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Abstract: Understanding visual symbols is a strictly human skill, as opposed to comprehending natural scenes—which 
is an essential survival skill, common to many species. As an illustration of the natural vs. symbolic dichotomy, 
selective features are computed for differentiating a satellite photograph from a map of the same geographical 
region. Images of physical scenes /objects are currently captured in all parts of the electromagnetic spectrum. 
Symbols, whether produced by man or machine, are almost always imaged in the visible range. Although 
natural and symbolic images differ in many ways, there is no universal set of differentiating characteristics. 
With respect to the traditional branches of pattern recognition, it is tempting to suggest that statistical, neural 
network and genetic/evolutionary pattern recognition methods are eminently suitable for images of scenes 
and simple symbols, whereas structural and syntactic approaches are best for more complex, composite 
graphical symbols. 

1 INTRODUCTION 

Patterns are arrangements of perceptible elements 
which play a critical role in human cognition 
processes, such as visualization, memorization and 
decision-making. Furthermore, there is evidence that 
humans learn abstract concepts such as mathematical 
ones using pattern recognition techniques (Mulligan 
and Mitchelmore, 2009). As stated by Warren (2005), 
“The power of mathematics lies in relations and 
transformations which give rise to patterns and 
generalizations. Abstracting patterns is the basis of 
structural knowledge, the goal of mathematics 
learning.”  

From an evolutionary viewpoint, humans first 
dealt with natural patterns, informed by their direct 
interactions with the environment. A small amount of 
“relevant” information is extracted from a large, 
continuous influx of data and encoded into a 
persistent mental structure called pattern (Del Viva, 
2013).  While this process is not limited to visual data 
(as all sensory modalities may contribute to the 
formation of one pattern) our paper focuses on visual 
patterns only. This is justified by the dominance of 
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the visual perception (Stokes and Biggs, 2004), as 
well as by the need to establish reasonable boundaries 
for this exploratory journey.  

Natural pattern processing is a survival skill 
shared with other primates, allowing for generating 
cognitive maps of the physical environment, which 
encode locations of food sources, potential predators 
and navigation landmarks (Mattson, 2014).  

Symbolic patterns are specific to humans. 
Symbols denote ‘something which stands for 
something else’ (a meaning first recorded in ‘Faerie 
Queene’ in 1590), thus they are representations of 
representations. The processing of symbolic patterns 
forms the basis of “unique features of the human brain 
including intelligence, language, imagination, 
invention, and the belief in imaginary entities such as 
ghosts and gods” (Mattson, 2014). Some simple types 
of symbolic patterns are embedded in our 
environment (for instance, traffic signs and pavement 
markings). Others form the basis of written language 
and communication (letters, digits, flowcharts, tables, 
etc.).  

Semiotics explores the connection between signs, 
symbols and significance. From a semiotic 
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perspective, natural images fall into the category of 
iconic signs. Symbolic images are symbolic 
(arbitrary) signs, regarded as conventional and 
culture-specific mems for conveying concepts. These 
definitions do not bear directly on algorithms, 
features and pixels. Since natural and symbolic 
pattern processing do exhibit different neural 
mechanisms (Mattson, 2014), it seems appropriate to 
investigate how computer vision deals with these two 
meta-categories of patterns.  

Among the most important shared tasks are 
segmentation and classification. Other common 
objectives are visualization, e.g. depth-from-shading 
for natural and OCR results for symbolic, and author 
identification or counterfeit/plagiarism detection of 
paintings (natural) and manuscripts (symbolic). An 
example of a hybrid (natural and symbolic) pattern 
recognition task would be a self-driving car reading 
all the highway signs, as well as detecting vehicles 
and pedestrians. 

Although art critics may object, our perspective 
precludes attaching symbolism to a still life or an 
abstract painting. But Leonardo da Vinci’s sketches 
of muscles and catapults and Edward Tufte’s artful 
visual displays of quantitative information (in his 
eponymous book) are symbolic. Artistic applications 
of image processing, such as photomosaics, are 
skillfully explored by Tanimoto (2012). 

