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Abstract: In this work, we propose CNN based approaches for EEG classification which is acquired from a visual
perception task involving different classes of images. Our approaches involve deep learning architectures using
1D CNN (on time axis) followed by 1D CNN (on channel axis) and Siamese network (for metric learning)
which are novel in this domain. The proposed approaches outperform the state-of-the-art methods on the same
dataset. Finally, we also suggest a method to select fewer number of EEG channels.

1 INTRODUCTION

Brain decoding, in general, is not only an interest-
ing research area, but it also has benefits from the
cognitive and clinical perspectives. In recent years,
there has been a considerable increment in the brain
decoding studies from EEG recordings. Typically, a
non-invasive brain-computer interface (BCI) based on
EEG is popularly used for decoding of mental emo-
tions/intentions (in a loose sense). A practical and
useful example of such decoding is, say, a BCI con-
trolled wheelchair or a BCI controlled user interface,
which can aid differently-abled people.

Since its discovery in 1924 by a German psychi-
atrist Hans Berger (Chen, 2014), electroencephalog-
raphy (EEG) was primarily used by health workers
for the applications like detection of seizure (Chen,
2014). However, over the years, its usage in the fields
of cognitive neuroscience and biomedical engineer-
ing has significantly improved. The main benefits of
this technique is not only its non-invasiveness but also
its high temporal resolution along with relatively low
cost, as compared to some other brain sensing de-
vices.

Apart from these advantages, EEG signals have
a disadvantage as very poor SNR. Having said that,
it is quite difficult to assimilate what happens in the
brain of a person just from the EEG due to its poor
signal to noise ratio. Nevertheless, significant amount
of successful works on BCI have been done for the
applications like decoding emotion and analyzing at-
tention (Chen et al., 2019; Craik et al., 2019; Gao
et al., 2015) etc.

Inspired by such research, we further explore a re-

cently considered direction of analyzing brain activity
generated while doing visual perception tasks (Tiru-
pattur et al., 2018). More specifically, in this work, we
propose a deep learning method to address the task of
EEG signal classification to differentiate between the
perception of images (10 classes). The task involves
visual stimuli and imagination of images across dif-
ferent categories such as digits (0-9), characters (A-J),
and natural objects

Brain decoding from EEG signals can be car-
ried out with some traditional machine learning ap-
proaches for signal classification (like KNN, SVM
etc.). These above methods are already well explored
in this area. However, for this study, we prefer to use
deep learning techniques, considering their superior
performance, in general, and in also different applica-
tion domains of EEG classification.

A recent review and evaluation of deep learning
methods in solving different EEG-related tasks is re-
ported in (Craik et al., 2019), which discusses a vari-
ety of deep learning-based approaches. Such methods
also include the processing of EEG data to discrimi-
nate semantically distinct stimuli sources (Huth et al.,
2016). We observe via these works that it is useful to
thoughtfully consider combination of different neu-
ral networks modules to attempt to effectively address
and improve upon the state-of-the-art techniques in
EEG classification tasks. Thus, in this work we con-
sider an in-house designed CNN model with 1D and
2D CNN modules, followed by a Siamese network,
which is motivated below.

As indicated earlier, in this work, we focus on
EEG data related to three different categories (Char-
acters, digits and objects). From an image perspective
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all these categories are well discriminative. Also, the
classes considered within each category are well dis-
criminative. However, it is not necessary that the dis-
criminability of features at the image domain (which
leads to very high image classification performance),
also reflects in discrimination of the corresponding
EEG signals.

One way to improve the discrimination in the EEG
domain is to take the advantage of metric learning
(Kaya and Bilge, 2019). Metric learning is a method
which is based on a distance metric that aims to learn
the similarity or dissimilarity between samples. The
objective of metric learning is learn a feature space
which helps in not only reducing the distance between
similar objects, but, also in increasing the distance be-
tween dissimilar objects. A common network which
is for metric learning is the Siamese network (Brom-
ley et al., 1994). Thus, in addition to an in-house but
a more traditional CNN network, we also employ a
Siamese network in this work, which, as yet has not
been considered in many EEG related tasks.

2 RELATED WORK

Significant amount of literature is available on EEG
analysis for different applications, that used tradi-
tional machine learning approaches. However, in line
with the methods used in this paper, we only discuss
works that have employed the contemporary deep
learning methods.

