impose only a single limitation

on the attacker: we assume that the EFI boot order
cannot be changed, i.e. we assume that HyperPass’
EFI application is always the first application that is
loaded by the EFI firmware.

4 SYSTEM DESIGN

HyperPass consists of three components: (a) a thin
hypervisor, (b) a user-mode agent application and (c)
a proxy server. The hypervisor and the agent run on
the user’s local machine, whereas the proxy server
runs on a remote server. Several users can share a
single proxy server.

Figure 1 depicts the interactions between the dif-
ferent components of HyperPass. HyperPass requires
a proxy server between the local machine and a re-
mote server. To understand these interactions, con-
sider the following example, in which a user attempts
to log in to the web portal of his organization. The re-
mote server redirects the user to a login screen (steps
1 and 2), which requests a username and a pass-

word. Normally, the user enters his credentials and
they are sent to the remote server. With HyperPass,
the user enters a special code-word in the password
field, thus indicating his desire to enter the pass-
word securely. The username and the code-word, as
any other outgoing communication, are sent to a pre-
configured proxy server (step 3). The proxy server
detects the code-word and sends a password request to
the user-mode agent (step 4). The user-mode agent
displays the URL of the web portal and the name of
the password field. Then, the agent issues a hyper-
call (step 5), which causes the hypervisor to turn
on the scroll-lock LED and begin intercepting key-
board strokes. The user verifies that the scroll-lock
LED is on and enters the password. The password is
consumed by the hypervisor one letter at a time un-
til the enter key is pressed, which signifies the end
of the password. The hypervisor encrypts the pass-
word using the proxy’s public key and transmits it to
the user-mode agent (step 6), which sends it to the
proxy (7). The proxy replaces the code-word with
the decrypted password and sends the resulting HTTP
request to the remote server (step 8).

4.1 Proxy Server

HyperPass uses mitmproxy, an extensible HTTP
proxy server (Boneh et al., 2007). mitmproxy provides
a Python API for add-ons, which can perform differ-
ent monitoring activities on the communication flows.
When a browser is configured to use a proxy server,
the communication is encrypted using the proxy’s

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

582

User-mode

Kernel-modeOperating System

Root-modeHypervisor

Agent Firefox

mitmproxy

Remote Server

5 6

2 34 7

81

Figure 1: Interactions between HyperPass components and other software. The three components of HyperPass, the hypervi-
sor, the user-mode agent and the proxy, are shaded.

public key, thus allowing it to decrypt and analyze the
data.

HyperPass includes an add-on for mitmproxy that
intercepts HTTP requests and analyzes them. The
goal of the analysis is to find password fields that
include a predefined code-word. When such a pass-
word field is found, the add-on contacts the user-mode
agent, running on the local machine. The add-on pro-
vides the agent with the name of the password field
and the URL to which it was submitted.

The user-mode agent replies with the user-
provided password. The password is encrypted with
the add-on’s public key (which may differ from mitm-
proxy’s public key). The add-on decrypts the pass-
word and replaces the code-word with the decrypted
password. Then, the HTTP request is sent to its desti-
nation.

4.2 Agent

The user-mode agent is implemented as a console ap-
plication, which listens on a UDP socket. When the
proxy server connects to the UDP socket, it sends a
pair consisting of the name of the password field and
the URL to which this password field should be sent.
The agent displays these the name of the field and the
URL to the user and issues a hypercall.

The hypercall requests the hypervisor to enter se-
cure mode. While in this mode, the hypervisor reads
the keyboard strokes and replaces them with the as-
terisk key, which is then displayed by the user-mode
agent.

After entering the password, the user presses the
enter key, causing the agent to issue another hypercall.
The hypervisor reacts to this hypercall by provided
the agent with an encrypted version of the user pass-
word. The encryption is performed using the proxy’s
public key. The agent sends the encrypted password
to the proxy server and continues listening on the
UDP socket.

4.3 Hypervisor

The hypervisor is embedded in an EFI application
(Zimmer, 2009). The application boots before the op-
erating system, initializes the hypervisor and invokes
the operating system bootloader.

The hypervisor intercepts two types of events: (a)
input-output on port 0x60 and (b) execution of the
CPUID instruction. The CPUID instruction is used for
hypercalls. The user-mode agent sets the eax register
to the hypercall index and executes the CPUID instruc-
tion. The instruction is intercepted by the hypervisor,
which examines the value of the eax registers and acts
accordingly. Other registers can be used to pass pa-
rameters.

