
Model-based Analysis Support for Dependable Complex Systems in
CHESS

Alberto Debiasi2, Felicien Ihirwe1, Pierluigi Pierini1, Silvia Mazzini1 and Stefano Tonetta2

1Innovation Technology Service Lab, Intecs Solutions Spa, Pisa, Italy
2Embedded Systems Unit, Fondazione Bruno Kessler (FBK), Povo, Italy

Keywords: CHESS, Model Driven Engineering, Complex Systems, Dependability Analysis.

Abstract: The challenges related to dependable complex systems are heterogeneous and involve different aspects of the
system. On one hand, the decision-making processes need to take into account many options. On the other
hand, the design of the system logical architecture must consider various dependability concerns such as safety,
reliability, and security. Moreover, in case of high-assurance systems, the analysis of such concerns must be
performed with rigorous methods. In this paper, we present the new development of CHESS, a cross-domain,
model-driven, component-based and open-source tool for the development of high-integrity systems. We focus
on the new recently distributed version of CHESS, which supports extended model-based development and
analyses for safety and security concerns.

1 INTRODUCTION

The ever increasing complexity and dependability is-
sues of systems in various domains, such as trans-
portation, space, energy, health, and industrial pro-
duction, requires effective design and development
methods. The complexity and heterogeneity of com-
ponents can be addressed with modeling approaches
that span different technical disciplines and prove ef-
fective in the end-to-end engineering of the prod-
ucts. This implies taking into account various require-
ments such as quality, performance, cost, safety, se-
curity, and reliability. Model-based design technolo-
gies enable the user to perform beforehand different
assurance-related activities such as physical architec-
ture exploration, system’s behavioral analysis, early
verification, and validation.

The CHESS toolset (Cicchetti et al., 2012) offers a
cross-domain modeling and analysis of high-integrity
systems providing an integrated framework that helps
the modeler (user) to automate different development
phases: from the requirements definition, to the archi-
tectural modeling of the system’s software and hard-
ware, up to its deployment to an hardware platform
(Cicchetti et al., 2012). CHESS follows a component-
based approach where the user decouples different
functional parts of the system as components that can
be modeled, analyzed, verified, stored, reused indi-
vidually, and be integrated to meet the system’s com-

mon goals. CHESS supports, among other, schedu-
lability and dependability analysis across the entire
project life cycle. The results of the analysis are back-
propagated to the model itself so that the modeler can
review and fine-tune the model to satisfy real-time
and dependability requirements.

CHESS tool recently became a full-fledged open-
source project, hosted by The Eclipse Foundation
(https://www.eclipse.org/chess/). The code has being
developed by various contributors following an open-
source approach with public projects for issue track-
ing, code repository branches, and continuous inte-
gration. This paper presents the latest development
of CHESS to address software’s security and safety
analysis of the system exploiting the CHESS error
model to represent faults and attacks. Analysis is
completed by the integration with back-end tools such
as xSAP (Bittner et al., 2016) and Mobius (Court-
ney et al., 2009) for the minimal cut sets analysis and
Monte-Carlo simulation.

CHESS was developed, used and extended in
many research projects, by both industrial and aca-
demic partners. To list a few, CHESS was involved
in international projects such as the homonymous
CHESS project1, CONCERTO2, and SESAMO3,

1http://www.chess-project.org/
2http://www.concerto-project.org/
3http://sesamo-project.eu/

262
Debiasi, A., Ihirwe, F., Pierini, P., Mazzini, S. and Tonetta, S.
Model-based Analysis Support for Dependable Complex Systems in CHESS.
DOI: 10.5220/0010269702620269
In Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2021), pages 262-269
ISBN: 978-989-758-487-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



under the ARTEMIS Joint Undertaking initiative,
AMASS4, AQUAS5, and MegaM@Rt6, under the
ECSEL Joint Undertaking initiative. CHESS has been
applied in different domains such as Avionics (Go-
dard and Nelissen, 2016), Automotive (Bressan et al.,
2018), Space (Pace et al., 2014), Telecommunica-
tion (Mazzini, 2015), and Petroleum (Gallina et al.,
2014)(Montecchi and Gallina, 2017).

The rest of the paper is arranged into five sections.
Sections 2 provides an introduction to the CHESS tool
building blocks and methodology, Section 3 presents
the new major features released under CHESS 1.0.0,
Section 4 discusses the related work. In Section 5
we present the envisioned future extension on CHESS
and finally Section 6 concludes the paper.