The remainder of this paper is structured as 
follows. Section II presents a case study comparing a 
natural image with its symbolic representation. 
Sections III and IV discuss characteristics of natural 
and symbolic patterns respectively. Section V 
examines how pattern recognition techniques align 
with the natural/symbolic realms. Section VI 
summarizes our findings and concludes this work. 

2 EXAMPLE (CASE STUDY) 

Two images of the Hoover Dam area in Fig. 2.1 are 
chosen to illustrate the proposed dichotomy. They 
exemplify the potentially extreme difference between 
natural and symbolic images. Their respective sizes 
are 1050×1600 and 895×1433 pixels, thus much 
detail is lost in the figures. 

The features below, extracted with MATLAB 
2016a, show some noticeable differences, which may 
be quantified in many possible ways. Any ICPR 
participant could propose other equally plausible 
features. However, only experimentation on large and 
diverse data sets could provide statistically significant 
evidence that the postulated subpopulations can be 
objectively and accurately discriminated.  Almost no 

sample datasets are currently available for such 
experimentation (Nayef 2019). With a few exceptions 
(e.g. scene text), most of the available collections fall 
squarely into relatively homogenous subdomains of 
either Natural or Symbolic images. 

Symbolic images tend to consist of high-contrast 
curve segments, glyphs (graphical symbols) and 
regions of nearly constant color because drawings and 
symbols have been traced for millennia using a stylus, 
and printing has loosely mimicked this process. 
Contrast helps perception; glyphs encode 
information. Both foreground and background of 
symbolic documents typically exhibit locally uniform 
reflectance. In natural images the distinction between 
foreground and background is either arbitrary, 
application-dependent, or refers to distance from the 
imaging instrument.  

The logarithmic grayscale histogram (Fig. 2. 2) 
provides a measure of contrast. Documents usually 
show high peaks near opposite ends of the gray-scale, 
with intermediate values only at edge pixels. The 
proportion of edge pixels depends, of course, on the 
spatial sampling frequency and the point-spread 
function.  In our map, the only two sharp peaks are 
near each other because the intensity of the water and 
land areas is almost the same.  The satellite image has 
a wider peak for Mead Lake, and a narrow white peak 
due to the superimposed labels. The rest of the image 
has a continuous albedo distribution. 

Fig. 2.3 is the 2-D Fourier transforms of the 
images.  Strong orthogonal components are typical of 
document images because of their rectilinear print 
layout, but much less so of line drawings and maps. 
The small higher-frequency components of our map 
fall outside the range of FFT coefficients visible in 
the figure. 

In addition to extracting the intensity distribution, 
we have chosen for this illustration features that are 
sensitive to local variability like edges. Fig. 2.4 
indicates that the natural image has a far greater 
density of Canny edge features than the symbolic 
image (Canny, 1986). Although their sizes differ by 
only 30%, the edge count is 251,332 vs. 14, 320. The 
superimposed geodetics are detected in the satellite 
image, and most of road network, barely visible in 
Fig. 2.1, on the map. The FAST features of Fig. 2.5, 
extracted with the popular algorithm proposed by 
Rosten and Drummond (2005), exhibit a similar 
configuration (8316 vs. 353 corners). 

None of the above features suffice by themselves 
for differentiating natural from symbolic images. For 
example, the snow-covered shores of unfrozen lakes 
offer high contrast like printed pages, fingerprints 
abound in curvilinear features as do caricatures, and 
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both documents (symbolic) and aerial photos of cities 
(natural), exhibit a profusion of corners and edges. 
Furthermore, many of the above features are class-
conditionally statistically dependent. Automated 
classification would require many more features and 
a highly nonlinear classifier. 

