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Abstract: Inference methods for first-order logic are widely used in knowledge base engines. These methods are pow-
erful but slow in general. Neural networks make it possible to rapidly approximate the truth values of ground
atoms. A hybrid neural-symbolic inference method is proposed in this paper. It is a best-first search strategy
for backward chaining. The strategy is based on neural approximations of the truth values of literals. This
method is precise and the results are explainable. It speeds up inference by reducing backtracking.

1 INTRODUCTION

The facts and rules of knowledge bases (KB) are usu-
ally expressible in first-order logic (FOL) (Russell
and Norvig, 2009). Typically, KB facts are literals.
Quantifier-free implications A⇐ A1 ∧ ...∧Ak, where
A,A1, ...,Ak are literals, are arguably the most com-
mon form of rules in KBs. All these literals are pos-
itive in Prolog rules. In general logic programs, rule
heads are positive. These rules are equivalent to dis-
junctions of literals in classical FOL. These disjunc-
tions are known as non-Horn clauses, and the disjunc-
tions corresponding to Prolog rules are called Horn
clauses. Any FOL formula can be expressed by such
set of non-Horn clauses that their conjunction is equi-
satisfiable with this formula (Nie, 1997).

Resolution methods work on sets of non-Horn
clauses. These methods have become a de facto stan-
dard for inference in KBs and logic programming
(Russell and Norvig, 2009). Their success is a ma-
jor reason for the popularity of non-Horn clauses as
a knowledge representation format. Complete infer-
ence methods for FOL including resolution are inher-
ently slow. Multiple strategies and heuristics speeding
up resolution procedures have been developed. SLD
resolution, which is also known as backward chain-
ing, is a complete strategy for Horn clauses. Faster
but incomplete inference procedures are also accept-
able for KBs. Prolog also utilizes an incomplete in-
ference procedure (Stickel, 1992).

The inefficiency of inference in FOL and even
in its Horn fragment prompted attempts to replace

inference with neural networks (NN) (Rocktäschel,
2017; Serafini and d’Avila Garcez, 2016; Dong et al.,
2019; Marra et al., 2019; Van Krieken et al., 2019;
Sakharov, 2019). Most commonly, it is done via pred-
icate tensorization. Objects are embedded as real-
valued vectors of a fixed length for the use in NNs.
Predicates are represented by one or more tensors of
various ranks which are learned. The truth values of
ground atoms of any predicate P are approximated by
applying a symbolically differentiable function σ to
an algebraic expression. The range of σ is the interval
[0,1]. One corresponds to true, and zero corresponds
to false. The expression is composed of the tensors
representing P, embeddings of the constants that are
P arguments, tensor contraction operations, and sym-
bolically differentiable functions.

One key advantage of this machine learning ap-
proach over inference is that approximation of truth
values of ground atoms is fast. Assuming that σ and
other functions from the aforementioned expression
are efficiently implemented, the approximation takes
a linear time over the size of the tensors representing
a predicate. Unfortunately, there are serious cons to
this approach.

This approach is limited to ground atoms. If the
result of an approximation is around 0.5, it is not pos-
sible to draw any conclusion about the truth value of
an atom. Approximation results may not be reliable.
Their accuracy is not known in advance and previous
results do not provide any assurance for the same for
future results. The truth values yielded by NNs are not
explainable because machine learning does not pro-
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vide any justification for the results. In many AI tasks
such as automatic code generation, robotic planning,
etc., the aim is actually a derivation itself not the mere
knowledge of the truth value. The approximation of
truth values based on NNs does not contribute to these
tasks.

Hybrid approaches that combine symbolic reason-
ing and machine learning models are considered the
most promising (Marcus, 2020). To the best of au-
thor’s knowledge, there are no known hybrid methods
that retain the accuracy of inference, produce deriva-
tions, and take advantage of learned predicate repre-
sentations. This work introduces such method. It is
a search strategy for backward chaining. This search
strategy utilizes learned predicate representations in
order to make better choices at every inference step,
and thus, to reduce backtracking which usually con-
sumes the vast portion of time during inference.