2 CHESS IN A NUTSHELL

The CHESS modeling tool was released under the
Eclipse PolarSys project7 and recently it was moved
from the incubation status to the first major re-
lease. The CHESSML is an integrated modelling lan-
guage profiled from OMG standard languages: UML,
SysML and MARTE under the Papyrus modeling en-
vironment 8 Not all the features from all the three lan-
guages were profiled to CHESS but only a specific
subsets that suits CHESS’s perspective. In particular
sub-profiles supporting contract-based and depend-
ability concerns have been defined, while MARTE
has been adopted (with minor deviations) for what
concern the timing perspective. There are different
tools, plugins, and languages that were integrated into
CHESS to support model validation, model checking,
realtime and dependability analysis.

In this section, we are going to briefly describe
the core aspects of CHESS methodology. We will
also look in brief at different analysis mechanisms
that are being performed in CHESS and how they link
together to enhance system correctness.

2.1 Component-based Methodology

The CHESSML language supports a component-
based development methodology enabling property-
preserving component assembly for real-time and de-
pendable embedded systems. Emphasis is given to
separation of concerns between the functional and

4https://www.amass-ecsel.eu/
5https://aquas-project.eu/
6https://megamart2-ecsel.eu/
7https://projects.eclipse.org/projects/polarsys.chess
8https://www.eclipse.org/papyrus/

the non-functional dimensions, such as safety, secu-
rity, reliability, performance, and robustness (Mazzini
et al., 2015).

In CHESS, components at design level encompass
functional concerns only (i.e., they are devoid of any
constructs pertaining to tasking and specific compu-
tational model). The specification of non-functional
attributes is then used for the automated generation
of the container, enforcing the realization of the non-
functional attributes declared for the component to be
wrapped.

The CHESS methodology follows the “Correct-
ness by Construction” practice which enforces (1)
the use of formal and precise tools and notations for
the development and the verification of all product
items; (2) say things only once to avoid contradic-
tions and repetitions; (3) the design of software com-
ponents that are easy to verify, by e.g., using safer
language subsets, and to implement, by using appro-
priate coding styles and design patterns (Panunzio and
Vardanega, 2014).

2.2 Multi-view Modeling Approach

The CHESS tool provides a set of design views to up-
hold the ”separation of concern”, the ”correctness by
construction” and the other methodological principles
introduced before. Six main views are defined to sup-
port the CHESS modeling approach. Throughout the
development process, each view has its own under-
lined constraints that enforce its specific privileges on
model entities and properties that can be manipulated.
Depending on the current stage of the design process,
CHESS sub-views are adopted to enhance certain de-
sign properties or stages of the process.

Requirement View is used to define system re-
quirements and track their verification, System view
provides a suitable frame for system-level design ac-
tivities such as contract-based design, functional and
dependability analysis. Component view composed
of two sub-views, Functional and Extra-functional
views which supports the design of system compo-
nents logic and their internal compositions. Deploy-
ment view wich allows hardware structure modelling
and the allocation of the corresponding software com-
ponent instances. Analysis view capture all the analy-
sis activities, diagrams and results. Finally, Instance
view which is used to visualize and model the Plat-
form Specific Model (PSM) as a joint instance of soft-
ware to hardware allocated components.

Model-based Analysis Support for Dependable Complex Systems in CHESS

263



2.3 Model-based Analysis and
Verification

CHESS provides the capability to perform several
kinds of analysis depending on the specific require-
ments (functional, timing, dependability). Part of
these functionalities have been added or extended to
the new release of CHESS and are further explained
in the next section.

Functional Verification: by means of model
checking is supported by the integrated nuXmv model
checker (Cavada et al., 2014). System and component
properties, derived from requirements, can be formal-
ized into linear temporal logic properties, then they
can be verified on top of the system’s or component’s
behavioral models developed using state machines.

Contract-based Analysis: is built on top of the
OCRA tool support (Cimatti et al., 2013). Compo-
nent formal properties are structured in terms of con-
tracts, comprised of an assumption and a guarantee
pairs. The assumption is a property to be fulfilled
by the component’s environment, and the guarantee
is a property that must be satisfied by the component
implementation - provided that the environment satis-
fies the assumption (Cimatti and Tonetta, 2015). The
contract refinement can be exploited for architectural
analysis, compositional functional verification (model
checking) and safety analysis (see also Sec. 3).