 
Figure 2.1: Examples of a natural and of a symbolic image.  
Source: https://www.lakemeadcruises.com/discover/area-
maps/getting-here/. 

 
Figure 2.2: Logarithmic intensity histogram. 

 
Figure: 2.3: 2-D Fast Fourier Transforms (FFTs). 

 
Figure 2.4: Canny edges. 

 
Figure 2.5: FAST features. 

3 NATURAL VISUAL PATTERNS 

Fig. 3.1 is a montage of photographs that often appear 
in image processing research and illustrate the variety 
of aspects (color, contrast, level of detail) that affect 
processing.  The source site, ImageProcessing-
Place.com, also offers free downloads of many larger 
image collections. Although Fig. 3.1 is drawn from 
the visible regions of the spectrum, natural images 
span almost twenty orders of magnitude in 
wavelength or frequency (Fig. 3.2). Regardless of 
their source spectrum, they can be rendered to be 
visible at an appropriate scale for human inspection. 

 
Figure 3.1: Standard (natural) test images 
http://www.imageprocessingplace.com/root_files_V3/ima
ge_databases.htm. 

Photography gained mass appeal soon after its 
invention early in the 19th Century. It became 
ubiquitous after digital cameras were grafted onto cell 
phone and photo-sharing social media applications, 
such as Facebook and Instagram, gained wide 
popularity. An early quantitative application was 
cartography with photographs from balloons 
(Redmond, retrieved 2020). Natural Image 
Processing (IP) started in the 1950’s with the analysis 
of photographs of the tracks of elementary particles 
in spark, bubble and cloud chambers. Algorithmic 
path tracking was a disruptive technology, as it 
displaced the dozens of operators who had traced the 
tracks on projection screens. Computer Cartography 
and Geographic Information Systems (now 
Geospatial Data Processing) eventually grew to 
encompass earth observation and weather satellites 
that currently produce over one million images per 
day. Many earth and ocean observation facilities 
produce a huge amount of visual data, which exhibits 
typical Big Data problems (storage, curation, 
provenance, manipulation).  

 
 

Imaging Reality and Abstraction an Exploration of Natural and Symbolic Patterns

417



Cosmic-ray muography (muon tomography) 
Atomic force and electron microscopy 
Medical and industrial radiography (X-rays) 
Industrial surface inspection, fluorography (UV) 
Photography, microscopy, telescopy (visible light) 
Night vision, thermography, FLIR, LIDAR (IR) 
Weather, traffic and military RADAR (microwaves) 
Radio-telescopy, MRI (radio frequency) 
Medical and industrial ultrasound 

Figure 3.2: Natural images span the entire electromagnetic and sound spectra. https://www.britannice/elomagnetic-
ca.com/scienectrspectrum. 

Modalities outside the narrow visible range reveal 
details varying in scale from nanometers for atomic 
lattices, to micrometers for biological cells, at 
“human scale” for animals, plants and organs, and 
light years for astronomical observations. A single 
infrared, visible or radar image for automotive, ship 
and aircraft applications may cover an area with a 
diameter of a few meters or hundreds of kilometers. 
Thus some Natural IP modalities have extended our 
understanding of the world far beyond the original 
goals inherited from animal vision of wayfinding and 
navigation in environments constrained by our 
limited visual abilities. Moreover, some Natural IP 
techniques allow us to gain not only structural, but 
also phenomenological insights. Many striking 
examples of such techniques come from medical 
imaging, where modalities such as computed 
tomography (CT), magnetic resonance imaging 
(MRI), Doppler ultrasound, scintigraphy, single 
photon emission computed tomography (SPECT) and 
positron emission tomography (PET), rendered in the 
visible spectrum, are used to examine physiological 
and metabolic phenomena. 

