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Abstract: Formal verification requires system requirements to be specified in formal notations. Formalisation of system
requirements manually is a time-consuming and error-prone process, and requires engineers to have strong
mathematical and domain expertise. Most existing requirements formalisation techniques assume require-
ments to be specified in pre-defined templates and these techniques employ pre-defined transformation rules
to transform requirements specified in the predefined templates to formal notations. These techniques tend
to have limited expressiveness and more importantly require system engineers to re-write their system re-
quirements following these templates. In this paper, we introduces an automated extraction technique (RCM-
Extractor) to extract the key constructs of a comprehensive and formalisable semi-formal representation model
from textual requirements. We have evaluated our RCM-Extractor on a dataset of 162 requirements curated
from the literature. RCM-Extractor achieved 95% precision, 79% recall, 86% F-measure and 75% accuracy.

1 INTRODUCTION

Formal verification techniques - e.g. model check-
ing - are usually highly recommended, and in many
cases mandatory, when proving the correctness of a
given mission critical system or system component
(Buzhinsky, 2019a). To benefit from these formal ver-
ification techniques, system requirements need to be
specified in suitable formal notations, such as tempo-
ral logic (TL) (Buzhinsky, 2019a).

According to the recently conducted reviews
(Brunello et al., 2019) and (Buzhinsky, 2019b), there
is still a need for an approach that can automatically
extract and transform existing textual requirements
written using different structures and formats – i.e.
no pre-defined templates – into formal notations. To
achieve this goal, we transform NL-requirements to
a well-defined semi-formal representation model that
is mappable (using well-defined transformation rules)
into formal notations.

a https://orcid.org/0000-0002-1580-6619
b https://orcid.org/0000-0002-6940-0833
c https://orcid.org/0000-0003-3812-9785
d https://orcid.org/0000-0003-4928-7076
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Our previous work in (Zaki-Ismail et al., 2020)
proposes a comprehensive intermediate representa-
tion for critical system requirements - RCM: Require-
ment Capturing Model. The model defines a compre-
hensive list of key requirement properties. In addi-
tion, the model is transferable to temporal logic using
transformation rules. We also provide the mapping
from RCM into Metric Temporal Logic (MTL) and
Computational Tree Logic (CTL).

In this paper, we introduce our requirement ex-
traction technique (RCM-Extractor) that can process
textual requirements and produce RCM representa-
tion of these requirements. Then using the rules de-
fined by (Zaki-Ismail et al., 2020), we can generate
formal notation. Our approach does not require tex-
tual requirements to follow specific structure, format,
style, order or length. We evaluated our technique on
a dataset of 162 requirements sentences curated from
papers in the literature and online sources as well.

Figure 1 presents the entire process of transform-
ing a set of textual requirements into TL notations.
Figure 1.(a) shows a set of 5 input textual require-
ments. Figure 1.(b) shows a simplified flow of our
RCM-Extractor to transform example one require-
ment (R1) into RCM representation in Figure 1.(c).
Figure 1.(d) provides the TL formula to be produced
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(c) RCM of R1

Req-Scope
vPre-conditional Scope
ØScopeType = StartUpPhase
ØTimekeyword = after
ØPredicate
üpredicateText = “After every sailing 
termination ” 
üRelation = equals
üOp1 
qText = sailing termination

üOp2 
qText = RCMVAL_TRUE

üneg_flag = false 

Req-Scope
vAction-Scope
ØScopeType = EndUpPhase
ØTimekeyword = before
ØPredicate
üpredicateText = “before 
RCMVAR_B_sig is RCMVAL_TRUE” 
üRelation = is
üOp1 
qText = RCMVAR_B_sig

üOp2 
qText = RCMVAL_TRUE

üneg_flag = false

Conditions
vPredicate
üpredicateText = “If RCMVAR_A_sig is 
RCMVAL_TRUE” 
üRelation = is
üOp1 
qText = RCMVAR_A_sig

üOp2 
qText = RCMVAL_TRUE 

üneg_flag = false

Action
vPredicate
üpredicateText = “the inhibitor shall 
transition to RCMVAL_TRUE”
üRelation = shall transition to 
üOp1 
qText = the inhibitor

üOp2 
qText = RCMVAL_TRUE

üneg_flag = false

(b) RCM-Extractor

(P
1)

(a) Requirements Document

R2:  if the camera recognizes the lights of an advancing vehicle, the high beam headlight that is activated is reduced to 
low beam headlight within 5 seconds.
R3: if the maximum deceleration is [insufficient] before a collision with the vehicle ahead, the vehicle warns the driver 
by acoustical signals <E> for 1 seconds every 2 seconds. The maximum deceleration is 5.
R4: When it rains for 1 minute, the wipers are activated within 30 seconds before the windscreen is dry.
R5: the fuel display blinks while the fuel level is low.