Timing Analysis: is built on top of the MAST9

analysis tool. It is invoked to perform analysis such
as schedulability and end-to-end response time analy-
sis. Schedulability analysis is performed by taking in-
put from the annotated PSM model and the computed
partition schedule on each available processing unit.
Then, the response-time analysis calculates the worst-
case response time of each task (Godard and Nelissen,
2016) assessing the schedulable tasks complying with
the given timing constraints. The end-to-end analysis
is done by utilizing the component sequence diagram.
Applying MARTE timing stereotypes, the tool evalu-
ates the hardware component’s responsiveness. This
analysis facilitates “early end-to-end response time
verification”, giving a sense of any possible refine-
ment of the model before deployment (Mazzini et al.,
2015).

Dependability Analysis: include Failure Logic
Analysis and State Based Quantitative Dependabil-
ity Analysis. Failure Logic Analysis (Gallina et al.,
2014) builds on top of Failure Propagation and Trans-
formation Calculus (Wallace, 2005) and enables de-
ductive as well as inductive hazards analysis towards
semi-automatic generation of artefacts, necessary for

9https://mast.unican.es/

arguing about HARA (Hazards Analysis and Risk As-
sessment). Supported by the DEEM tool (Bondavalli
et al., 2000), State-Based Quantitative Dependability
Analysis (Montecchi et al., 2013) supports safety en-
gineers in the management of Reliability, Availability,
Maintainability and Safety (RAMS) properties, and
in the assessment of hazard rate threshold associated
with safety integrity levels. Properties modeled using
the CHESSML dependability profile are analyzed to
obtain the probability of occurrence of specific failure
modes and other quantitative metrics involving relia-
bility, availability, and safety.

3 NEW SYSTEM-LEVEL
ANALYSIS SUPPORT

In this section, we present the new major features re-
leased in CHESS 1.0.0. The new release includes
extended support for system-level safety and security
analysis. CHESSML dependability profile which nor-
mally supports different techniques for safety and de-
pendability analysis has been extended to model fault
injection and threats. Other new features include con-
tract validations, parameter-based architectures, and
document generation. This new release can be ac-
cessed at https://www.eclipse.org/chess/

3.1 Contract-based Design Analysis and
Model Checking

CHESS supports the specification of component con-
tracts specified in the OCRA contract language. Re-
quirements are formalized into Formal Properties,
which contain OCRA assertions, i.e., textual speci-
fications of temporal logic formulas (see Fig. 1 for
an example). In the contract-based paradigm, these
properties are restricted to the related component in-
terface. A contract is a pair of properties represent-
ing an assumption and a guarantee of the compo-
nent. In addition, CHESS tool supports the contract
refinement analysis for composite components. The
contract of a composite component is defined by the
assumption of the composite component itself and
the guarantee ensured by the contracts of its sub-
components, considering their interconnection as de-
scribed by the architecture and and that the assump-
tion of each sub-component is ensured by the con-
tracts of the other sibling sub-components.

The new CHESS release has improved the
contract-based analysis aspects by integrating CHESS
with V&V tools such as OCRA, nuXmv, and xSAP.
In this regard, the new additional analysis includes:

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

264



Figure 1: Example of a FormalProperty formalizing a requirement.

Figure 2: Example of a component contract.

(1) Model checking, i.e. the behavioral models,
that describe how the internal state of a component
and the output ports are updated, can be verified
against some formal properties in different temporal
logics. The formal properties can represent some re-
quirements (e.g., functional or safety-related require-
ments) or some validation queries such as the reacha-
bility of states.

(2) Contract-based compositional verification of
state machines is performed on composite com-
ponents. The local state machine of each sub-
component is verified separately against its local con-
tract. The correctness of the composite component
is implicitly derived by the correctness of the con-
tract refinement and the successful verification of lo-
cal state machines.

(3) Contract-based safety analysis, i.e. identify
the component failures as the failure of its implemen-
tation in satisfying the contract. When the component
is composite, its failures can be caused by a failure
of one or more sub-components and/or a failure of
the environment in satisfying the assumption. As re-
sult, the analysis produces a fault tree in which each
intermediate event represents the failure of a compo-
nent or its environment, linked to a Boolean combina-
tion of other nodes. The top-level event is the failure
of the system component. The basic events are the
failures of the leaf sub-components, in addition to the
failure of the environment (see (Bozzano et al., 2014)
for more details).