2 RESOLUTION

Resolution is perhaps the most practical inference
method. The resolution calculus works on Skolem-
ized FOL formulas in the conjunctive normal form.
The conjuctions are viewed as sets of disjunctions of
literals, i.e. non-Horn clauses. The resolution calcu-
lus has two rules: resolution and factoring. The reso-
lution rule produces disjunction
A1θ∨ ...∨Ai−1θ∨Ai+1θ∨ ...∨Akθ

∨ B1θ∨ ...∨B j−1θ∨B j+1θ∨ ...∨Bmθ

from two disjunctions A1 ∨ ...∨Ak and B1 ∨ ...∨Bm
where substitution θ is the most general unifier of Ai
and ¬B j. The factoring rule produces disjunction
A1θ∨ ...∨Ai−1θ∨Ai+1θ∨ ...∨Akθ

from disjuction A1 ∨ ...∨Ak where substitution θ is
the most general unifier of Ai and A j. Factoring can
be combined with the resolution rule. We assume
reader’s familiarity with resolution. Please refer to
(Chang and Lee, 1973) for details. In this paper,
we consider KB rules that are equivalent non-Horn
clauses, and KB facts that are literals.

Unconstrained resolution may be very inefficient.
What makes resolution practical is the availability of
strategies that constrain branching at every resolution
step by prohibiting certain applications of the resolu-
tion rule. These strategies include set of support reso-
lution, unit resolution, linear resolution, etc. Some of
them are complete for FOL, some are not.

Backward chaining can be applied to non-Horn
clauses as well (Sakharov, 2020). In this strategy, one
of any two resolved literals is a rule head or a fact.
It is an incomplete strategy for non-Horn clauses but
it is relatively efficient. Complete inference proce-

dures for FOL and its extensions are more suitable
for theorem provers. Inference in KBs is supposed to
be faster, even at the expense of completeness. Un-
like theorem provers, the number of facts and rules
involved in KB inference may be huge, which slows
down the inference. The use of incomplete strategies
is also justified by the fact that KBs are almost always
incomplete.

Backward chaining is often explained in terms of
goal lists (sets). The set of negations of literals of one
disjunction is considered as an original list of goals.
Every resolvent is also viewed as a goal list that is
comprised of negations of its literals. We follow this
tradition. Due to this explanation, backward chain-
ing is interpreted as inference based on generalized
Modus Ponens (Russell and Norvig, 2009). Goals
have to be derived, not refuted. Not only this interpre-
tation makes backward chaining more explainable, it
is also more pertinent to our best-first strategy. This
strategy aims to pick the facts or rules that lead to goal
lists whose elements are more likely derivable.

Various search strategies can be used in imple-
mentations of resolution. Search strategies determine
the order in which literals or disjunctions are resolved.
These strategies include depth-first, breadth-first, it-
erative deepening, and others. Prolog relies on the
depth-first strategy. It is incomplete but efficient. Unit
preference (Russell and Norvig, 2009) is one well-
known best-first search strategy for resolution. Facts
are resolved before rules under unit preference. OT-
TER (McCune, 2003) conducts best-first search on
the basis of rule weight. Lighter rules are preferred.
Longer rules tend to have a higher weight.

The OTTER’s search strategy is perhaps the clos-
est to the strategy presented in this paper. In the ex-
amples given later, we compare the two. For cer-
tainty, we assume that the rule weight equals the num-
ber of symbols in the rule including variables, con-
stants, functions, predicates, and negations. Resolu-
tion strategies should include some form of loop de-
tection (Shen et al., 2001). There also exist optimiza-
tion techniques that make resolution implementations
more efficient. One notable example of these tech-
niques is tabling (Swift, 2009).

Non-Horn clauses may contain Skolem functions
or constants. We refer to both of them as Skolem
functions for short. They are introduced in the process
of eliminating existential quantifiers from FOL for-
mulas (Chang and Lee, 1973). Skolem functions are
not evaluable because they are unknown. It is fair to
assume that all other functions in KB rules are evalu-
able. Any term with a Skolem function at the top can
be unified with a variable only. Usually, the majority
of rules do not contain Skolem functions.
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When predicates are approximated by NNs and
rules contain Skolem functions, subsymbolic repre-
sentations of Skolem functions, or other functions for
that matter, can be learned like subsymbolic represen-
tations of predicates (Sakharov, 2019). Like pred-
icates, Skolem functions are represented by one or
more tensors of various ranks. These representa-
tions of Skolem functions map embeddings of func-
tion arguments into embeddings of function results.
If learned subsymbolic representations of predicates,
Skolem functions, and the functions occurring above
Skolem functions in terms are available, then it is pos-
sible to approximate the truth value of any ground
atom regardless of whether it contains Skolem func-
tions or not.