R1: In case of <cal: A_sig> after sailing termination is [TRUE], the inhibitor shall transition to [true] before <B_sig> is [TRUE].

(c) RCM of R1
Req-Scope
vPre-conditional Scope
ØScopeType = StartUpPhase
ØTimekeyword = after
ØPredicate
üpredicateText = “After every 
sailing termination ” 
üRelation = equals
üOp1 
qText = sailing termination

üOp2 
qText = RCMVAL_TRUE

üneg_flag = false 

Req-Scope
vAction-Scope
ØScopeType = EndUpPhase
ØTimekeyword = before
ØPredicate
üpredicateText = “before 
RCMVAR_B_sig is RCMVAL_TRUE” 
üRelation = is
üOp1 
qText = RCMVAR_B_sig

üOp2 
qText = RCMVAL_TRUE

üneg_flag = false

Conditions
vPredicate
üpredicateText = “If
RCMVAR_A_sig is 
RCMVAL_TRUE” 
üRelation = is
üOp1 
qText = RCMVAR_A_sig

üOp2 
qText = RCMVAL_TRUE 

üneg_flag = false

Action
vPredicate
üpredicateText = “the inhibitor 
shall transition to RCMVAL_TRUE”
üRelation = shall transition to 
üOp1 
qText = the inhibitor

üOp2 
qText = RCMVAL_TRUE

üneg_flag = false

(P1)
Pre-processing

(P2) 
Components 

Extraction

DSSAM
\

(P3)
Sub-

Components 
Extraction

(P4)
Classification

(P5)
Arguments 
Extraction

REQ R1: In case of <cal: A_sig> after sailing termination is [TRUE], the inhibitor shall 
transition to [true] before <B_sig> is [TRUE].

Extracted 
Components 
of PR[1]

C[1] If RCMVAR_A_sig after sailing termination is [TRUE]
”Intermingled & incomplete”

C[2] the inhibitor shall transition to RCMVAL_TRUE

C[3] before RCMVAR_B_sig is RCMVAL_TRUE

Pre-processed 
Primitive 
Requirement 
of R1

PR[1] If RCMVAR_A_sig after sailing termination is 
RCMVAL_TRUE, the inhibitor shall transition 
to [true] before RCMVVAR_B_sig is 
RCMVAL_TRUE.

Stanford 
NLP

Word-
Net

Technical 
terms

Req-
Document

B

C

S

A

Input Files

External 
Tools

(d) TL Representation of R1
G(B → (C → F(F(S) → (F(A v S)U S) )))  

Transformation Rules

(d) TL Representation of R1

G(B → (C → F(F(S) → (F(A v S)U S) )))  

Processed Component C[1]Processed Component C[1]Processed Component C[1]

Internal Pre-
processing  
of C[1]

Text If variable after sailing termination is value

POS IN, NN, IN, NN, NN, VBZ, NN

Component 
abstraction

Text If [variable] after [sailing termination] [is] [value] 

POS IN, basicNP, IN, basicNP, basicVP, basicNP
Extracted 
Sub-
components

S[1] S[2]

[If] [variable] [is] [value ] 
èCore-segment
POS= [[’IN’],[’basicNP’], 
[’basicVP’],[’basicNP’]]

[After] [sailing termination] [] []è
Core-segment
POS= [[’IN’],[’basicNP’],[],[]]

Classification Component è Condition Component è Req-Scope (split) 
è Pre-conditional Scope

Extracted 
Arguments

-Cond-keyword = if
-OP1 = RCMCAL_A_sig
-OP2 = RCMVAL_TRUE
-Relation = is

-Time cond-keyword = after
Created Artificial arguments

-OP1 = sailing_termination
-OP2 = RCMVAL_TRUE
-Relation = equals

RCM-Extractor Processes Input
RCM-Extractor Processes output
Formalization Flow

Figure 1: Textual Requirement Extraction Example.

by the formalisation rules applied on the extracted
RCM of R1, where B, C, S, and A are proposition
variables corresponding to ”sailing termination being
happened”, ”<cal: A sig> is [True]”, ”< B sig > is
[TRUE]”, and ”the inhibitor shall transition to [true]”,
respectively.