3.2 Fault Injection and Safety Analysis

CHESS supports safety analysis based on fault injec-
tion thanks to the integration of xSAP(Bittner et al.,
2016). The behavioral models of components are ex-
tended with faults and the tool automatically gener-
ates Fault Trees, showing the combinations of events
leading to a failure or an undesired state, and Fault
Mode Effect Analysis (FMEA) tables, listing all po-
tential failure modes and their effects on the sys-
tem (Bozzano and Villafiorita, 2013).

More specifically, once the system model is de-
fined in CHESS, through components definition and
their nominal behavioral model, the faulty behavior
is expressed through a specific state machine called
”Error Model”. The Error Model extends the nom-
inal state machine with information about the effect
upon a property of the component, and consequently
on its nominal behavior. Figure 3 represents an exam-
ple of an error model that, in case of an internal fault,
moves the related component in an error state where
the property ”energy” is stuck at 0 value. The optional
probability assigned to that transition is 5 ·10−2.

Once the error model is defined, the Fault Tree
Analysis (FTA) or FMEA can be done by invoking
xSAP through the CHESS environment.

The xSAP approach is based on the library-based
fault injection (i.e., an extension of a behavioral
model with the definition of faults taken from a li-
brary of faults) and the use of model-based routines
to generate safety artifacts.

The result of the FTA is the fault tree that is au-
tomatically shown in a dedicated panel in the front-
end; see Figure 4 for an example. If fault probabil-

Model-based Analysis Support for Dependable Complex Systems in CHESS

265



Figure 3: State machine modeling faulty behavior.

Figure 4: A fault tree visualized in the CHESS Editor View;
note the probabilities associated to the top and basic events.

ities have been specified during the configuration of
the error model, the fault tree will report their com-
bination. The fault tree shows all minimal cut-sets,
identifying the basic fault conditions which can lead
to the top-level failure.

This is complementary to other existing analysis
techniques supported in CHESS such as Failure Logic
Analysis and State Based Quantitative Dependability
Analysis, which do not consider the nominal behav-
iors and fault injection, but explicitly model the faulty
behavior and fault propagation.

3.3 Quantitative Reliability Analysis

The CHESS profile for dependability is used to en-
rich functional models of the system with informa-
tion regarding the behavior with respect to faults and
failures, thus allowing properties like reliability, avail-
ability, and safety to be documented and analyzed.

The new release supports the modeling of secu-
rity concerns which helps in threat identification at the
early stages of the development and facilitates the ex-
ploiting of the Mobius capabilities for analysis of reli-

ability. Möbius10: is a software tool for modeling the
behavior of complex systems, by allowing the study
of the reliability, availability, security, and perfor-
mance for large-scale discrete-event systems (Court-
ney et al., 2009). Many reliability analysis results can
be obtained with probabilistic models built with Mo-
bius using the stochastic activity networks (SAN) for-
malism, solved via Monte-Carlo simulation11.

Specific extensions of the dependability profile are
related to the modelling of Cyber-Attacks aspects and
model transformations from CHESS to the Mobius
tool to run the analysis of SANs.

As results the implemented methodology allows
modeling of a system security threat and data cor-
ruption which may result to service misfortune. An
example of a system security threat can be a cyber-
security attack, i.e. an unauthorized access of the sys-
tem, halting services.

Figure 5: Process of Security breach.

Figure 5 depicts the process of a security breach that
leads to the violation of the security-related proper-
ties. A threat event, initiated by a threat source agent,
able to exploit a vulnerability of an asset (e.g. a
component/system) may result in a loss to the con-
fidentiality, integrity, and/or availability of the asset.
Vulnerabilities could be represented as a pre-defined
enumeration collected through different sources (e.g.
personal competence, standards, results of previous
threat analysis, etc.). Finally, the consequences could
be modeled using pre-defined effects, which refers to
the loss of Confidentiality, Integrity and Availability
(CIA).

An <<ErrorModel>>-tagged state machine is
used when modeling the security breach. The fail-
ure, internal fault, and effect are extended to include
security threats, vulnerability, and consequences re-
spectively. Figure 6 illustrates an example of an error
model, where a cyber-security attack initiates a data
corruption threat. The vulnerability was modeled ex-
ploiting the value check function which is set to false.
In this case, the system transits to an erroneous state
leading to component failure. Note that a component
could have multiple instances of <<ErrorModel>>-
tagged state machines, attached to it. Each instance
would provide the elaboration of input/output failure
behavior addressing a specific concern.
10https://www.mobius.illinois.edu/
11https://www.investopedia.com/terms/m/

montecarlosimulation.asp

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

266



Figure 6: Erroneous state transition due to security threat
event and vulnerability.