In the current implementation, the hypervisor im-
plements two hypercalls: HC BEGIN and HC END and
intercepts input and output on port 0x60, the PS/2 data
port. Algorithm 1 presents the pseudo-code of the hy-
pervisor’s VM-exit handler.

Any attempt to set the scroll lock LED is pre-
vented by the hypervisor (lines 10–18). In PS/2 key-
boards, in order to change the state of the LEDs, the
operating system transfers the 0xED command byte,

HyperPass: Secure Password Input Platform

583

followed by a LED configuration byte. The hypervi-
sor intercepts the 0xED byte (lines 12–13) and clears
the scroll lock bit in the following configuration byte
(lines 14–16). In any case, the hypervisor must emu-
late the intercepted operation (line 18).

The password capturing process begins with the
HC BEGIN hypercall, continues with a series of inputs
on port 0x60, and terminated with the HC END hyper-
call. In response to HC BEGIN (lines 1–4), the hypervi-
sor turns on the scroll lock LED, clears the password
and sets the SecureMode variable.

Any attempt to read a key from the keyboard is
intercepted and analyzed by the hypervisor (lines 19–
35). The hypervisor reads the input byte from the key-
board (line 20). If the byte corresponds to a press or
a release of the shift key, the UpperCase variable is
updated accordingly (lines 21–24). If the byte cor-
responds to a release of the backspace key, the last
character of the password is removed (lines 25–26).
If the byte corresponds to a release of a letter key
(line 27), the byte is converted to a character (line 28)
and its case is fixed, if necessary (lines 29-30). Then
the hypervisor concatenates the character to the pass-
word (line 32) and sets the byte that was read from
the keyboard to a scan code of an asterisk (line 33).
Finally, the hypervisor emulates the intercepted oper-
ation (line 35).

In response to HC END (lines 5–9), the hypervisor
turns off the scroll lock LED, clears the SecureMode
variable (lines 6–7). Then, the hypervisor encrypts
the password using the proxy’s public key and copies
the encrypted password to the user-mode agent.

In the current implementation the public key of the
proxy server is hardcoded in the hypervisor.

5 EVALUATION

5.1 Code Size

An important measure of system security is its code
size. HyperPass is based on a thin hypervisor with
about 2 KSLOCs equipped with an RSA implemen-
tation of 0.3 KSLOCs. In order to show how small
HyperPass is and how large can be a full hypervi-
sor equipped with HTTPS (Rescorla et al., 2000)
support, we present the sizes of some open-source
projects. The lwIP library, which implements the
TCP/IP stack, has 146 KSLOCs. The mbedTLS li-
brary, which implements secure communication pro-
tocols, is 127 KSLOCs. The XEN hypervisor has 600
KSLOCs. The sizes of the projects were obtained us-
ing the GitHub Gloc extensions (Solovev, 2020) for
the Google Chrome browser.

Algorithm 1: Hypervisor’s VM-exit Handler.

1: if CPUID and eax = HC BEGIN then
2: TurnOn(ScrollLockLED)
3: Password := ””
4: SecureMode := True
5: else if CPUID and eax = HC END then
6: TurnOff(ScrollLockLED)
7: SecureMode := False
8: Cipher := Encrypt(Password)
9: MemCpy(ebx, Cipher)

10: else if output on port 0x60 then
11: o := output byte to port 0x60
12: if o is LED control then
13: LedControl := True
14: else if LedControl then
15: LedControl := False
16: Turn off scroll lock bit in o
17: end if
18: EmulateOutput(0x60, o)
19: else if input on port 0x60 then
20: i := input byte from port 0x60
21: if i is shift press then
22: UpperCase := True
23: else if i is shift release then
24: UpperCase := False
25: else if i is backspace release then
26: Password := Password[1,|Password|-1]
27: else if i is letter release then
28: j = ToLetter(i)
29: if UpperCase then
30: j := ToUpper(j)
31: end if
32: Password := Password + j
33: i := ToScanCode(’*’)
34: end if
35: EmulateInput(0x60, i)
36: end if

5.2 Security Evaluation

We assess the security of the proposed system from
two perspectives:

• the inability of an attacker to turn on the scroll
lock LED and

• the inability of an attacker to obtain the password
in its decrypted form.

The keyboard LEDs are controlled by the keyboard
and can be changed only by sending an appropri-
ate command on port 0x60. The command consists
of two bytes: the command byte 0xED followed by
a flag byte that specifies the setting of each of the
three LEDs. The hypervisor intercepts the outgoing
communication on port 0x60. When the 0xED byte

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

584

Table 1: Testing environment configuration.