A large fraction of works based on EEG classifi-
cation using deep learning mainly focus on tasks like
seizure detection (Chen, 2014; Oweis and Abdulhay,
2011),event-related potential detection (Parekh et al.,
2017), emotion recognition (Chen et al., 2019), men-
tal workload (Di Flumeri et al., 2018), motor imagery
(He et al., 2018) and sleep scoring (Ghimatgar et al.,
2019) etc. The authors in (Craik et al., 2019) dis-
cussed the significant practices and outcomes based
on deep learning for the task of EEG classification.

In (Gao et al., 2015; Chen et al., 2019), the au-
thors propose the use of well known deep learning
techniques (KNN, fully connected ANN and CNN)
to learn the features and to use these features for the
classification of emotions with EEG signals. Another
attempt to the classification of emotions using EEG
signals was successfully done in (Chen et al., 2019).
Here, the authors proposed a deep convolution neural
network (CNN) based on the combination of temporal
and frequential features. They worked with the DEAP
dataset for EEG-based emotion classification (Koel-
stra et al., 2011). The authors of (Schirrmeister et al.,
2017; Bashivan et al., 2015) tried with the combina-

tion of CNN and LSTM architectures to classify EEG
signals for different tasks.

Some of the current research involve identifying
patterns from EEG to recognize the stimuli that give
rise to specific responses (Spampinato et al., 2016;
Huth et al., 2016). The work in (Parekh et al., 2017)
is also a recent work wherein the authors suggested
an image annotation system that works with EEG sig-
nals.This study comes with the usage of P300 ERP
signature for purpose of image annotation. We can
understand P300 as an event-related potential (ERP)
component which is obtained in the process of taking
a decision about an event (Linden, 2005).

Some of the recent research also includes the
investigation of visualizing brain activity of a sub-
ject performing visual task (Nishimoto et al., 2011).
Apart from EEG signals, fMRI can also be used to de-
code human brain. One attempt for this type of work
has been done by (Nishimoto et al., 2011). They
have used fMRI images to envision the stimuli in the
EEG signal while watching a short movie clip. The
advantage of brain activity captured through fMRI is
its high spatial resolution, but, it is not cost effective.
This drawback can be overcome by lower cost tech-
niques (such as EEG). EEG provide a higher tem-
poral resolution compared to fMRI. A large number
of cognitive studies have showed that multiple object
categories can be interpreted in event related poten-
tial (ERP) with EEG (Carlson et al., 2011; Simanova
et al., 2010; Wang et al., 2012).

However, limited number of techniques have been
suggested (Kapoor et al., 2008) to address the prob-
lem of decoding the EEG signals associated with the
task of visual perception and majority of these tech-
niques were devised for binary classification (e.g.,
presence or absence of a given object class).

One of a very recent approach that deals with the
EEG classification for the task of visual perception is
given by (Tirupattur et al., 2018). In this work the au-
thors proposed a deep learning network for the clas-
sification of EEG signals while the signals has been
captured by Emotiv Epoc (14- channels) device (Styt-
senko et al., 2011). Parallel to this work, the authors
of (Jolly et al., 2019) also proposed a GRU based
deep learning approach to classify the EEG signals
from the ThoughtViz dataset (Tirupattur et al., 2018).
But, still there are very limited methods available for
brain decoding studies. We consider these works as
novel early baseline methods, for our work as we no-
tice scope of improvement in this domain.

Considering the above, the main contribution of
this paper can be listed as follows:

1. This paper is an attempt to develop an improved
visual stimuli evoked EEG classifier having em-
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phasis on following techniques:
(a) An in-house designed CNN architecture.
(b) Distance-metric based learning via a Siamese

network which involves the above network ar-
chitechture as its component.

2. We also consider the fact that not all channels
may be equally important for classification, and
present a correlation based technique to select
fewer number of relevant EEG channels.

All the works presented here are based on a publicly
available dataset (details are in subsequent sections).

3 DATASET DETAILS

The dataset for this work is a publicly available
dataset which is acquired from Tirupattur et al.’s work
(Tirupattur et al., 2018). Before this work (Tiru-
pattur et al., 2018) this dataset was originally re-
leased by Kumar et al.’s (Kumar et al., 2018). Orig-
inally, this contains EEG recordings of 23 volunteers
who were shown stimuli of three different categories
(characters(A-J), digits(0-9) and objects(10 classes
from ImageNet dataset)).