The generation of the Mobius SAN model pro-
cess is done by performing an automatic model-to-
model transformation from a model instance to the
SAN model recognized by Mobius for reliability anal-
ysis.

The new reliability analysis is additional to the ex-
isting State Based Quantitative Dependability Analy-
sis. It exploits the Mobius powerful and well sup-
ported analysis capabilities as engine for safety and
security co-engineering, according to the scenario ad-
dressed in (Popov, 2017). Editing Mobius models
can be non trivial. To this purpose we have ex-
tended the CHESS profile, the CHESS modelling lan-
guage capabilities, and the user-friendly editor front-
end to fully support the modelling of system architec-
tures taking into consideration safety and security co-
engineering, and by using automatic transformations
to SAN model for reliability analysis with MOBIUS.

This extension has been developed in the context
of the AQUAS project, as result of a collaborative
effort among Intecs and City University of London,
applied and evaluated across different use cases, in
the ATM and Industrial Drive domain. This approach
provides a smooth integration, guarantees the consis-
tency among SysML and SAN models, and largely
reduces the effort required to construct an appropriate
SAN analysis model.

3.4 Support for Parameterized
Architecture and Trade-off Analysis

In a parameterized architecture the number of com-
ponents, the number of ports, the connections, and the
static attributes of components depends on a set of pa-
rameters. Parameters are defined along the architec-
tural hierarchy and, thus, the number of parameters
themselves can depend on other parameters.

CHESS supports the the modeling of the param-
eterized architecture as well as its instantiation. In
particular, the user can set the values of the param-

eters, defining the configuration of the architecture,
and the tool automatically generates a concrete archi-
tecture corresponding to that configuration. Figure 7
shows an example of parameterized architecture.

Figure 7: Example of parameterized architecture.

The parameterized architecture is also exploited for
trade-off analysis, by performing various analyses on
the different instantiations and comparing the results.
This makes it easy to visually get an idea of how the
intended model instances perform with respect to the
selected configurations.

3.5 Automatic Generation of Diagrams
and Documentation

The traditional way of editing a model is by adding an
element in a diagram but changes made in the model
are not reflected in the diagrams. The new CHESS
release offers the possibility of generating a diagram
from the model which reflects the data in the model
on the fly. The supported diagrams are Block Def-
inition Diagram (BDD) and Internal Block diagram
(IBD). Multiple diagrams can be generated on a sin-
gle component in the model. The generated diagram
elements will be automatically aligned but the user
can rearrange by moving elements manually or by in-
voking “layout selection command.”

The new release also supports the generation of
the model architecture and the report on various anal-
yses executed on the model in an HTML document or
a LaTeX source code. The report is divided into two
sections. The first describes the structure of the model
which includes diagrams and the associated compo-
nents while the second includes the report lists of the
results of the validation and verification (V&V) anal-
yses results. There are many types of V&V results
such as property validation, assume/guarantee prop-
erties results, contract checks results, model checking,
FTA, FMEA, and so on.

Model-based Analysis Support for Dependable Complex Systems in CHESS

267



4 RELATED WORK

Several commercial tools provide similar functional-
ities of CHESS. One of the most popular is Mat-
lab/Simulink12. Although Simulink facilitates the
modelling and analysis of complex systems, its sim-
ulation efficiency might be an important disadvan-
tage. Being based on a single Model of Computation
and Communication (MoCC) is another limitation.
CoFluent13 is another commercial tool extended to
model IoT systems. Although supporting more inter-
action models than Matlab/Simulink, it is also limited
in the way components may interact among them.

Another tendency is to overcome the UML lacks
in semantic content, required in some application
domains, towards a proliferation of DSLs (Bram-
billa et al., 2012). Among the available DSLs,
UML/MARTE is the standard language for real-
time and embedded systems design, while SysML
is the standard language for system modeling. Sev-
eral modelling environments like Papyrus14 support
UML/MARTE. Nevertheless, its flexibility and se-
mantic richness requires the definition of efficient
modelling methodologies.