3 BEST-FIRST SEARCH
STRATEGY

Our strategy is designed for backward chaining. This
strategy selects the goal list that is either the best can-
didate or is comparable with the the best one. Given
that, it is fair to call it best-first. This strategy may
work as a supplement to other search strategies which
will be called base strategies in this case. If a base
strategy leaves multiple choices, then our strategy is
invoked. For example, our best-first strategy can be
used to select individual facts in addition to employ-
ing unit preference.

A KB may have evaluable predicates which are
implemented as boolean recursive functions outside
of the KB rules. Literals of evaluable predicates are
not resolved. Instead, their truth values are calculated
as soon as all arguments are bound to constants. For
any goal list, this evaluation is done before all other
goals are resolved. Equality is an evaluable predicate.

An extensional predicate is a predicate that is
wholly defined by a set of ground literals. Usu-
ally, facts of extensional predicates are ground literals
without functions. They constitute the bulk of a KB,
and the number of rules is much smaller. Extensional
predicates do not need subsymbolic representations
either. The truth values of their literals present in the
KB are known. The truth value of any absent literal
with constant arguments is approximated as zero.

Our strategy relies on the following property of
backward-chaining derivations:

Proposition 1. Every goal in any backward-chaining
derivation is derivable or is a fact.

Since every step of backward chaining is interpreted
as an application of generalized Modus Ponens, the
proof of Proposition 1 is a straightforward induction

on the depth of derivations. In general, resolution
derivations may contain literals whose negations are
not derivable. Due to this, the interpretation of resol-
vents as goal lists is limited to backward chaining.

Suppose D(v) denotes the domain of variable v
and D(Pn) denotes the domain of the n-th argument
of predicate P. For any ground literal B, let [B] denote
its truth value, i.e. 0 (false) or 1 (true). For any set of
goals {B1, ...,Bb} with free variables u1...uw, its truth
value [B1, ...,Bb] can be expressed as:

[B1, ...,Bb] = max
u1∈D(u1)...uw∈D(uw)

min
i=1...b

[Bi] (1)

We assume that the arguments of any ground literal
without Skolem functions are evaluated. If the truth
value of a ground atom is unknown, then a subsym-
bolic representation of the predicate of this literal (and
subsymbolic representations of its Skolem functions
if any) can be used to approximate the truth value. If
r is the approximation of the truth value of ground
atom A, then the truth value of ¬A is approximated as
1− r.

We use the same notation [Bi] for the approxima-
tion of the truth value of ground literal Bi. It is given
by a NN, or NNs in the presence of Skolem functions.
The same formula can be used for approximating the
truth values of arbitrary sets of goals. Based on these
observations, Formula 1 will be used as the objective
function for our best-first search strategy.

Heuristics can be incorporated into this objective
function. If it is known that certain literals are less or
more likely derivable, then their truth value approxi-
mations [Bi] are adjusted as [Bi]

p. The value of p is
close to one. It is more than one if literal Bi is less
likely derivable, and p is less than one if Bi is more
likely derivable. For instance, literals with Skolem
functions are expected to be less likely derivable due
to limited unification opportunities for them, and their
truth value approximations can be adjusted. Finding
suitable values of p requires experimentation.

The factoring rule has a higher priority than the
resolution rule. It is always applied as soon as pos-
sible because this rule reduces the list of goals. Our
best-first strategy is limited to resolution steps. A KB
may contain a gigantic number of facts for some pred-
icates, and this leads to huge branching factors in rele-
vant resolution steps. Therefore, branching reduction
for resolution steps involving facts is crucial.