From each category 10 examples are chosen.

Figure 1: Samples from MNIST, ImageNet &
char74k (Deng, 2012; Deng et al., 2009; de Campos
et al., 2009).

Each of these examples have EEG signals from 23
volunteers for all 10 classes of images and each EEG
recording is of 10 seconds. This EEG data is collected
using Emotiv Epoc headset.The electrodes location
for Emotiv Epoc is given in figure 2 (Mehmood and
Lee, 2016). This device contains 14 channels and the
sampling frequency is 128 Hz.

The authors of (Tirupattur et al., 2018) created
smaller chunks of EEG data by using a sliding win-
dow of 32 samples with overlapping of 8 samples.

Figure 2: Electrodes location for Emotiv Epoc.

No pre-processing or transformation of the data has
been done in our approach and the data is used as
in the form released by Tirupattur et al. (Tirupattur
et al., 2018). We carried out experiments with the
proposed method on all the three types of data. The
results of ThoughtViz (Tirupattur et al., 2018) are pri-
marily taken as a baseline for this work, along with a
couple of other methods which have reported results
on some selected classification tasks. These are used
for comparison in section 5.

4 METHODOLOGY

In this section we discuss the two classification mod-
els and the channel selection approach in the follow-
ing subsections.

4.1 EEG Classification

As EEG signals have very low signal to noise ratio,
it is important to extract / learn relevant features for
the classification task. One effective way to execute
this task is the use of convolution neural networks,
which inherently involves the neighbourhood context
of each sample from each channel across time. Fur-
ther, for increasing robustness one can also consider
the convolution across channel axis. This intuition
motivates us to employ a 1D CNN across time fol-
lowed by 1D CNN across channels which enables
us to consider the neighbouring context information
of both directions. Below we describe the two ap-
proaches proposed in this work. The first one is a
base in-house network consisting of 1D convolutions,
and the second one is a Siamese network, built upon
the base network.

4.1.1 Base CNN Network

The details of base deep learning model is given be-
low:
The input data is of the dimension (14 x 32) (i.e. 14
channels and 32 samples)

1. Apply 1D CNN on each individual channel to cap-
ture context information across time axis.

2. Apply 1D CNN on channel axis to capture neigh-
bourhood context across channels.

3. Maxpool layer is further applied, which is known
to yeild some robustness against intra-class varia-
tion.

4. After maxpool layer, we again apply a 1D CNN
on time axis of the signal.

BIOIMAGING 2021 - 8th International Conference on Bioimaging

162



5. Finally, the features extracted from the final CNN
layer, are input to a classifier layer made up of
dense layers, followed by a softmax output layer.
The architecture is depicted in Figure 3. The num-

bers in each block, denote the number of convolution
filters for that block. The fully connected layers con-
tain 500, 128 and 32 neurons. The final softmax layer
is of the size equal to the number of classes. ReLU
activation has been used after each of the internal lay-
ers. We train the classifiers with adam optimizer, with
a batch size of 64 and learning rate of 1e-4. We train
this network from scratch.

Figure 3: Network architecture for EEG classification.

4.1.2 Siamese Network

As indicated earlier, a Siamese network is a useful
approach to learn features based on the similarity and
dissimilarity of input data, so that, ideally the learnt
embeddings, are similar for the data of the same class
and dissimilar otherwise. We believe that such a
transformation is particularly useful to be considered
for EEG classification, which involves noisy data. It
helps to improve separability in between classes.

A popular variant of the Siamese network works
on the minimization of triplet loss (Dong and Shen,
2018). Triplet loss is a recent and popular loss func-
tion for machine as well as deep learning algorithms.
The main idea of this loss function is the comparison
of a baseline (anchor) input to a positive (true) input
and a negative (false) input. The main motive behind
this comparison is to minimize the distance between
baseline (anchor) input and positive (true) input and
to maximize the distance between baseline (anchor)
input to the negative (false) input.
Mathematically, we can write the distance for a pair
of input samples (X1,X2) as,

DW (X1,X2) =‖ GW (X1)−GW (X2) ‖ (1)

Here, GW (X1) and GW (X2) are the transformation of
input data. This transformation embeds the data into

a new space which satisfies the purpose of distance-
metric learning.