Scientific and industrial Natural IP often includes 
input from non-imaging sensors. Furthermore, the 
most interesting applications require processing 
groups of images. The grouping may be based on 
spatial contiguity (mosaicking or slices of a 3-D 
volume), sparse time sequences (monitoring the 
growth of vegetation or beach erosion), or movie-rate 
sequences (motion from video).  Natural IP now 
includes 2 1/2 D, 3D, and 4D, grayscale, color, and 
multispectral images. For example, sequences of high 
energy X-rays (from a synchrotron) have been used 
to study crack propagation in concrete under load 
(Landis et al., 2007).  Cosmic-ray muography, first 
used to map hidden chambers in pyramids (Alvarez et 
al., 1970), is used for inspecting nuclear waste sites 
(Linkeos Technology Ltd, 2020). 

Current applications include video from multiple 
cameras for analyzing traffic, athletic events, and 
crowd activity in premises with high security 
concerns. Natural IP is gradually merging into 
Computer Vision because images from robots, 
drones, self-driving cars and wearable cameras must 
accommodate variable lighting and relative motion 
between multiple sensors and targets. As we will see 
in the next section, Document Analysis is moving in 
an entirely different direction, shifting emphasis from 
images to computer-native text and graphics. 

4 SYMBOLIC VISUAL 
PATTERNS 

Most symbolic images are, by definition, documents 
(or parts of documents). This overarching category 
includes books, magazines, newspapers, handwritten 
letters and notes, plans and diagrams, musical scores, 
tables, maps, charts and graphs.  

The first patents on Optical Character 
Recognition (OCR) were filed more than one hundred 
years ago, but until the 1960s OCR had to run on 
hardwired machines because computers took a long 
time to process even a 256 x 256 image. Figure 4.1 
shows postage stamps from the CCITT test sequence 
prepared for the standardization of facsimile in the 
1970’s.  They are available full-size at the website in 
the figure caption (of the International 
Telecommunications Union) which also houses many 
excellent sets of test data and calibration charts with 
complete metadata. Some (like the graph and the 
circuit diagram) may have been originally intended 
for visualization.  

 Many applications that fueled optical character 
recognition and document image processing in the 
last century have virtually disappeared (Nagy, 2016).  
The list includes postal address reading, bank check 
reading, and invoice image processing. Forensic 
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document analysis is giving way to white-hat hacking 
(Al-Muhammed and Daraiseh, 2018). Research on 
document analysis is shifting from processing images 
to manipulating documents already in a computer-
readable symbolic format such as plain text or XM. 
Current objectives include deep document 
understanding, search, summarization, translation, 
information extraction, table analysis, and sketch 
understanding (Nagy, 2016). 

 
Figure 4.1: Symbolic test images for evaluating 
compression algorithms for facsimile transmission. 
https://www.itu.int/net/itut/sigdb/genimage/test24.htm. 

Until the invention of the printing press, every 
image could be traced to the person or group who 
prepared (or copied) it.  The largest libraries 
contained only a few thousand items.  With the advent 
of printing and lithography, the direct connection 
between the image and its creator was lost. The 
number of physical images grew exponentially 
because each reproduction could be replicated at will.  
By the end of the last century, public and university 
libraries (and museums) had to store much of their 
holdings at remote locations. Progress in digitization 
and storage technology is now impelling libraries to 
move their shelves to a Cloud. 

We are now on the threshold of losing even the 
indirect link from image to creator (author, printer, 
artist, draftsman, or composer). Computers can 

dissect and reassemble symbolic images in myriad 
ways. The provenance of the whole or of parts thereof 
becomes untraceable. Furthermore, computers 
routinely convert signals from measuring instruments 
into symbolic images. More and more symbolic 
images have no human genesis, which is worrisome 
since computer-generated semantics may be arbitrary 
and not consistent with human reasoning, values, and 
responsibilities. 