The evaluation of the objective function for any
resolvent R is possible only if the domains of all vari-
ables from R are finite. Even in this case, the evalua-
tion may be too costly. The objective function is ap-
proximated by iterating over finite subsets of domains
D(u1), ...,D(uw). If the evaluation or approximation
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of the objective function does not yield a definite re-
sult, then an arbitrary resolvent is picked.

3.1 Tabling

Tabling enables an efficient approximate evaluation of
the objective function. In contrast to tabling for reso-
lution (Swift, 2009), values [Bi] for ground literals Bi
are tabled. These values are calculated in advance and
persisted for use in all derivations. Since the aim of
our search strategy is to find goal lists with the highest
values of [Bi], only these values are tabled. For atom
P(c1, ...,cp) where c1, ...,cp are constants, the values
[P(c1, ...,cp)] > t and the values [¬P(c1, ...,cp)] > t
are tabled. Here, t is a constant that is slightly smaller
than 1.

To guarantee a fast access to tabled values, they
are stored in hash tables. Every entry in such hash ta-
ble HP for predicate P is a key-value pair of one of the
two following forms: P(c1, ...,cp) → [P(c1, ...,cp)],
¬P(c1, ...,cp)→ [¬P(c1, ...,cp)]. Algorithm 1 popu-
lates HP. The total number of iterations in this algo-
rithm is limited by constant n.

It is fair to say that all computer data types are
countable (enumerable). This applies even to the
types that represent continuous sets such as real num-
bers because the number of bits representing these
values on a computer is limited by a constant. For
any computer data type, there exists a recursive func-
tion that is a bijection of natural numbers into the set
of values of this type. We reuse the notation D(...)
for denoting this bijection for the respective domain.
Let p be the number of arguments of predicate P. As
usual, |A| denotes the cardinality of set A.

Algorithm 1.

HP := /0; n1 := min{n, |D(P1)|}; ...
np := min{n, |D(Pp)|};
for i1 := 1...n1; ...; ip := 1...np do

if [P(D(P1, i1), ...,D(Pp, ip))]> t then
HP := HP∪P(D(P1, i1), ...,D(Pp, ip))→

[P(D(P1, i1), ...,D(Pp, ip))]
end if
if [P(D(P1, i1), ...,D(Pp, ip))]< 1− t then

HP := HP∪¬P(D(P1, i1), ...,D(Pp, ip))→
1− [P(D(P1, i1), ...,D(Pp, ip))]

end if
end for

Functions D(...) can be viewed as sampling func-
tions. It is beneficial if they are consistent with the
probability distributions. It is assumed that Algo-
rithm 1 iterates over entire finite domains. It can be

achieved by adjusting the value of t for larger do-
mains. Countable domains are recursively defined.
Functions D(...) are expected to count the values con-
structed from other values after the values from which
they are built, and the former are expected to have
lower probabilities than the latter. Normally, real
numbers are expected to have a Gaussian distribution
centered at zero. And functions D(...) are supposed
to comply with that (Knuth, 1998, chapter 3.4.1).

3.2 Objective-function Approximation

For any resolution step, the set S of possible resol-
vents is generated incrementally, one resolvent at a
time, and no more than n̂ resolvents are generated.
Subsymbolic representations may not be available for
some predicates or Skolem functions. The resolvents
containing literals with such predicates or Skolem
functions are not included in S . We assume that the
implementation of a KB guarantees fast access to the
facts that may unify with a given literal. For instance,
a hash table could be created for storing facts of every
predicate with a large number of facts.

Let u1, ...,uw be the variables from resolvent
{R1, ...,Rr} ∈ S . Note that w is usually small, it
is zero or one for many resolvents in derivations of
ground literals. Let θ(i1, ..., iw) denote substitution
{u1/D(u1, i1), ...,uw/D(uw, iw)}, where i1, ..., iw are
natural numbers. Every [Riθ(i1, ..., iw)] can be evalu-
ated or approximated.