Siamese network works on the creation of triplets
and further task is the minimization of triplet loss.
Triplet loss for Siamese network can be given by
equation

a =‖ (GW (X)−GW (X p)) ‖2 (2)

b =‖ (GW (X)−GW (Xn)) ‖2 (3)

LTriplet = max(0,a−b+α) (4)

Here,
X = input anchor vector
Xn = input negative vector
X p = input positive vector
α = margin between positive and negative pairs
The selection of triplets for training the Siamese net-
work is an important aspect (Chang et al., 2019). Typ-
ically, there are two ways to select triplets.
a) Manually or offline: In this approach, we first gen-
erate the triplets manually (often randomly) and then
fit the data to the base network.
b) Online: In this approach, we feed a batch of train-
ing data, generate triplets using all examples in the
batch and calculate the loss on it. While the batch
is selected randomly, those triplets are selected which
yield a smaller loss.

Figure 4: Siamese architecture.

The overall architecture of the Siamese network
is shown in Fig 4, where each of the CNN model
is essentially some base network, with the same ar-
chitecture. All the three CNN models are trained si-
multaneously (hence, the weights are shared) and we
can choose any one of them for testing after complete
training. In our case, after complete training of the
base network (in the previous subsection), we use this
network as a base network for Siamese. We removed
the last layer (softmax layer) of the base network and
enable the training of all the parameters. We use both
the above methods of triplet selection for our experi-
ments.

4.2 Channel Selection

Channel selection is about selecting fewer channels
instead of all available channels. The importance of
channel selection can be illustrated from these points:
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1. Extracting features only from the relevant chan-
nels can reduce the computational complexity
while performing any EEG signal processing.

2. The use of unnecessary channels might results
into the overfitting, which can degrade the perfor-
mance the overall system.

We present a correlation-based technique for channel
selection. Essentially, we can remove a channel from
being considered if the correlation of that channel is
high with respect to some other channel. A correla-
tion coefficient is a measure of statistical relationship
in between two variables. The variation in the value
of correlation coefficient can only be in between -1
to +1. If the value of the correlation coefficient is
high, that means the variables are highly related to
each other. The correlation coefficient can be found
with this equation.

R =
N(∑xy)− (∑x)(∑y)√

[N(∑x2)− (∑x)2][N(∑y2)− (∑y)2]
(5)

Here,
R = correlation coeff.
x,y = input samples
N = total number of samples
Correlation matrix of each dataset can be calculated
by taking average of correlation matrix of all the sam-
ples. This gives the average relationship of each chan-
nel with other channels for that dataset. Since, this is
an initial work, we have used simplistic channel se-
lection approach. However, one may consider other
feature selection methods.

5 EXPERIMENTS

Below we provide the results of our experiments with
the ThoughtViz dataset and our deep network models.
We use the same splitting for training and test data as
released by (Tirupattur et al., 2018). The ratio of
training and test data is roughly (90:10). The number
of training and test samples for Character dataset are
45083 and 5642 respectively. The number of train-
ing and test samples for MNIST dataset are 44367
and 5642 respectively. The number of training and
test samples for object dataset are 45390 and 5706 re-
spectively.

5.1 Results

Below we provide the results for the coarse level clas-
sification (between 3 broad categories), followed by
fine level classification (within each category of digit,
character, and objects).

5.1.1 Coarse Level EEG Classification

We first report our experiment involving classification
between the three broad categories of the datasets (i.e.
characters, digits and object). Thus, this is a 3-class
classification task. We use the network as discussed
in section 4.1.1 and with softmax activation at the out-
put. We train this network from scratch. The coarse
level classification task had only been performed by
(Kumar et al., 2018),and not by any other research
group. So we are comparing our results with this only.

The detailed results are given in Table 1. The re-
sults are showing significant improvement over the
work in (Kumar et al., 2018).

Table 1: Coarse level classification acc. (overall).
Dataset Accuracy Accuracy

for the for
proposed (Kumar et al., 2018)
network

ThoughtViz 89.5% 85.2%

The detailed category wise results are given in Table
2. It can be noted that for all three classes, the classi-
fication accuracy is consistently high.

Table 2: Coarse level classification acc. (individual).
Category True predict Total samples Acc.
Character 5032 5642 89.18%

Digits 5050 5642 89.5%
Object 5132 5706 89.9%

5.1.2 Fine Level EEG Classification

The result and the improvement for the coarse classi-
fication is quite encouraging and motivates us to per-
form the fine level classification of the image classes
within each of individual broad categories.