2 REQUIREMENTS CAPTURING
MODEL (RCM)

In RCM (Zaki-Ismail et al., 2020), each system re-
quirement Ri, may have one or more primitive re-
quirements PR where {Ri = < PRn > and n>0}. Each
PR j represents only one sentence. Each primitive re-
quirement contains zero or more conditions, zero or
more triggers, zero or more Req-scope, and one or
more actions. Figure 2 shows a simplified representa-
tion of RCM. Below we provide a description of each
of these components using the example requirements
in Figure 1:

• Trigger; holds an event that automatically ini-
tiates/fires action(s) whenever it occurs within
the system life-cycle (e.g., ”When it rains for 1
minute” in R4 Fig.1).

• Condition; represents the constraints that should
be explicitly checked by the system before exe-
cuting one or more actions (e.g., if the maximum
deceleration is [insufficient] in R3 Fig. 1).

• Req-scope; determines the operational context
under which (i) ”condition(s) and trigger(s)” can
be valid – called a pre-conditional scope; or (ii)
”action(s)” can occur – called an action scope.
The Scope may define a start boundary (e.g., ”af-
ter sailing termination”), end boundary (e.g., ”be-
fore < B sig > is [TRUE]” in R1 Fig.1), or both
(e.g., ”while R is true” can be expressed by after
and until as ”after R is true” and ”until not R”).

A component can be broken into sub-components.
The RCM uses 5 types of sub-components:

• Core-Segment: Each requirement component
must have one Core-Segment. It expresses
the core part of the component including: the
operands, the operator and negation flag/property
(e.g., in ”In case of <: A sig > is [True]” the
”<: A sig >” and ”[True]” are the operands and
”is” is the operator).

• Valid-Time: an optional sub-component provides
the valid period of time for the component of
interest including: the quantifying relation (e.g.,
”=”,”<”,”>”, etc.), the time length, and the unit
(e.g., in ”the vehicle warns the driver by acousti-
cal signals < E > for 1 seconds” the action is hold
for 1 second length of time).

• Hidden Constraint: holds an explicit constraint
defined for a specific operand within a compo-
nent. For example, in ”the high beam headlight
that is activated is reduced” in R2, the that is ac-
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System 
Requirement

Primitive 
Requirement

Req-Scope

Trigger

Condition

Action

Pre-elapsed-time
1..*

1..*

0..*

0..*

0..*

Valid-time

Core-segment

In-between-time

Hidden Constraint

Predicate

• Operands
• Operator
• Negation Flag

Operand

• Operand 
• Hidden 

constraint

Time

• QR
• Value
• Unit

Components Sub-components Internal Structure

Figure 2: Compact Meta-model of the RCM. Dashed arrow: optional, solid arrow: mandatory, line-segment: internal repre-
sentation, green box: component and yellow box: sub-components.

tivated is a constraint defined for the operand the
high beam headlight. RCM stores the constraint
inside its related operand object.

• Pre-elapsed-time: can be found for action and
condition components. This indicates the length
of time from an offset point before the action to
start or the condition to be checked (e.g., ”the
wipers are activated within 30 seconds” in R4).

• In-between-time: associated with action and
trigger components and used to reflect the elapsed
time between consecutive occurrences of the same
event (e.g., ”the vehicle warns the driver by acous-
tical signal for 1 seconds every 2 seconds” in R3).

3 RCM-EXTRACTOR APPROACH

RCM-Extractor consists of five main phases as in
Figure 1. We use StanfordNLP to extract Parts-of-
Speech (POS), Typed-Dependencies (TD) and pars-
ing tree. TDs are set of mentions representing syn-
tactic relations among the sentences words (e.g., in
”nsubj(equals-14, X-13)”, ”X” is subject to the verb
”equals”). POS provide the syntactic type of each
word (e.g., noun, verb, .etc). We use WordNet to
confirm the Stanford POS correction (i.e., the word
tagged as a verb by Stanford is actual verb in Word-
Net). The approach accepts the following as input: (1)
Requirements document – a text file containing sys-
tem requirements in natural language, and (2) Tech-
nical terms – a file containing domain-specific terms
expressed in English.

3.1 Phase 1: Pre-processing

The requirement pre-processing process aims to im-
prove the accuracy of the extraction as follows:

1. Requirements Cleaning: multiple spaces and
defected spaces at the beginning or at the end of
the sentence are removed. Other styling formats
are also considered (e.g., ”-” replaced with ” ”).