Algorithm 2 implements resolvent selection
from S . This algorithm uses the hash tables
H created by Algorithm 1. The values of
[R1θ(i1, ..., iw)],...,[Rrθ(i1, ..., iw)] are evaluated or ap-
proximated for given values of i1, ..., iw in every iter-
ation. If all of them are greater than t, then this re-
solvent is selected and the algorithm terminates. Oth-
erwise, the next iteration for other values of i1, ..., iw
starts. If Algorithm 2 yields nil, then an arbitrary re-
solvent is picked. The same constant n limits the val-
ues of i1, ..., iw. We say that ground literal P(c1, ...,cn)
is outer if it contains such argument ci that ci =
D(Pi,k) and k > n. Constant n limits the number of
iterations over arguments of outer literals, n < n.

This resolvent selection procedure avoids NN cal-
culations when possible. These are relatively fast
compared to derivations but picking up values from
a hash table is much faster than NN calculations. Ini-
tially, outer literals do not occur as keys in H tables.
The approximated truth value of any ground literal
is calculated once during a derivation, and then it is
added to the respective hash table. These new hash
table entities are not reused in other derivations.

Since all modern programming environments
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support multi-threading, the approximation of
[R1θ(i1, ..., iw),...,Rrθ(i1, ..., iw)] can be done in paral-
lel for all resolvents from S provided that operations
on hash tables are synchronized. For simplicity, a
serial version of Algorithm 2 is presented here. A
parallel version could work significantly faster.

Algorithm 2.

for {R1, ...,Rr} ∈ S do
n1 := min{n, |D(u1)|}; ...
nw := min{n, |D(uw)|};
for i1 := 1...n1; ...; iw := 1...nw do

h :=−1;
for j = 1...r do

h := HR j .get(R jθ(i1, ..., iw));
if h =−1∧outer(R jθ(i1, ..., iw))∧

i1 ≤ n∧ ...∧ iw ≤ n then
h := [R jθ(i1, ..., iw)];
HR j := HR j ∪R jθ(i1, ..., iw)→ h;

end if
if h < t then break; end if

end for
if h≥ t then return {R1, ...,Rr}; end if

end for
end for
return nil;

In the worst case, the time of retrieving elements of S
is proportional to KB size b. Suppose a is the max-
imum time of the neural approximation of the truth
value of a ground atom, and r is the maximum length
of a resolvent. If w is the maximum number of vari-
ables in a resolvent from S , then the total number of
executions of the innermost cycle of Algorithm 2 is no
more than n̂rnw, and at most n̂rnw of them involve NN
approximations. Hence, the time complexity of Algo-
rithm 2 is O(max{n̂rnw,an̂rnw,b}). This estimate is
based on the assumption that a single operation on a
hash table takes a constant time.

Objective-function approximation is less expen-
sive for such resolvents that one of the two resolved
literals is a fact because these resolvents usually have
fewer variables than other possible resolvents for the
same resolution step. Given that, it may be worth lim-
iting S to resolvents derived from facts for some KBs.

3.3 Examples

The base strategy in these examples is such depth-first
search that literals are resolved according to their or-
der in rule bodies, and preference is given to facts and
then rules with a shorter length.

Transitive Closure. Suppose binary extensional
predicate E specifies edges of a directed graph. Our

task is to find such paths connecting pairs of nodes in
the graph that all interim nodes on these paths have
property P. Graph path search algorithms can be
adopted to tackle this task, but the ultimate goal of
automatic programming is to have a declarative spec-
ification of this problem and to expect that solutions
are derived without coding an algorithm. The follow-
ing two rules define predicate T as the transitive clo-
sure of E with an additional constraint given by P.
Derivations of goals T (a,b), where a and b are nodes,
give desired paths. Arguably, it is the simplest pos-
sible specification of the task. This specification is
applicable to infinite graphs too.
T (x,y)⇐ E(x,y)
T (x,y)⇐ E(x,z)∧P(z)∧T (z,y)
Initially, the first rule is selected for goal T (a,b) by
the base strategy. If E(a,b) is not a fact, then the
search backtracks and the second rule is applied to
this goal. For goal list (E(a,z),P(c),T (z,b)), the base
strategy picks up the first literal. Algorithm 2 should
select such fact E(a,c) that c is on a desired path
because both [P(c)] and [T (c,b)] are expected to be
close to one if the neural approximations of the truth
values of P and T are accurate. If P(c) derivation
does not involve backtracking, then all backtracking
relates to the first rule, and it is induced by the base
strategy. In comparison to our best-first strategy, the
search strategy based on rule weight would not help
select better facts and thus would not reduce back-
tracking.