Capella15: is an open-source comprehensive and
extensible Eclipse system modelling tool. It is in-
spired to the SysML principles and it supports the AR-
CADIA methodology that is successfully deployed in
a wide variety of industrial contexts (Bonnet et al.,
2015). ARCADIA provides architectural descriptions
for functional analysis, structural analysis, interfaces
and behavior modeling, structured in five perspectives
according to major system engineering activities and
concerns.

COMPASS (Bozzano et al., 2019): supports
model checking, model-based safety, reliability, and
performance analysis and shares with CHESS some
of the tools used as backend for such analyses. Differ-
ently from CHESS, it targets a variant of AADL and
does not support traceability and code generation.

MapleSim16: is a modeling tool for multi-domain
engineering systems built on top of Modelica model-
ing language (Fritzson, 2015). MapleSim features an
integrated environment in which the system equations
can be automatically generated and analyzed (Cao
and Wu, 2013).

Although we see some approaches able to tackle
modeling challenges, no tool or approach has been

12https://www.mathworks.com/products/simulink.html
13https://www.intel.com/content/www/us/en/cofluent/

overview.html
14https://www.eclipse.org/papyrus/
15https://www.eclipse.org/capella/
16https://www.maplesoft.com/products/maplesim/

able to fit in our methodology with such analysis and
verification functionalities. Which makes CHESS a
novel approach for implementing component-based
modeling methodology for real-time and dependable
systems by taking care of non-functional properties
and enforces the correctness at all the stages of the
development process.

5 FUTURE WORK

CHESS is a very huge toolset with more sophisticated
and powerful functionality to meet user needs. How-
ever, there is still a gap for improvement, to cover
more and more domains such as the Internet of Things
(IoT) in a more concrete way. Note that we are not
concluding that it is not capable to perform some ba-
sic modeling of IoT related scenarios but we aspire
to make it more IoT specific. This extension will fol-
low CHESS’s component-based methodology and it
will also follow already existing modeling approaches
present in CHESS.

The envisioned approach will be achieved by im-
proving the CHESSML metamodel with a set of
specific stereotypes, contracts, communications, and
operations profiled for IoT. The new proposed ap-
proach will also take in use of already existing de-
pendability analysis infrastructure. We also plan to
export IoT models developed with CHESS to ex-
ternal consumers. Finally, we plan to exploit the
current CHESS’s code generation support for Ada
language, integrated with the open-source ThingML
framework17, for IoT code generation.

6 CONCLUSIONS

Dependable complex system design and development
present several challenges, the well-known canonical
approach is to divide complex systems into smaller
chunks (or subsystems), build them separately, and
later integrate them. In this paper, we presented the
current state of the CHESS tool to tackle design, anal-
ysis, and verification of real-time dependable com-
plex systems. We walked through the CHESS tool
architecture and we highlighted its component-based
and multi-view modeling approaches. We have also
presented the new system-level extensions and capa-
bilities of the tool released under the CHESS1.0.0 ver-
sion.

17https://github.com/TelluIoT/ThingML

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

268



ACKNOWLEDGEMENTS

This work has received funding from the Low-
comote project under European Union’s Horizon
2020 research and innovation program under the
Marie Skłodowska-Curie grant agreement n813884.
We would like to acknowledge also different
projects funding leading to the mature realization of
CHESS which include the CHESS1, CONCERTO2,
SESAMO3, AMASS4, and AQUAS5. We would like
to acknowledge the main contributors to the devel-
opment of the CHESS toolset, in particular Stefano
Puri, Nicholas Pacini, Luca Cristoforetti and Pietro
Braghieri. Finally, we would like to acknowledge also
Prof. Davide Di Ruscio for the assistance on drafting
this paper.

REFERENCES

Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario,
M., Griggio, A., Mattarei, C., Micheli, A., and
Zampedri, G. (2016). The xSAP Safety Analysis Plat-
form. In TACAS, pages 533–539. Springer.

Bondavalli, A., Mura, I., Chiaradonna, S., Filippini, R.,
Poli, S., and Sandrini, F. (2000). Deem: a tool for
the dependability modeling and evaluation of multiple
phased systems. In DSN 2000, pages 231–236.

Bonnet, S., Voirin, J.-L., Normand, V., and Exertier, D.
(2015). Implementing the mbse cultural change: Or-
ganization, coaching and lessons learned. INCOSE
International Symposium, 25(1):508–523.

Bozzano, M., Bruintjes, H., Cimatti, A., Katoen, J., Noll,
T., and Tonetta, S. (2019). COMPASS 3.0. In TACAS,
pages 379–385. Springer.