2. Closed Words Unification: English has closed
word classes (Leech et al., 1982). Each class con-
tains a finite set of words with a defined func-
tion. In this step, all English words holding
the same function (e.g., Subordinating conditional
keyword, timing keyword, instant timing key-
word) are unified and converted to a single unique
word selected from the class to be its representa-
tive within our approach (e.g., all subordinating
instant timing keywords {whenever, once, .etc}
replaced with ”when”). For example, in Figure
1.P1 ”In case of” is replaced with ”if”.

3. Foreign Words Substitution: the extraction ap-
proach is supported by the Stanford Parser, which
is specified and trained on specific dataset and has
a percentage of error. When the Stanford parser is
feed with non-English words, it usually produces
incorrect results. To avoid this problem, we re-
place any identified non-English words (i.e., tech-
nical variables, technical terms and technical val-
ues) with English words representing them (e.g.,
variable, term and value).

3.2 Phase 2: Components Extraction

In this process, we extract the RCM requirement com-
ponents – action, Req-scope, trigger or condition –
from each primitive natural language requirement.

We base our component extraction algorithm - ES-
SAG - on SSGA (Das et al., 2018). Figure 3 outlines
the steps used to extract requirement R1 in figure 1.
In step1, the elements identifying the clauses -verbs
in our case- are marked. First, we get the POS of the
given sentence using Stanford and then, highlight the
main verbs. We confirm the correction of the high-
lighted verbs using WordNet –defected cases are re-
moved. In step2, we compute the typed-dependency
of the input sentence using StnafordNLP. Then, in
step3, we break the connection between clauses be
removing the same mentions connecting clause used
by SSGA, but we excluded mentions reflecting impor-
tant domain relations (e.g., ”mark”, ”CComp”, ”ref”,
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Step 2, 3

1. mark(value-7, If-1)
2. nsubj(value-7, Variable-2)
3. case(termination-5, after-3)
4. compound(termination-5, sailing-4)
5. nmod(Variable-2, termination-5)
6. cop(value-7, is-6)
7. advcl(transition-12, value-7)          ✗
8. det(inhibitor-10, the-9)
9. nsubj(transition-12, inhibitor-10)
10. aux(transition-12, shall-11)
11. root(ROOT-0, transition-12)
12. case(value-14, to-13)
13. nmod(transition-12, value-14)
14. mark(value-18, before-15)
15. nsubj(value-18, variable-16)
16. cop(value-18, is-17)
17. advcl(transition-12, value-18)       ✗

Step 4
Group1: {1,2,3,4,5,6}
Group2: {8,9,10,11,12,13}
Group3: {14,15,16}

Step 5
Comp1:
•Sorted Distinct words: {If-1, Variable-2, after-
3, sailing-4, termination-5, is-6, value-7}
•Substitute and rewrite: If RCMVAR_A_sig
after sailing termination is [TRUE]

Comp2:
•Sorted Distinct words: {the-9, inhibitor-10, 
shall-11, transition-12, to-13, value-14}
•Substitute and rewrite: the inhibitor shall 
transition to RCMVAL_TRUE

Comp3:
•Sorted Distinct words: {before-15, variable-
16, is-17, value-18}
•Substitute and rewrite: before 
RCMVAR_B_sig is RCMVAL_TRUE

Input= “If RCMVAR_A_sig after sailing termination is RCMVAL_TRUE, the inhibitor shall 
transition to RCMVAL_true before RCMVAR_B_sig is RCMVAL_TRUE.”

Processed Input = “If variable after sailing termination is value, the inhibitor shall transition to 
value, before variable is value.”

Step 1
POS = If/IN Variable/NNP after/IN sailing/NN termination/NN is/VBZ value/NN ,/, 
the/DT inhibitor/NN shall/MD transition/VB to/TO value/NN before/IN variable/NN 
is/VBZ value/NN

Figure 3: Components Extraction Example.

”dep”), removed mentions are marked with ”7” in fig-
ure 1. Afterwards, in step4, all the mentions having
direct or indirect connections with each identified el-
ement are grouped. Finally, in step5, distinct words
of each group are sorted according to their occurrence
indices in the original sentence formulating one com-
ponent.