Host CPU Intel(R) Core(TM) i7-10610U
Host memory 16 GB
Host OS Ubuntu 20.04.1 LTS
VMM VMware Workstation 15.5.6
Guest CPU Intel(R) Core(TM) i7-10610U
Guest memory 8 GB
Guest OS Windows 10 (19041)

is detected, the hypervisor clears the scroll lock bit
(bit 0) of the following byte. Therefore, even an at-
tacker with kernel-mode random code execution abil-
ities cannot turn on the scroll lock LED.

Similarly, the hypervisor intercepts all the input
communication on port 0x60 and masks the scan
codes with the scan code of an asterisk when the scroll
lock LED is on. The original scan codes are translated
to characters and are stored in the hypervisor’s mem-
ory region, which is protected by EPT. Specifically,
the hypervisor makes its memory regions inaccessi-
ble by the operating system. Any attempt to access
these regions induces an EPT-violation. The hyper-
visor responds to this event by clearing the password
and resetting the machine.

5.3 Performance Evaluation

HyperPass uses a thin hypervisor whose existence
may degrade the overall system performance. In or-
der to assess this performance degradation, we ran a
benchmarking tool called PCMark (Sibai, 2008) in
three configurations: (a) without a hypervisor, (b)
with HyperPass’ hypervisor, (c) with Oracle Virtual-
Box (6.1.14) as an example of a full hypervisor, run-
ning the same version of Windows with 8GB of RAM.
The exact configuration of our testing environment is
summarized in Table 1. Table 2 presents the scores
that were given by PCMark in each configuration for
every category and Figure 2 presents the overhead in
percent.

A thin hypervisor and Hyperpass’ hypervisor in-
cur a minor performance degradation (≈ 1.35% and
≈ 2.79% on average, even without taking into account
the Video Conferencing results). The only difference
between the thin hypervisor and HyperPass’ hyper-
visor is the interception of input and output on port
0x60. Because this port is accessed by the operat-
ing system only upon an interrupt from the keyboard,
which is a relatively rare event, our tests show a mi-
nor performance degradation due to this interception.
A full hypervisor, represented by Oracle VirtualBox,
showed a much higher impact on the overall system
performance (≈ 38.6% on average).

6 RELATED WORK

The idea to use an isolated environment for securing
passwords and other sensitive information is not new.
ARM TrustZone (Pinto and Santos, 2019) is an ex-
ample of such an isolated environment, that is widely
used for security applications in the industry and aca-
demic research. Samsung pay (Samsung, 2020) and
Alipay (Alipay, 2020) use TrustZone to secure users’
credit card numbers. Bitcoin Ledger (BitCoin, 2020)
uses TrustZone for transaction confirmation. While in
TrustZone a security LED is turned on thus indicating
to the users that their input is safe.

After receiving the sensitive information, the se-
curity module running in an isolated environment,
needs to send this information to a remote server,
without revealing this information to the normal envi-
ronment. Typically, this problem is solved by moving
some of the communication logic to the isolated envi-
ronment (Liu and Cox, 2014; Rubinov et al., 2016).
For example, VeriUI (Liu and Cox, 2014), a login
page protection system, moves the entire communi-
cation stack and UI framework to the isolated envi-
ronment.

Another approach, which is adopted by TruWal-
letM (Bugiel et al., 2010), Droidvault (Li et al., 2014),
KNOX (Knox, 2013), TruZ-Droid (Ying et al., 2018)
and HyperPass, attempts to lower the size of the
code executing in the isolated environment. This is
achieved by keeping the communication stack and the
UI framework in the normal environment but encrypt-
ing the sensitive information before it leaves the iso-
lated environment.

Unfortunately, TrustZone with its exclusive access
to certain hardware components, e.g., security LEDs,
is not available on x86 processors. However, the In-
tel VT-x (Neiger et al., 2006) technology can be used
to construct an isolated environment in a form of a
hypervisor. Commonly, an existing hypervisor, e.g.,
Xen or KVM (Deshane et al., 2008), is extended to
provide additional security. The security applications
range from system call tracing (Pfoh et al., 2011) and
DRM (Kiperberg et al., 2019) to preventing unau-
thorized code execution (Seshadri et al., 2007; Leon
et al., 2019).

BitVisor (Shinagawa et al., 2009) is a thin hyper-
visor that intercepts accesses to ATA hard disks and
enforces storage encryption. HyperPass uses a simi-
lar method of IO interception for implementing a se-
curity indicator.