Since each dataset (character, digits and objects)
contains 10 classes, hence, it is a 10 class classifi-
cation problem for each dataset. For the comparison
purpose, we are taking the results of Tirupattur et al.’s
work (Tirupattur et al., 2018).

We first provide the results using the architecture
explained in Section 4.1.1. We trained three differ-
ent softmax classifiers with this architecture (since we
have three EEG datasets).All three models are trained
from scratch.

For the implementation of Siamese network, we
take the trained network as used in section 4.1.1 as our
feature extractor (without the fully connected classi-
fication layer). The triplet loss has been used as the
loss function for this network. After minimization of
loss, we used k-nearest neighbour as a classifier for
this network. As a start of the classification task with
Siamese network we manually created triplets and an-
alyze classification accuracy of this model.
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Although the performance is still better than the
comparative method of (Tirupattur et al., 2018), they
do not show improvement over our earlier results of
the single CNN network of Section 4.1.1.

From these results, we conclude that the selected
triplets in the above strategy may not be good enough
to train the Siamese network properly. So, in order
to prepare better triplets and proper minimization of
triplet loss we use a different strategy for the training
of Siamese networks i.e. Online training. The details
of this training are given in Section 4.1.2. All results
from the above experiments are given in Table 3.

Table 3: Classification accuracy from different methods.
Methods Datasets

Object Digits Characters
(Tirupattur et al., 2018) 72.95% 72.88% 71.18%

(Jolly et al., 2019) 77.4% NA NA
Proposed base model 76.253% 75.647% 74.264%

Siamese model (offline) 75.9% 75.2% 73.8%
Siamese model (online) 77.9 % 76.2% 74.8%

From the results in Table 3, we clearly observe the
improvement using the Siamese network over not just
the previous methods but also our earlier results. Note
that the authors of (Jolly et al., 2019) only performed
their classification task with object dataset. Thus, this
indicates that while the Siamese network can indeed
learn a more discriminative feature space, it is impor-
tant to select the triplet using an appropriate method.

5.2 Channel Selection

After getting motivating results for both coarse level
as well fine level EEG classification, we now report
the results with the channel selection process. The
need for channel selection is already discussed in sec-
tion 4.2.

Figure 5: Correlation matrix for Object dataset.

We applied correlation based technique for the
search of relevant channels. Calculating the corre-
lation coefficient is a statistical way to find the sim-
ilarity measure between two variables (details given
in section 4.2). With the estimation of correlation co-
efficient, we can figure out the most similar channel
pairs and can choose one of them instead of both. By,

Table 4: Channel selection with correlation(Object).
Threshold Channels Removed Classi.

(C) Acc.
with less
channels

C ≥ 0.8 F3 & AF4 75.7%
C≥ 0.7 F3, AF4 & F8 74%
C≥ 0.6 AF3 , F3, AF4 & F8 73.85%
C ≥ 0.5 F7, AF3 ,FC6, F3, AF4 & F8 73.659%
C ≥ 0.4 AF3, F7, F3, O2 , FC6, F8 73.5%

, AF4
C ≥ 0.3 AF3, F7, F3, FC5 , O2 , FC6 70.9%

, F8, AF4
C ≥ 0.2 AF3, F7, F3, FC5 , P7, O2 68.2%

, P8,FC6, F8, AF4
C≥ 0.1 AF3, F7, F3, FC5 , P7, O2 67.3%

, P8, FC6, F4, F8, AF4
C≥ 0.05 AF3, F7, F3, FC5, T7, P7 67%

, O2, P8, FC6, F4, F8, AF4
C≥ 0.01 AF3, F7, F3, FC5, T7, P7 66.3%

, O2, P8, T8, FC6, F4, F8, AF4

this way we can choose fewer number of the more
distinctly informative channels. This method can be
executed with the estimation of individual correlation
matrices for the individual dataset (i.e object, digits
and characters). The overall correlation matrix for a
dataset is the average of all correlation matrices for all
training samples from that dataset.

The correlation matrix of each individual dataset
is given below in figure 5, 6 and 8. Each entry of
this correlation matrix indicates the similarity of one
channel with respect to the other channel.