Requirements expressed in NL causes several
complex challenges. Requirement components may
(1) exist in any order in the sentence (e.g., R3.S1 and
R4 in Figure 1 show alternative orders); (2) may be
intermingled (e.g., ”In case of < cal : A sig >after
sailing termination is [TRUE]” in R1); (3) exist in
alternative structures (e.g., simple sentence and com-
plex sentence) that could be represented by alterna-
tive types (e.g.,imperative and declarative) and dif-
ferent voice (e.g., active and passive). Our ESSGA
algorithm overcomes these challenges by breaking
the connections between the clauses and reforming
each one on its own, step2 and step4. Such isolation
makes the approach insensitive to intermingling com-
ponents, their order, and sentence complexity.

A component may be expressed by an incom-
plete clause following a correct syntax and hold im-
plicit meaning (e.g., ”after sailing termination” in R1
implicitly means ”the sailing termination happens”).
This case is only eligible to adverbal clauses (Hud-
dleston and Pullum, 2005), where the clause involves
a time conditional keyword and that corresponds to
the Req-scope component type. Such incompleteness
may cause components merge especially if the missed
part is the verb (e.g., before termination).

3.3 Deep Syntactic and Semantic
Analysis (DSSAM)

DSSAM is responsible for deeply understanding each
component to complete the extraction. It consists of
the remaining three processes: sub-components ex-
traction, classification, and arguments extraction.

3.3.1 Phase 3: Sub-components Extraction

In Phase 3, the first part of DSSAM, each com-
ponent is processed to extract the sub-components
that comprise it. Figure 1 shows two extracted sub-
components (S[1] and S[2]) along with their POS
tags.

This process consists of two steps: (1) abstracting
the input component and (2) identifying the bound-
aries of each sub-component. First, the initial POS
tags of all the tokens within a component are scanned
to identify noun and verb phrases. For each identified
phrase, the POS tags of its tokens are replaced with
a single tag as indicated in the example in Figure 1
(”basicNP” for noun phrases and ”basicVP for verb
phrases). This is carried out via regular expressions
that match the POS tags of the tokens within a com-
ponent against a hand crafted set of patterns covering
the possible structures of noun and verb phrases in the
English language.

Second, the boundaries of each sub-component
are identified by locating the head (starting word)
and the most suitable body (i.e., the succeeding set
of words to fulfil a correct grammatical structure
for the sub-component) as in Figure 4. Some sub-
components (e.g., the core-segment reflecting condi-
tion, trigger, or Req-scope) have a keyword head as a
result of the pre-processing unification step (e.g., the
head of a trigger is ”when”). The heads of other sub-
components (e.g., pre-elapsed-time, valid-time, in-
between-time, hidden constraint) have exclusive POS
tags (e.g., the hidden constraint starts with a relative
pronoun having the POS tag ”WP$” or ”WDT”).

H1 I1
If variable after [sailing termination] is value 

H1 I1 H2 I2
If variable after [sailing termination] is value 

I2 E2

H1 I1 H2 E2
If variable after [sailing termination] is value 

I1 E1

✓

✗

✓

✓

H1 I1 H2

If variable after [sailing termination] is value 

↑

↑

Hi : Head Ii : Intermediate Ei : End 
✓: syntactically correct ✗: syntactically in correct

1-

2-

Figure 4: Best suitable sub-components decomposition.

However, identifying the body of a sub-
component is more challenging because it can have
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different structures in English clauses. To over-
come this, we created a set of hand crafted reason-
ing rules to reflect the possible structures of each sub-
component. We also developed a recursive technique
to figure out the most suitable body structure for an in-
tended sub-component while taking into account the
remaining sub-components. For example, the second
sub-component in Figure 4 starting at ”H2” conforms
to two possible structures, but only one of them will
prevent syntactic defects to the other sub-component.
The reasoning rules are developed on Prolog to bene-
fit from the inference backtracking nature.

3.4 Phase 4: Classification

The aim of this sub-process is assigning label/type
(e.g., Trigger, condition, action, Req-scope, Fac-
tual Rule) to each of the extracted components and
(pre-elapsed-time, valid-time, in-between-time, hid-
den constraints) to sub-components. The classifier as-
signs types by applying two-level checking on the ob-
tained sub-components. The first level, as indicated in
Figure 5, identifies types based on four attributes: (1)
the head of the given sub-component, (2) comp count:
is the total count of the extracted components of the
current prim-requirement, (3) the count of the ex-
tracted core-segment sub-components. It worth not-
ing that, sub-components heads are unified through
step3:closed words unification in the pre-processing
phase. In addition, the classification is done in
comply to the types of clauses(Huddleston and Pul-
lum, 2005), where (1) independent clauses identified
through ”No Head”, (2) subordinating clause iden-
tified through: ”conditional, instant-conditional, and
time-conditional heads”, and (3) relative clause iden-
tified through ”Relative head”. Regarding the co-
ordinating clause, first, it is adjusted to one of the
other types (i.e., independent, subordinating or rela-
tive) based on its main attached clause (e.g., ”if X is
True or Y is True”−→ ”if X is True, or if Y is True”),
then it is ready to undergo the classification process.