Bozzano, M., Cimatti, A., Mattarei, C., and Tonetta, S.
(2014). Formal safety assessment via contract-based
design. In ATVA, pages 81–97. Springer.

Bozzano, M. and Villafiorita, A. (2013). Safety critical sys-
tems. In Encyclopedia of Software Engineering. CRC
Press (Taylor & Francis Group).

Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-
Driven Software Engineering in Practice. Morgan &
Claypool Publishers.

Bressan, L., de Oliveira, A. L., Montecchi, L., and Gallina,
B. (2018). A systematic process for applying the chess
methodology in the creation of certifiable evidence. In
EDCC, pages 49–56.

Cao, J. M. and Wu, T. (2013). Multi-domain modeling
simulation and application based on maplesim. In
Mechatronics and Intelligent Materials III, volume
706, pages 1894–1897. Trans Tech Publications Ltd.

Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mar-
iotti, A., Micheli, A., Mover, S., Roveri, M., and
Tonetta, S. (2014). The nuXmv Symbolic Model
Checker. In CAV, pages 334–342. Springer.

Cicchetti, A., Ciccozzi, F., Mazzini, S., Puri, S., Panunzio,
M., Zovi, A., and Vardanega, T. (2012). CHESS: a
model-driven engineering tool environment for aiding

the development of complex industrial systems. In
ASE, pages 362–365.

Cimatti, A., Dorigatti, M., and Tonetta, S. (2013). OCRA: A
tool for checking the refinement of temporal contracts.
In Denney, E., Bultan, T., and Zeller, A., editors, ASE,
pages 702–705. IEEE.

Cimatti, A. and Tonetta, S. (2015). Contracts-refinement
proof system for component-based embedded sys-
tems. Sci. Comput. Program., 97:333–348.

Courtney, T., Gaonkar, S., Keefe, K., Rozier, E. W. D., and
Sanders, W. H. (2009). Möbius 2.3: An extensible
tool for dependability, security, and performance eval-
uation of large and complex system models. In DSN,
pages 353–358.

Fritzson, P. (2015). Principles of Object-Oriented Modeling
and Simulation with Modelica 3.3: A Cyber-Physical
Approach. Wiley-IEEE Press, 2 edition.

Gallina, B., Sefer, E., and Refsdal, A. (2014). Towards
safety risk assessment of socio-technical systems via
failure logic analysis. In ISSRE Workshops, pages
287–292.

Gallina, B., Sefer, E., and Refsdal, A. (2014). Towards
safety risk assessment of socio-technical systems via
failure logic analysis. In ISSRE Workshops, pages
287–292.

Godard, W. and Nelissen, G. (2016). Model-based design
and schedulability analysis for avionic applications on
multicore platforms. Ada User Journal, 37:157–163.

Mazzini, S. (2015). The concerto project: An open source
methodology for designing, deploying, and operat-
ing reliable and safe cps systems. Ada User Journal,
36:264–267.

Mazzini, S., Favaro, J., and Baracchi, L. (2015). A model-
based approach across the IoT lifecycle for scalable
and distributed smart applications. In ITSC, pages
149–154.

Montecchi, L. and Gallina, B. (2017). Safeconcert: A
metamodel for a concerted safety modeling of socio-
technical systems. In MBSA, pages 129–144, Cham.
Springer International Publishing.

Montecchi, L., Lollini, P., and Bondavalli, A. (2013). A
reusable modular toolchain for automated depend-
ability evaluation. In VALUETOOLS, page 298–303.
ICST.

Pace, L., Pasquinelli, M., Gerbaz, D., Fuchs, J., Basso,
V., Mazzini, S., Baracchi, L., Puri, S., Lassalle, M.,
and Viitaniemi, J. (2014). Model-based approach for
the verification enhancement across the lifecycle of a
space system. In INCOSE CIISE2014.

Panunzio, M. and Vardanega, T. (2014). A component-
based process with separation of concerns for the de-
velopment of embedded real-time software systems.
Journal of Systems and Software, 96:105 – 121.

Popov, P. (2017). Models of reliability of fault-tolerant soft-
ware under cyber-attacks. In ISSRE, pages 228–239.

Wallace, M. (2005). Modular architectural representation
and analysis of fault propagation and transformation.
Electronic Notes in Theoretical Computer Science,
141(3):53 – 71. FESCA 2005.

Model-based Analysis Support for Dependable Complex Systems in CHESS

269