T-PIM (Hirano et al., 2009) is most closely related
to HyperPass. T-PIM extends Xen to provide secure
password input. It uses two virtual machines: a work-
ing VM and a trusted VM. The browser runs in the

HyperPass: Secure Password Input Platform

585

Table 2: PCMark scores in four configurations.

Category No Hypervisor Thin Hypervisor HyperPass’ Hypervisor VirtualBox
App start-up 7277 7110 6842 4008
Video conferencing 2129 2307 2301 1197
Web browsing 2067 2012 2007 1390
Spreadsheet 4473 4420 4354 2688
Writing 5005 4928 4871 2870
Photo editing 850 852 847 524
Video editing 903 887 856 650

App
sta

rt-
up

Vide
o co

nfe
ren

cin
g

W
eb

bro
wsin

g

Spre
ad

sh
ee

t

W
rit

ing

Pho
to

ed
itin

g

Vide
o ed

itin
g

0

20

40

Thin Hypervisor HyperPass’ Hypervisor VirtualBox

Figure 2: Performance degradation in percent in three configurations with respect to the “No Hypervisor” configuration.

working VM and when a password needs to be en-
tered it is entered in the trusted VM. From the user’s
perspective, the trusted VM acts as a security indica-
tor, when the trusted VM is active, the user’s input
is safe. Similarly to HyperPass, T-PIM uses mitm-
proxy to intercept and manipulate the communication
between the working VM and an external server.

HyperPass differs from T-PIM in two aspects.

• The size of the code executing in an isolated envi-
ronment is much smaller in HyperPass than in T-
PIM. Whereas in HyperPass only the encryption
module is part of the isolated environment, in T-
PIM the isolated environment includes the entire
Linux operating system. As a result, HyperPass is
much more secure than T-PIM.

• Unlike T-PIM, HyperPass does not require an-
other VM for password entering, thus improving
the CPU and memory consumption. Moreover,
HyperPass is implemented as a thin hypervisor,
which further improves its performance compared
to T-PIM.

HyperPass is also advantageous from the perspective
of user experience, since it does not require the user
to switch to another VM to enter a password.

7 CONCLUSIONS

The design of ARM’s TrustZone allows software
modules running in an isolated environment to con-
trol hardware devices in an exclusive manner. Specifi-
cally, turning on the security indicator is possible only
from the isolated environment.

We have shown that a comparable control of the
keyboard LEDs can be achieved using virtualization.
Although the performance degradation due to inter-
ception of PS/2 communication is negligible, it is un-
clear what will be the impact of controlling a USB
keyboard.

We believe that the presented approach can be
used in general for guaranteeing certain invariants in
the state of hardware devices.

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

586

REFERENCES

Alipay (2020). Alipay. https://intl.alipay.com/.
Axelsson, S. (2000). Intrusion detection systems: A survey

and taxonomy. Technical report, Technical report.
BitCoin (2020). BitCoin Ledger. https://www.ledgerwallet.

com/beta/trustlet/.
Boneh, D., Inguva, S., and Baker, I. (2007). SSL MITM

Proxy. http://crypto.stanford.edu/ssl-mitm/.
Bugiel, S., Dmitrienko, A., Kostiainen, K., Sadeghi, A.-

R., and Winandy, M. (2010). TruWalletM: Secure
web authentication on mobile platforms. In Inter-
national Conference on Trusted Systems, pages 219–
236. Springer.

Chapweske, A. (2003). The PS/2 mouse/keyboard proto-
col. electronic file available: http://www.computer-
engineering.org/ps2protocol.

Costan, V. and Devadas, S. (2016). Intel SGX Explained.
IACR Cryptol. ePrint Arch., 2016(86):1–118.

Deshane, T., Shepherd, Z., Matthews, J., Ben-Yehuda, M.,
Shah, A., and Rao, B. (2008). Quantitative compari-
son of Xen and KVM. Xen Summit, Boston, MA, USA,
pages 1–2.

Gandotra, E., Bansal, D., and Sofat, S. (2014). Malware
analysis and classification: A survey. Journal of In-
formation Security, 2014.

Hirano, M., Umeda, T., Okuda, T., Kawai, E., and Yam-
aguchi, S. (2009). T-pim: Trusted password input
method against data stealing malware. In 2009 Sixth
International Conference on Information Technology:
New Generations, pages 429–434. IEEE.