In the second level, Req-scope component type
is classified further to either ”action scope” or ”pre-
conditional scope”. The type is identified based on
the surrounding components. If Req-scope is found in
a merged component, its type will be identified based
on the component it is merged with (i.e., if action =>
action scope, else ==> Pre-conditional scope). Oth-
erwise, we rely on the nearest non-Req-scope compo-
nent within the primitive requirement as in Table 1.

Su
b-

Co
m

po
ne

nt

Checking Attributes
• Head
• Comp Count
• Core-segments 

count

• No head
• comp Count == 1
• Core-segment count == 1

• No head
• comp Count > 1

• Conditional Head

• Instant Conditional Head

• Timing Conditional Head
• Core-segment count == 1

• Pre-elapsed-time Prep 
Head

• Valid-time Prep Head

• In-between-time Prep 
Head

Main Comp 
Type

Sub-Comp to 
Main Comp

Split Comp
• Timing Conditional Head
• Core-segment count > 1

Req-scope

Pre-elapsed 
Time

In-between 
Time

Valid
Time

Factual Rule

Condition

Trigger

Classification RoleDecision Criteria

Action

Req-scope

• Relative Head
Hidden 
Constraint

Figure 5: Classification Checking.

Table 1: Req-Scope Classification examples.

Req Example Req-scope type
(a) 1. Before termination, if X is

[True], Y shall be set to [True]
1. Pre-conditional Scope

2. Before termination, Y shall
be set to [True], if X is [True]

2. Action Scope

(b) 1. If X is [True], Y shall be set
to [True] before termination

1. Action Scope

2. Y shall be set to [True], if X
is [True] before termination

2. Pre-Conditional Scope

(c) 1. If X is [True] before termi-
nation, Y shall be set to [True]

1. Pre-Conditional Scope

2. Y shall be set to [True] be-
fore termination, if X is [True]

2. Action Scope

(d) 1. If X is [True], before termi-
nation, Y shall be set to [True]

1. Pre-Conditional Scope

3.5 Phase 5: Arguments Extraction

This process identifies the complete arguments set
of a given sub-component. To achieve this, we
benefit from the sub-component extraction pro-
cess, to construct an initial argument decomposi-
tion within each identified sub-component. Each
sub-component contains two lists. The first list
contains the text of the sub-component initially
broken down into separate arguments. The sec-
ond list contains the corresponding POS tags of
each argument in the first list. For example, the
second sub-component in Figure 1 is represented
with: (1) text=[[’After’],[’sailing termination’],[],[]]
and (2) POS= [[’IN’],[’basicNP’],[],[]]. Both lists are
constructed with the same static length that is deter-
mined based on the most complete possible version
of the sub-component (i.e., the case where all the ele-
ments of the sub-component are present), as follows:
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Table 2: Measured performance of the RCM-Extractor Technique.

Perspective Criteria Manual-Ev TP FP FN Recall Precision F-measure Accuracy
ESSGA Initial components 331 317 5 14 96% 98% 97% 94%

DSSAM
Final components 366 347 3 19 95% 99% 97% 94%
Rel(sub-components) 407 318 8 82 80% 98% 88% 78%
Rel(Arguments) 326 318 8 0 100% 98% 99% 98%

Entire Prim Requirement 162 122 7 33 79% 95% 86% 75%

• Core-segment: the adopted structure consists of
head keyword, subj, verb, complement. This sub-
component type can represent:

1. Condition case: conditional keyword, subj,
verb, complement (e.g., [If] [X] [exceeds] [Y])

2. Trigger case: conditional keyword, subj, verb,
complement (e.g., [when] [X] [exceeds] [Y])

3. Action case: empty-item, subj, verb, comple-
ment (e.g., [x] [shall be set to] [True)]

4. Req-scope: time-conditional keyword, subj,
verb, obj (e.g., [After][X][transitions to][True])

• Hidden Constraint: relative-noun,
relative-pronoun, subj, verb, obj (e.g.,
[X][whose][index][exceeds][2])

• Time: time head, quantifying relation, value, unit
(e.g., [for] [at most] [2] [seconds]). This depicts to
pre-elapsed-time, valid-time and in-between-time
sub-components.