In order to remove the channels, we choose a pair
which has a high correlation coefficient. To properly
assess this process we consider the similarity with dif-
ferent thresholds on the correlation values (from 0.8
to 0.1 in steps of 0.1). If the correlation coefficient
of a pair is greater than that threshold, we select only
one entry from that pair. The detailed results with this
analysis are given in Tables 4, 5 and 6. For simplic-
ity, the classification in case of the channel selection
was performed using the base CNN model described
in Section 4.1.1. For, estimating the classification ac-
curacy we take the remaining channels after removal
of the redundant channels. Graphically, we can show
the variation of classification accuracy with channels
in the given figure 7. Here, y-axis represents the clas-
sification accuracy (%) while the x-axis represents the
number of channels. From all of these tables and fig-
ure, we can conclude that the classification accuracy

Figure 6: Correlation matrix for Char74K dataset.
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Table 5: Channel selection with correlation (Char dataset).
Threshold Channels Removed Classi.

Acc.
with less
channels

C ≥ 0.8 AF3 74.02%
C≥ 0.7 AF3, AF4 73.9%
C≥ 0.6 AF3 , F7, F8 & AF4 73.9%
C ≥ 0.5 AF3 ,F7, F3, FC6, F8 & AF4 73.6%
C ≥ 0.4 AF3 ,F7, F3, O2 , FC6, F8 73.46%

& AF4
C ≥ 0.3 AF3 ,F7, F3, FC5 ,P7, O2 71.1%

, FC6, F8 & AF4
C ≥ 0.2 AF3 ,F7, F3, FC5 ,P7, O1 68.7%

, O2 ,FC6, F8 & AF4
C≥ 0.1 AF3 ,F7, F3, FC5 ,P7, O1 68.557%

, O2, P8, ,FC6, F8 & AF4
C≥ 0.05 AF3 ,F7, F3, FC5 ,T7 , P7, 66.67%

O1, O2, P8, FC6, F4, F8
& AF4

Figure 7: Variation of classification accuracy with channels
(Object dataset).

is highest when all channels taken into account i.e
each channel can be said to contribute for the clas-
sification. However, even if we remove few channels
the classification accuracy in not dropping drastically.
This observation is valid for all the 3 classification
tasks. Hence, for those application where the com-
putational and memory necessities increase with the
increase in the number of channels, we can work with
limited number of relevant channels.

Figure 8: Correlation matrix for MNIST dataset.

6 DISCUSSION & CONCLUSION

In this work, we have proposed approaches for EEG
signal classification for the task involving visual stim-
uli, involving different categories of images. The ex-
periments with the different model architectures lead
us to the final model which is giving a significant im-
provement in the classification accuracy with respect

Table 6: Channel selection with correlation (MNIST).
Threshold Channels Removed Classi.

Acc.
with less
channels

C ≥ 0.8 AF3, 74.9%
C≥ 0.7 AF3, F8, AF4 74.08%
C≥ 0.6 AF3, F7, F3, F8, AF4 73.8%
C ≥ 0.5 AF3, F7, F3, O1, FC6, F8 73.1%

, AF4
C ≥ 0.4 AF3, F7, F3, O1, O2, FC6 72.84%

, F8, AF4
C ≥ 0.3 AF3, F7, F3, FC5, P7, O1 69.248%

, O2, FC6,F8, AF4
C ≥ 0.2 AF3, F7, F3, FC5, P7 68.1%

, O1, O2, P8, FC6 , F8, AF4
C≥ 0.1 AF3, F7, F3, FC5, P7, O1 68.1%

, O2, P8, FC6 , F8, AF4
C≥ 0.05 AF3, F7, F3, FC5 ,T7, P7 67.06%

, O1, O2, P8, FC6, F8, AF4
C≥ 0.01 removed all except F4 65.9%

to the all available state of the art methods. After get-
ting the suitable EEG classifier we further improve
the classification results using the concept of distance-
metric learning via a Siamese network with a triplet
loss and using online triplet selection. Finally, we also
suggest using less number of channels and demon-
strate the effectiveness of a correlation based channel
selection strategy to reduce the number of channels,
without significantly reducing the classification accu-
racy. While we have improved the state-of-the-art per-
formance, we still believe that there is further scope of
improvement and analysis.

REFERENCES

Bashivan, P., Rish, I., Yeasin, M., and Codella, N.
(2015). Learning representations from eeg with
deep recurrent-convolutional neural networks. arXiv
preprint arXiv:1511.06448.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah,
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