5 NATURAL VS SYMBOLIC 
PATTERN RECOGNITION 

While recognizing and categorizing patterns is an 
essential philosophical endeavor first formulated by 
Aristotle (Ammonius, 1991), from a more pragmatic 
viewpoint it can be considered as a critical step in 
decision-making. Natural and symbolic visual 
patterns support, in general, different decision paths. 
For instance, recognizing landscape cues supports 
wayfinding, while recognizing written words 
supports reading and comprehension. A question 
arises naturally: for choosing the ‘right’ pattern 
recognition technique, does it matter whether patterns 
depict some aspect of the natural world or if they 
belong to a more abstract (symbolic) realm? 

The design of a computational technique for 
recognizing visual patterns may start by 
contemplating two interrelated questions: 

a) what type of data representation is most 
relevant for describing the patterns of interest? 

b) what formalisms and methodologies are 
associated to the data representation? 

The answers to these questions lay the 
foundations of three main schools of thought 
(statistical, structural, and syntactic) in computer-
based pattern recognition (which might or might not 
be inspired by biological mechanisms). The 
underlying principles are compared below. The 
interested reader is referred to Bunke and Riesen 
(2012) for more details regarding this comparison. 

Statistical pattern recognition represents a given 
pattern by a feature vector of fixed length n (i.e., as a 
point in an n-dimensional feature space) which 
enables the use of a rich arsenal of algorithmic tools 
grounded in linear algebra and probability. However, 
representing patterns via a simple concatenation of 
features has two main limitations, namely: 
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a) the fixed length constraint, which prevents  
tailoring the representation to the complexity of 
the pattern;  

b) the difficulty of encoding binary or higher-
order relationships that may exist between 
different components of the pattern. 

Both limitations are elegantly addressed by 
structural and syntactic pattern recognition, which 
encode patterns using sophisticated paradigms. 
Structural techniques are intrinsically associated with 
graph-based representations, which allow for 
describing patterns by decomposing them into 
semantically meaningful parts (primitives) and 
describing properties of these parts as node labels, 
and inter-part relationships as edges. An illustrative 
example of a graph-based approach for architectural 
symbol recognition is provided by Llados and 
Sanchez (2003).  

The syntactic approach to pattern recognition is 
inspired by formal language theory, and attempts to 
describe a complex pattern by decomposing it into a 
set of smaller, simpler patterns, which are connected 
via grammatical rules (Searls and Taylor, 1992). It is 
thus similar to the structural approach, but it is less 
popular because of the difficulty of defining 
grammars for parsing visual entities. Some successes 
have been reported in early works such as 
(O’Gorman, 1988) and (Ripley and Hjort, 1995). 

Structural and syntactic pattern recognition 
techniques rely upon rich, complex representations. 
This is both a blessing and a curse, since there is little 
mathematical structure to support the analysis of such 
representations. It becomes thus obvious that 
statistical and structural pattern recognition 
techniques exhibit complementary strengths and 
weaknesses, which has motivated research on 
combining data-rich, structural representations with 
statistical analysis tools (Bunke and Riesen, 2012). 

The deep learning revolution, occurring within the 
last decade, has clearly established the dominance of 
the statistical school of thought over the other two. 
Can deep learning be considered as belonging to 
statistical pattern recognition? A positive, 
mathematically justified answer to this question is 
offered by Ripley and Hjort (1995), who outline two 
main paradigms (sampling and diagnostic) for 
learning posterior probabilities in pattern recognition. 
Core to the deep learning paradigm is the concept of 
neural networks, which can be thought as a 
generalization of the diagnostic paradigm. This 
paradigm learns posterior probabilities directly from 
examples in the training set which are similar to the 
sample to be recognized. Bishop (2006) also 

considers neural networks as efficient models for 
statistical pattern recognition, as they provide a 
convenient solution to the curse of dimensionality 
(Bellman, 1961). This solution formulates the non-
linear mapping function (from the feature space to the 
classification space) as a linear combination of non-
linear activation functions (the ‘neurons’).  