Minimization Operator. The following rules
specify predicates M, N, and P. Q, R, and T are exten-
sional predicates satisfying closed world assumption,
i.e. if atom A is not present in a KB, then ¬A holds.
M(x,1)⇐ P(x,1)∧Q(1)
M(x,y)⇐¬(y = 1)∧P(x,y)∧Q(y)∧N(x,y−1)
N(x,1)⇐¬P(x,1)
N(x,1)⇐¬Q(1)
N(x,y)⇐¬(y = 1)∧¬P(x,y)∧N(x,y−1)
N(x,y)⇐¬(y = 1)∧¬Q(y)∧N(x,y−1)
P(x,y)⇐ T (x)∧R( f (x),y)
¬P(x,y)⇐ S(x,y)
¬P(x,y)⇐¬R( f (x),y)

Derivation of M(a,z), where a is a constant,
binds variable z with the minimum natural number
c satisfying both P(a,c) and Q(c). Suppose T (a),
R( f (a),100), and Q(100) hold whereas S(a, i) is not
derivable and at least one of R( f (a), i), Q(i) does not
hold for every i = 1...99. If the NN representation
of N is accurate, then [N(a,n)] is close to zero for
n ≥ 100 whereas [N(a,1)], ..., [N(a,99)] are close to
one. After unsuccessfully exercising the first M rule,
the second M rule is applied, and then the first P rule
is applied, and T (a) is resolved.
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R( f (a),z) is resolved with fact R( f (a),100)
because 100 is the only value of z for which
[R( f (a),z)] = 1, [Q(z)] = 1, [¬(z = 1)] = 1, and
[N(a,z − 1)] is close to one. After that, Q(100)
is resolved with a fact, and ¬(100 = 1) is evalu-
ated. Derivation of N(a,99) is not expected to involve
backtracking. The third N rule is selected by Algo-
rithm 2 for such i ∈ {1, ...,99} that ¬P(a, i) is deriv-
able. The fourth N rule is selected for the rest. Due
to the best-first strategy, the second P rule is avoided
if the NN representation of S is accurate. Depending
on the rules related to S, the second P rule could be
a source of extensive backtracking while attempting
to derive ¬P(a, i) for multiple values of i. The search
strategy based on rule weight would be counterpro-
ductive in this example. It would always select the
second P rule.

4 RELATED WORK

Paper (d’Avila Garcez et al., 2019) is a survey of
research in the area of neural-symbolic computing.
The aforementioned works (Rocktäschel, 2017; Ser-
afini and d’Avila Garcez, 2016; Dong et al., 2019;
Van Krieken et al., 2019) use rules or FOL formulas to
train NNs based on subsymbolic predicate represen-
tations. These NNs are used to approximate the truth
values of ground formulas. The methods from these
papers do not incorporate inference. Function-free
rules with unary and binary predicates are used for
training NNs in (Rocktäschel, 2017). Neural Logic
Machines (Dong et al., 2019) are capable of repre-
senting non-cyclic Horn clauses over finite object do-
mains. Differentiable Reasoning (Van Krieken et al.,
2019) employs function-free FOL formulas. Logic
Tensor Networks (Serafini and d’Avila Garcez, 2016)
accept all FOL formulas.

A simple hybrid algorithm combining logical rea-
soning with the approximation of truth values is sug-
gested in (Sakharov, 2019). This algorithm searches
for partial derivations. Once such ground literal oc-
curs in a derivation that its approximated truth value
is close to 1, this literal is considered a fact not re-
quiring further derivation. This hybrid algorithm may
yield no derivation at all, its results may not be ex-
plainable. The reliability of the results is dependent
of the accuracy of the approximation of the truth val-
ues of ground atoms.