The role of each argument is defined based on
the argument location in the list. In case of missing
element(s), the corresponding location of such ele-
ment(s) are left empty to maintain the proper ordering
and roles of the expected elements within the list.

4 EVALUATION

We evaluated the performance of our RCM-Extractor
technique on 162 behavioral requirements sentences
(found in1) of critical systems, curated from exist-
ing case studies in the literature. In which, 89
of these requirements used for expressing proposed
CNLs, templates and defined formats for represent-
ing requirements in different domains considering dif-
ferent writing styles in (Justice, 2013) (Jeannet and
Gaucher, 2016)(Thyssen and Hummel, 2013), (Fi-
farek et al., 2017), (Lúcio et al., 2017a), (Dick et al.,
2017), (Bitsch, 2001), (Teige et al., 2016), (Lúcio
et al., 2017b), (Mavin et al., 2009), (R. S. Fuchs,
1996). Additional 28 requirements were used for
evaluating formalization approaches in (Ghosh et al.,
2016; Yan et al., 2015). Further, the remaining 45

1Dataset, RCM-Extractor output, and evaluation sheet:
https://github.com/ABC-7/RCM-Extractor

requirements were extracted from an online avail-
able critical-system requirements that are not tweaked
for any special use in (Houdek, 2013). These re-
quirements do not contain coordinating relations (i.e,
and/or) as we currently do not support coordination
in the RCM-extractor. However, they cover the entire
components and sub-components types –proposed by
the RCM– with different writing styles.

We first processed the 162 requirements with the
RCM-Extractor (i.e., the extraction output found in1).
Then, we assess the performance of each process/step
of the RCM-Extractor as well as the final results
against the expected outcomes of the manual extrac-
tion (conducted and agreed by the authors, where each
requirement sentence has a unique ground truth of ex-
traction –the manual assessment found in1). Table 2
presents the manual evaluation measures and the com-
puted measures for the extraction (i.e., recall, preci-
sion, f-measure and accuracy) on the dataset. The as-
sessment criteria are:

• Initial Components: are the initial set of com-
ponents extracted by our ESSGA algorithm. As
seen in the table, 317 and 14 components out
of the expected 331 are correctly extracted and
missed respectively by the ESSGA Algorithm. In
addition, the remaining 5 components (FP) are:
1)with incomplete text, 2)with excess text, or 3)
composition of two components (i.e., un-illegibly
merged). The main cause for the missed and
the wrongly produced components is the miss-
interpretation by Stanford. It also worth noting
that, not all of the 14 components are missed, but
each un-illegibly merged components in FP in-
creases the FN (FN = the expected outcome - TP).

• Final Components: are the final components of
the given requirement sentence obtained by our
DSSAM process (after resolving merged cases).
The RCM-Extractor succeeded in dissolving the
merged cases (Sec.3.3.1) by increasing the initial
components to 347. In addition, the decrease in
the FP from 5 (in the initial-count) to 3 (in the fi-
nal count), indicates that, the un-illegibly merged
components due to Stanford interpretations are
also resolved in this stage.

• Rel(sub-components): are the sub-components
extracted by Phase 3 in our DSSAM process,
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given the extracted components by ESSGA that
are provided as input(i.e., missed components by
ESSGA are excluded). The DSSAM correctly ex-
tracted 318 sub-component out of 407 one’s de-
rived from the correctly/partially extracted 347
component. The DSSAM produced 8 incomplete
sub-components (FP) and failed to produce 82
ones.

• Rel(Arguments): are the sub-components with
correctly extracted arguments by Phase 5 of
our DSSAM process, given the extracted sub-
components by P3 and P4 (i.e, missed sub-
components are excluded). The correctness of an
extracted sub-component indicate the correctness
of its initially extracted arguments according to
the described process in Sec.3.5. Thus, the cor-
rectly extracted 318 sub-component correctly de-
composed into arguments.