The appeal of deep learning techniques might be 
partially explained by the elimination of the feature 
extraction step from traditional statistical pattern 
recognition pipelines (i.e., the handcrafting process) 
which involved a careful analysis of the dimensions 
of variability of the patterns of interest, as well a study 
of visual cues used by humans for performing the 
same detection/localization/classification task. Deep 
learning networks accept image patches as inputs, and 
discover not only the mapping from the feature vector 
representation to the output, but  also the 
representation itself; thus, they perform 
representation learning (Goodfellow et al., 2016). 
This works well for most natural patterns where 
image patches of reasonable size are information-
rich. However, some symbolic patterns may consist 
of just a few linear/circular segments; this is the case 
of symbols composing architectural floor plans 
(Rezvanifar et al., 2019). In such cases, examples 
from small-sized training datasets do not provide 
enough information for a successful learning process. 
Yosinski et al. (2014) show that transfer learning 
procedures, which allow to learn general features 
from base networks trained on rich, generic datasets, 
and specific features from target networks and 
smaller datasets, yield decreased performance when 
the distance between the base task and the target task 
increases. This explains, in part, the limited success 
of deep learning methods on sparse symbolic 
patterns.  

We cannot ignore game-changing results of deep 
learning architectures on both natural and symbolic 
public datasets (Farabet et al., 2013; LeCun et al., 
1998; LeCun et al., 2015). Deep learning networks 
presumably also played a role in digitizing Google 
Books, the largest collection of symbols in the word. 
However, none of the applications supported by these 
public datasets suffer from sparsity of data, such as 
the one in (Rezvanifar et al., 2019). The plethora of 
labeled and unlabeled training data (sometimes 
millions of samples) overcomes any benefit of 
syntactic or structural representation of human 
insights.  

To summarize, statistical methods work better for 
most natural patterns and simple symbolic patterns 
(such as digits/printed or handwritten characters or 
musical scores), while structural/syntactic techniques 
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are more suitable for more complex and/or sparse 
symbolic patterns. This is, of course, only a starting 
point, which is nevertheless useful for pondering the 
entire pattern recognition repertoire before delving 
into a more nuanced exploration. 

Indeed, the boundaries of structural and statistical 
approaches are blurring (e.g. probabilistic grammars, 
Markov random fields).  The recent emergence of 
Graph Neural Networks which inject deep learning 
into computational graph analysis is of particular 
interest (Renton et al., 2009; Battaglia et al., 2018). 
Nevertheless, applications (such as multimedia and 
document image analysis) relying heavily on 
symbolic patterns are still mentioned as belonging to 
the area of structural approaches, as shown is the 
2020 Call for Papers of the S+SSPR Workshop 
https://www.dais.unive.it/sspr2020/call-for-papers/.  

6 CONCLUSIONS 

We explored some characteristics that can reveal 
whether the source of an image is a real-world scene 
or an abstract concept. The proposed distinction 
between natural and symbolic images focuses 
attention on an essential difference between human 
and animal cognition and suggests a pathway to 
advance the study of both. The distinction also helps 
explain why syntactic and structural methods are 
seldom applied to scenery and to scientific imaging 
(especially beyond the visible spectrum), and the 
popularity of statistical and neural network 
approaches wherever human annotation becomes 
overwhelming. The scarcity of databases of 
heterogeneous (symbolic AND natural) image 
samples confirms our intuition regarding the 
fundamental nature of the distinction. 

Our future work will address the differences 
within both natural and symbolic images; we intend 
to survey image types in computer vision and image 
processing literature, which will hopefully clarify 
their links to pattern recognition methods. 

We also intend to explore interactions and 
mappings between natural and symbolic patterns. The 
world of visual art (left out of this preliminary 
exploration) offers abundant opportunities for 
studying how natural scenes are mapped onto more 
abstract, symbolic representations. Augmented 
reality environments will enable us to look at 
symbiotic co-occurrences of natural and symbolic 
patterns.  
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