Hussain, M., Al-Haiqi, A., Zaidan, A., Zaidan, B., Kiah,
M. M., Anuar, N. B., and Abdulnabi, M. (2016). The
rise of keyloggers on smartphones: A survey and in-
sight into motion-based tap inference attacks. Perva-
sive and Mobile Computing, 25:1–25.

Kiperberg, M., Leon, R., Resh, A., Algawi, A., and Zaiden-
berg, N. J. (2019). Hypervisor-based Protection of
Code. IEEE Transactions on Information Forensics
and Security, 14(8):2203–2216.

Knox, S. (2013). White paper: An overview of samsung
knox.

Leon, R. S., Kiperberg, M., Zabag, A. A. L., Resh, A., Al-
gawi, A., and Zaidenberg, N. J. (2019). Hypervisor-
Based White Listing of Executables. IEEE Security &
Privacy, 17(5):58–67.

Li, X., Hu, H., Bai, G., Jia, Y., Liang, Z., and Saxena,
P. (2014). DroidVault: A trusted data vault for An-
droid devices. In 2014 19th International Conference
on Engineering of Complex Computer Systems, pages
29–38. IEEE.

Liu, D. and Cox, L. P. (2014). Veriui: Attested login for mo-
bile devices. In Proceedings of the 15th Workshop on
Mobile Computing Systems and Applications, pages
1–6.

Microsoft (2012). Requirements for Implementing the
Microsoft Hypervisor Interface. MSDN, [On-
line]. Available: https://docs.microsoft.com/en-
us/virtualization/hyper-v-on-windows/reference/tlfs
.[Accessed Oct 2020].

Neiger, G., Santoni, A., Leung, F., Rodgers, D., and Uhlig,
R. (2006). Intel Virtualization Technology: Hardware
Support for Efficient Processor Virtualization. Intel
Technology Journal, 10(3).

Pfoh, J., Schneider, C., and Eckert, C. (2011). Nitro:
Hardware-based system call tracing for virtual ma-
chines. In International Workshop on Security, pages
96–112. Springer.

Pinto, S. and Santos, N. (2019). Demystifying ARM Trust-
Zone: A comprehensive survey. ACM Computing Sur-
veys (CSUR), 51(6):1–36.

Rescorla, E. et al. (2000). Http over tls.
Rosenbaum, A., Biham, E., and Bitan, S. (2019). Trusted

Execution Environments. PhD thesis, Computer Sci-
ence Department, Technion.

Rubinov, K., Rosculete, L., Mitra, T., and Roychoudhury,
A. (2016). Automated partitioning of android appli-
cations for trusted execution environments. In 2016
IEEE/ACM 38th International Conference on Soft-
ware Engineering (ICSE), pages 923–934. IEEE.

Samsung (2020). Samsung Pay. http://www.samsung.com/
us/samsung-pay/.

Seshadri, A., Luk, M., Qu, N., and Perrig, A. (2007). SecVi-
sor: A tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes. In Proceedings of
twenty-first ACM SIGOPS symposium on Operating
systems principles, pages 335–350.

Sharma, R. K., Kalita, H. K., and Issac, B. (2014). Different
firewall techniques: A survey. In Fifth International
Conference on Computing, Communications and Net-
working Technologies (ICCCNT), pages 1–6. IEEE.

Shinagawa, T., Eiraku, H., Tanimoto, K., Omote, K.,
Hasegawa, S., Horie, T., Hirano, M., Kourai, K.,
Oyama, Y., Kawai, E., et al. (2009). Bitvisor: a
thin hypervisor for enforcing i/o device security. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS in-
ternational conference on Virtual execution environ-
ments, pages 121–130.

Sibai, F. N. (2008). Evaluating the performance of sin-
gle and multiple core processors with PCMARK R© 05
and benchmark analysis. ACM SIGMETRICS Perfor-
mance Evaluation Review, 35(4):62–71.

Solovev, A. (2020). GitHub Gloc. https:
//chrome.google.com/webstore/detail/github-gloc/
kaodcnpebhdbpaeeemkiobcokcnegdki.

Ying, K., Ahlawat, A., Alsharifi, B., Jiang, Y., Thavai, P.,
and Du, W. (2018). Truz-droid: Integrating trustzone
with mobile operating system. In Proceedings of the
16th annual international conference on mobile sys-
tems, applications, and services, pages 14–27.

Zimmer, R. (2009). Hale,“UEFI: From Reset Vector to Op-
erating System,” Chapter 3 of Hardware-Dependent
Software.

HyperPass: Secure Password Input Platform

587