• Entire Primitive Requirement: are the extracted
primitive requirements reflecting the performance
of the entire pipeline. The table shows that, 122
requirement sentence are correctly extracted in
addition to 7 sentences (FP) are produced with
missed arguments. On the other hand, 33 re-
quirement sentences failed due to the failure of
DSSAM at any phase. It is also worth noting that,
the failed sentences contain (sub-)components
process-able by the RCM-Extractor. However,
the failure in decomposing a given component in
the entire requirement into (partially)correct sub-
components by DSSAM causes failure to the en-
tire requirement sentence.

Overall the RCM-Extractor achieved 94% and
94% accuracy for extracting the initial and final re-
quirements components, 78% accuracy in Rel(Sub-
components), 98% accuracy in Rel(Arguments) and
75% accuracy in the entire primitive requirement ex-
traction. The main causes of extraction failure are:

• the Stanford accuracy (e.g., the requirement ”the
display elements glow”, failed in Phase 1 since
it is wrongly interpreted as NP by StanfordNLP
although it is a simple sentence).

• input with wrong grammar (e.g., ”if timer greater
than timeout then heater command equal to er-
ror.”, failed in Phase3, the first clause ”if timer
greater than timeout” does not have verb).

• current extraction limitations (e.g., ”while moving
the window up, the engine control system shall be
essentially single fault tolerant with respect to loc
event”, failed in Phase 3 due to the excess word
”essentially” –excesses words are words that do
not affect semiformal/formal semantic of the input
requirement (e.g., adverbs)).

These causes affect 9, 7,and 17 requirement sentence
respectively of the missed 33. 76% of the require-
ments are correctly extracted and ≈ 4% are partially
correct due to the ”missed”/”partially extracted” com-
ponents through the RCM-Extractor phases.

5 RELATED WORK

There is a rich body of research for formalizing re-
quirement specification into formal notations to elim-
inate errors in an early phase. The main adopted
paradigm is feeding the approach with requirement
sentences written in pre-defined format(s) (Konrad
and Cheng, 2005; Pohl and Rupp, 2011; R. S. Fuchs,
1996; Mavin et al., 2009; Sládeková, 2007; Justice,
2013; Marko et al., 2015; Fu et al., 2017). Then the
defined structure of the template is utilized for pars-
ing the NL requirements into formal notations. The
extraction of each technique differs slightly upon the
addressed elements in the defined template.

Ghosh et al., in (Ghosh et al., 2016) proposed a
framework called ARSENAL for translating natural
language requirements into LTL. In ARSENAL, a se-
mantic analysis applies on dependency parsing and
POS tags of a simplified sentence. NExt, grammat-
ical relation with word types are aggregated into an
intermediate representation ”IR”. Then, IR is en-
riched with formal information resulted from apply-
ing a set of hand crafted mapping rules on the typed
dependency of the input sentence. Such rules are in-
evitably domain-specific and limited to restricted sce-
narios. The final version of IR can be eventually con-
verted into several formalisms, including LTL. The
approach achieved 78% and 95% on two different
data-sets. The provided approach is order sensitive
since it achieved 95% and 65% accuracy for the same
data-set by perturbing ”If A then B” to ”B if A”.

Yan et al., in (Yan et al., 2015) presented NLP-
based technique for formalizing NL-requirements
into LTL. Similar to our approach, this technique
identify clauses of a requirement mapping each to one
proposition in LTL later. The provided approach al-
low coordination between clauses which is currently
lacked by our approach. On the other hand, this
approach is very limited to its very strictly defined
clause structure. In which, a clause should contain
(1) single word noun as a subject and a verb pred-
icate with one of the following formats ”verb —
be+(gerund—participle) — be+complement”, (2) the
complement should be adjective or adverbial word,
(2) prepositional phrases are not allowed except ”in
+ time point” at the end of the clause, etc. Moreover,
more complex cases of natural language (e.g., relative
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clauses, imperative cases, and intermingled clauses)
are not addressed. Time scope and repetition proper-
ties are not considered in the defined structure as well.

Conversely to this approach, our technique aims to
process NL-requirements instead and thus reveal the
overhead work of rewriting the requirements in addi-
tion to covering a wider range of requirements struc-
ture due to the insensitivity to number, order, or types
of components constituting a requirements sentence.

6 CONCLUSION

The paper introduces RCM-Extractor - an automated
approach to extract and transform textual require-
ments into intermediate representation - RCM. In
which, RCM is expressive enough to be transformed
into formal notation. The approach is domain inde-
pendent and insensitive to structure and format of the
input requirements. We evaluated the approach on
162 requirements sentences achieving 95% precision,
79% recall, 86% F-measure and 75% accuracy.
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