Differentiable reasoning for the function-free
fragment of FOL is suggested in (Minervini et al.,
2020). Unification is done by finding the nearest
neighbors in the Euclidean space of predicate em-
beddings. An approximate proof is constructed by

solving an optimization problem. In contrast to sym-
bolic reasoning, differentiable reasoning may not be
reliable but it is appropriate for areas with imprecise
knowledge such as natural language. Extending the
method of (Minervini et al., 2020) onto rules contain-
ing atoms with functions is problematic due to unifi-
cation.

In other research on the neural representation of
knowledge, individual predicates are not directly rep-
resented via NNs but are rather blended into a graph
NN that represents multiple predicates along with
rules (Zhang et al., 2020). Nonetheless, this graph
NN can be used to approximate the truth values of
ground literals. Potential advantages of graph NNs for
the neural representation of knowledge are advocated
in (Lamb et al., 2020). In DeepLogic (Cingillioglu
and Russo, 2019), tensor NNs represent function-free
normal logic programs. Combined with embeddings
of ground atoms, these NNs are used to approximate
the truth values of ground atoms.

Deep logic models proposed in (Marra et al.,
2019) are two-layer NNs. The first layer represents
predicates, and its output is approximated truth val-
ues of atoms. The second layer represents constraints
on the outputs of the first layer. These constraints are
expressed by FOL formulas over predicates of the first
layer.

DeepProbLog (Manhaeve et al., 2018) is a hy-
brid system that combines probabilistic logic pro-
gramming with NNs. The latter are used to calcu-
late probabilities associated with ground atoms in dis-
junctions annotated with probabilities. These anno-
tated disjunctions are transformed into probabilistic
logic programs. Exact inference for these programs is
intractable, and approximate inference is more com-
plicated than FOL inference (Kimmig et al., 2010).
TensorLog (Cohen et al., 2020) is another system in-
tegrating probabilistic logical reasoning with NNs.
TensorLog programs are function-free, they contain
unary or binary predicates, and probabilities are asso-
ciated with facts only.

The resolution calculus can be reformulated for
non-Skolemized FOL formulas. For this purpose, for-
mulas ∃y(A1 ∨ ...∨Ak) are considered in addition to
disjunctions of literals and a new inference rule is in-
troduced (Mints, 1993). Resolution with the three
rules is complete for FOL. Resolvents do not con-
tain existential quantifiers, they are non-Horn clauses
without Skolem functions. In relation to our best-
first search strategy, this approach eliminates inac-
curacy introduced by the subsymbolic approximation
of Skolem functions. However, the applicability of
backward chaining and search strategies to this vari-
ant of resolution has not been investigated, and thus,
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this variant is not ready for practical use yet.

5 CONCLUSION

Our method is neural-symbolic but its results are
derivations, and they are precise and explainable. If
some neural predicate representations are not reliable,
this has effect on search speed only. Our best-first
strategy is expected to work best for derivations of
goals that are sets of ground literals. Fortunately, the
primary purpose of KBs and logic programs unlike
theorem provers is to derive facts that are expressible
by ground literals. As the examples have shown, our
best-first strategy may dramatically reduce backtrack-
ing for typical derivation tasks. Nonetheless, further
experiments are necessary in order to get quantitative
results for benchmark KBs.

The effect of our strategy on the speed of inference
depends on the accuracy of neural predicate represen-
tations. As of the time of writing this paper, evalua-
tions of the accuracy of NN representations of predi-
cates are sparse. Algorithm 2 is presented in a general
form. It can be easily adjusted to various knowledge
representation formats including those deviating from
FOL.

Our best-first search strategy can be applied to
any resolution method, not just to backward chain-
ing, but Algorithm 2 will not give positive results
for resolvents containing literals whose negations are
not derivable. This strategy could be extended onto
FOL with equality. In this case, the selection of re-
solvents should be additionally done for paramodula-
tion or other other rules enabling derivations in FOL
with equality (Chang and Lee, 1973). Our objective
function can be directly applied to the paramodulation
rule.

Any heuristic search strategy would be especially
beneficial for inductive theories because the induction
rule is the source of infinite branching (Hutter, 1997)
but adaptation of the objective function to the induc-
tion rule is problematic. Nonetheless, our objective
function can used for the induction rule limited to lit-
erals (Sakharov, 2020). If the selection does not yield
a positive result, then the induction rule should be
abandoned for the respective derivation step.
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